1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
#ifndef DataFormats_L1TrackTrigger_TTBV_h
#define DataFormats_L1TrackTrigger_TTBV_h
#include <bitset>
#include <array>
#include <string>
#include <algorithm>
#include <cmath>
#include <utility>
#include <vector>
#include <iostream>
/*!
* \class TTBV
* \brief Bit vector used by Track Trigger emulators. Mainly used to convert
* integers into arbitrary (within margin) sized two's complement strings.
* \author Thomas Schuh
* \date 2020, Jan
*/
class TTBV {
public:
static constexpr int S_ = 64; // Frame width of emp infrastructure f/w, max number of bits a TTBV can handle
private:
bool twos_; // Two's complement (true) or binary (false)
int size_; // number or bits
std::bitset<S_> bs_; // underlying storage
public:
// constructor: default
TTBV() : twos_(false), size_(0), bs_() {}
// constructor: double precision (IEEE 754); from most to least significant bit: 1 bit sign + 11 bit binary exponent + 52 bit binary mantisse
TTBV(const double d) : twos_(false), size_(S_) {
int index(0);
const char* c = reinterpret_cast<const char*>(&d);
for (int iByte = 0; iByte < (int)sizeof(d); iByte++) {
const std::bitset<std::numeric_limits<unsigned char>::digits> byte(*(c + iByte));
for (int bit = 0; bit < std::numeric_limits<unsigned char>::digits; bit++)
bs_[index++] = byte[bit];
}
}
// constructor: unsigned int value
TTBV(unsigned long long int value, int size) : twos_(false), size_(size), bs_(value) {}
// constructor: int value
TTBV(int value, int size, bool twos = false)
: twos_(twos), size_(size), bs_((!twos || value >= 0) ? value : value + iMax()) {}
// constructor: double value + precision, biased (floor) representation
TTBV(double value, double base, int size, bool twos = false) : TTBV((int)std::floor(value / base), size, twos) {}
// constructor: string
TTBV(const std::string& str, bool twos = false) : twos_(twos), size_(str.size()), bs_(str) {}
// constructor: bitset
TTBV(const std::bitset<S_>& bs, bool twos = false) : twos_(twos), size_(S_), bs_(bs) {}
// constructor: slice reinterpret sign
TTBV(const TTBV& ttBV, int begin, int end = 0, bool twos = false) : twos_(twos), size_(begin - end), bs_(ttBV.bs_) {
bs_ <<= S_ - begin;
bs_ >>= S_ - begin + end;
}
// Two's complement (true) or binary (false)
bool twos() const { return twos_; }
// number or bits
int size() const { return size_; }
// underlying storage
const std::bitset<S_>& bs() const { return bs_; }
// access: single bit
bool operator[](int pos) const { return bs_[pos]; }
std::bitset<S_>::reference operator[](int pos) { return bs_[pos]; }
// access: most significant bit copy
bool msb() const { return bs_[size_ - 1]; }
// access: most significant bit reference
std::bitset<S_>::reference msb() { return bs_[size_ - 1]; }
// access: members of underlying bitset
bool all() const { return bs_.all(); }
bool any() const { return bs_.any(); }
bool none() const { return bs_.none(); }
int count() const { return bs_.count(); }
// operator: comparisons equal
bool operator==(const TTBV& rhs) const { return bs_ == rhs.bs_; }
// operator: comparisons not equal
bool operator!=(const TTBV& rhs) const { return bs_ != rhs.bs_; }
// operator: boolean and
TTBV& operator&=(const TTBV& rhs) {
const int m(std::max(size_, rhs.size()));
this->resize(m);
TTBV bv(rhs);
bv.resize(m);
bs_ &= bv.bs_;
return *this;
}
// operator: boolean or
TTBV& operator|=(const TTBV& rhs) {
const int m(std::max(size_, rhs.size()));
this->resize(m);
TTBV bv(rhs);
bv.resize(m);
bs_ |= bv.bs_;
return *this;
}
// operator: boolean xor
TTBV& operator^=(const TTBV& rhs) {
const int m(std::max(size_, rhs.size()));
this->resize(m);
TTBV bv(rhs);
bv.resize(m);
bs_ ^= bv.bs_;
return *this;
}
// operator: not
TTBV operator~() const {
TTBV bv(*this);
return bv.flip();
}
// reference operator: bit remove right
TTBV& operator>>=(int pos) {
bs_ >>= pos;
size_ -= pos;
return *this;
}
// reference operator: bit remove left
TTBV& operator<<=(int pos) {
bs_ <<= S_ - size_ + pos;
bs_ >>= S_ - size_ + pos;
size_ -= pos;
return *this;
}
// operator: bit remove left copy
TTBV operator<<(int pos) const {
TTBV bv(*this);
return bv <<= pos;
}
// operator: bit remove right copy
TTBV operator>>(int pos) const {
TTBV bv(*this);
return bv >>= pos;
}
// reference operator: concatenation
TTBV& operator+=(const TTBV& rhs) {
bs_ <<= rhs.size();
bs_ |= rhs.bs_;
size_ += rhs.size();
return *this;
}
// operator: concatenation copy
TTBV operator+(const TTBV& rhs) const {
TTBV lhs(*this);
return lhs += rhs;
}
// operator: value increment, overflow protected
TTBV& operator++() {
bs_ = std::bitset<S_>(bs_.to_ullong() + 1);
this->resize(size_);
return *this;
}
// manipulation: all bits set to 0
TTBV& reset() {
bs_.reset();
return *this;
}
// manipulation: all bits set to 1
TTBV& set() {
for (int n = 0; n < size_; n++)
bs_.set(n);
return *this;
}
// manipulation: all bits flip 1 to 0 and vice versa
TTBV& flip() {
for (int n = 0; n < size_; n++)
bs_.flip(n);
return *this;
}
// manipulation: single bit set to 0
TTBV& reset(int pos) {
bs_.reset(pos);
return *this;
}
// manipulation: single bit set to 1
TTBV& set(int pos) {
bs_.set(pos);
return *this;
}
// manipulation: multiple bit set to 1
TTBV& set(std::vector<int> vpos) {
for (int pos : vpos)
bs_.set(pos);
return *this;
}
// manipulation: single bit flip 1 to 0 and vice versa
TTBV& flip(int pos) {
bs_.flip(pos);
return *this;
}
// manipulation: absolute value of biased twos' complement. Converts twos' complenet into binary.
TTBV& abs() {
if (twos_) {
twos_ = false;
if (this->msb())
this->flip();
size_--;
}
return *this;
}
// manipulation: resize
TTBV& resize(int size) {
bool msb = this->msb();
if (size > size_) {
if (twos_)
for (int n = size_; n < size; n++)
bs_.set(n, msb);
size_ = size;
} else if (size < size_ && size > 0) {
this->operator<<=(size - size_);
if (twos_)
this->msb() = msb;
}
return *this;
}
// conversion: to string
std::string str() const { return bs_.to_string().substr(S_ - size_, S_); }
// conversion: range based to string
std::string str(int start, int end = 0) const { return this->str().substr(size_ - start, size_ - end); }
// conversion: to int
int val() const { return (twos_ && this->msb()) ? (int)bs_.to_ullong() - iMax() : bs_.to_ullong(); }
// conversion: to int, reinterpret sign
int val(bool twos) const { return (twos && this->msb()) ? (int)bs_.to_ullong() - iMax() : bs_.to_ullong(); }
// conversion: range based to int, reinterpret sign
int val(int start, int end = 0, bool twos = false) const { return TTBV(*this, start, end).val(twos); }
// conversion: to double for given precision assuming biased (floor) representation
double val(double base) const { return (this->val() + .5) * base; }
// conversion: range based to double for given precision assuming biased (floor) representation, reinterpret sign
double val(double base, int start, int end = 0, bool twos = false) const {
return (this->val(start, end, twos) + .5) * base;
}
// maniplulation and conversion: extracts range based to double reinterpret sign and removes these bits
double extract(double base, int size, bool twos = false) {
double val = this->val(base, size, 0, twos);
this->operator>>=(size);
return val;
}
// maniplulation and conversion: extracts range based to int reinterpret sign and removes these bits
int extract(int size, bool twos = false) {
double val = this->val(size, 0, twos);
this->operator>>=(size);
return val;
}
// manipulation: extracts slice and removes these bits
TTBV slice(int size, bool twos = false) {
TTBV ttBV(*this, size, 0, twos);
this->operator>>=(size);
return ttBV;
}
// range based count of '1's or '0's
int count(int begin, int end, bool b = true) const {
int c(0);
for (int i = begin; i < end; i++)
if (bs_[i] == b)
c++;
return c;
}
// position of least significant '1' or '0'
int plEncode(bool b = true) const {
for (int e = 0; e < size_; e++)
if (bs_[e] == b)
return e;
return size_;
}
// position of most significant '1' or '0'
int pmEncode(bool b = true) const {
for (int e = size_ - 1; e > -1; e--)
if (bs_[e] == b)
return e;
return size_;
}
// position for n'th '1' or '0' counted from least to most significant bit
int encode(int n, bool b = true) const {
int sum(0);
for (int e = 0; e < size_; e++) {
if (bs_[e] == b) {
sum++;
if (sum == n)
return e;
}
}
return size_;
}
std::vector<int> ids(bool b = true, bool singed = false) const {
std::vector<int> v;
v.reserve(bs_.count());
for (int i = 0; i < size_; i++)
if (bs_[i] == b)
v.push_back(singed ? i + size_ / 2 : i);
return v;
}
friend std::ostream& operator<<(std::ostream& os, const TTBV& ttBV) { return os << ttBV.str(); }
private:
// look up table initializer for powers of 2
constexpr std::array<unsigned long long int, S_> powersOfTwo() const {
std::array<unsigned long long int, S_> lut = {};
for (int i = 0; i < S_; i++)
lut[i] = std::pow(2, i);
return lut;
}
// returns 2 ** size_
unsigned long long int iMax() const {
static const std::array<unsigned long long int, S_> lut = powersOfTwo();
return lut[size_];
}
};
#endif
|