1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#ifndef ANOMALOUSECALVARIABLES_H_
#define ANOMALOUSECALVARIABLES_H_
//DataFormats/AnomalousEcalDataFormats/interface/AnomalousECALVariables.h
// system include files
#include <memory>
#include "DataFormats/EcalRecHit/interface/EcalRecHitCollections.h"
#include "DataFormats/METReco/interface/BoundaryInformation.h"
//using namespace edm;
//using namespace std;
/*
* This class summarizes the information about the boundary energy calculated in EcalAnomalousEventFilter:
* 1. next to ECAL border/gap
* 2. next to masked ECAL channels: for each dead area with boundary energy above a threshold defined in the filter
* the vector 'v_enDeadNeighbours_EB' or 'v_enDeadNeighbours_EE' is filled with the calculated boundary energy.
* The determined size of the corresponding cluster is filled in v_enDeadNeighboursNoCells_EB/EE accordingly.
*
*/
class AnomalousECALVariables {
public:
AnomalousECALVariables() {
//energy next to ECAL Gap
v_enNeighboursGap_EB.reserve(50);
v_enNeighboursGap_EE.reserve(50);
v_enNeighboursGap_EB.clear();
v_enNeighboursGap_EE.clear();
//energy around dead cells
v_boundaryInfoDeadCells_EB = std::vector<BoundaryInformation>();
v_boundaryInfoDeadCells_EE = std::vector<BoundaryInformation>();
v_boundaryInfoDeadCells_EB.reserve(50);
v_boundaryInfoDeadCells_EE.reserve(50);
v_boundaryInfoDeadCells_EB.clear();
v_boundaryInfoDeadCells_EE.clear();
};
AnomalousECALVariables(const std::vector<BoundaryInformation>& p_enNeighboursGap_EB,
const std::vector<BoundaryInformation>& p_enNeighboursGap_EE,
const std::vector<BoundaryInformation>& p_boundaryInfoDeadCells_EB,
const std::vector<BoundaryInformation>& p_boundaryInfoDeadCells_EE) {
v_boundaryInfoDeadCells_EB = std::vector<BoundaryInformation>();
v_boundaryInfoDeadCells_EE = std::vector<BoundaryInformation>();
v_boundaryInfoDeadCells_EB.reserve(50);
v_boundaryInfoDeadCells_EE.reserve(50);
v_boundaryInfoDeadCells_EB.clear();
v_boundaryInfoDeadCells_EE.clear();
v_boundaryInfoDeadCells_EB = p_boundaryInfoDeadCells_EB;
v_boundaryInfoDeadCells_EE = p_boundaryInfoDeadCells_EE;
v_enNeighboursGap_EB = p_enNeighboursGap_EB;
v_enNeighboursGap_EE = p_enNeighboursGap_EE;
};
~AnomalousECALVariables() {
//cout<<"destructor AnomalousECAL"<<endl;
v_enNeighboursGap_EB.clear();
v_enNeighboursGap_EE.clear();
v_boundaryInfoDeadCells_EB.clear();
v_boundaryInfoDeadCells_EE.clear();
};
//returns true if at least 1 dead cell area was found in EcalAnomalousEventFilter with
//boundary energy above threshold
//Note: no sense to change this cut BELOW the threshold given in EcalAnomalousEventFilter
bool isDeadEcalCluster(double maxBoundaryEnergy = 10,
const std::vector<int>& limitDeadCellToChannelStatusEB = std::vector<int>(),
const std::vector<int>& limitDeadCellToChannelStatusEE = std::vector<int>()) const {
float highestEnergyDepositAroundDeadCell = 0;
for (int i = 0; i < (int)v_boundaryInfoDeadCells_EB.size(); ++i) {
BoundaryInformation bInfo = v_boundaryInfoDeadCells_EB[i];
//check if channel limitation rejectsbInfo
bool passChannelLimitation = false;
std::vector<int> status = bInfo.channelStatus;
for (int cs = 0; cs < (int)limitDeadCellToChannelStatusEB.size(); ++cs) {
int channelAllowed = limitDeadCellToChannelStatusEB[cs];
for (std::vector<int>::iterator st_it = status.begin(); st_it != status.end(); ++st_it) {
if (channelAllowed == *st_it || (channelAllowed < 0 && abs(channelAllowed) <= *st_it)) {
passChannelLimitation = true;
break;
}
}
}
if (passChannelLimitation || limitDeadCellToChannelStatusEB.empty()) {
if (bInfo.boundaryEnergy > highestEnergyDepositAroundDeadCell) {
highestEnergyDepositAroundDeadCell = bInfo.boundaryET;
//highestEnergyDepositAroundDeadCell = bInfo.boundaryEnergy;
}
}
}
for (int i = 0; i < (int)v_boundaryInfoDeadCells_EE.size(); ++i) {
BoundaryInformation bInfo = v_boundaryInfoDeadCells_EE[i];
//check if channel limitation rejectsbInfo
bool passChannelLimitation = false;
std::vector<int> status = bInfo.channelStatus;
for (int cs = 0; cs < (int)limitDeadCellToChannelStatusEE.size(); ++cs) {
int channelAllowed = limitDeadCellToChannelStatusEE[cs];
for (std::vector<int>::iterator st_it = status.begin(); st_it != status.end(); ++st_it) {
if (channelAllowed == *st_it || (channelAllowed < 0 && abs(channelAllowed) <= *st_it)) {
passChannelLimitation = true;
break;
}
}
}
if (passChannelLimitation || limitDeadCellToChannelStatusEE.empty()) {
if (bInfo.boundaryEnergy > highestEnergyDepositAroundDeadCell) {
highestEnergyDepositAroundDeadCell = bInfo.boundaryET;
//highestEnergyDepositAroundDeadCell = bInfo.boundaryEnergy;
}
}
}
if (highestEnergyDepositAroundDeadCell > maxBoundaryEnergy) {
// cout << "<<<<<<<<<< List of EB Boundary objects <<<<<<<<<<" << endl;
// for (int i = 0; i < (int) v_boundaryInfoDeadCells_EB.size(); ++i) {
// BoundaryInformation bInfo = v_boundaryInfoDeadCells_EB[i];
// cout << "no of neighbouring RecHits:" << bInfo.recHits.size() << endl;
// cout << "no of neighbouring DetIds:" << bInfo.detIds.size() << endl;
// cout << "boundary energy:" << bInfo.boundaryEnergy << endl;
// cout << "Channel stati: ";
// for (std::vector<int>::iterator it = bInfo.channelStatus.begin(); it != bInfo.channelStatus.end(); ++it) {
// cout << *it << " ";
// }
// cout << endl;
// }
// cout << "<<<<<<<<<< List of EE Boundary objects <<<<<<<<<<" << endl;
// for (int i = 0; i < (int) v_boundaryInfoDeadCells_EE.size(); ++i) {
// BoundaryInformation bInfo = v_boundaryInfoDeadCells_EE[i];
// cout << "no of neighbouring RecHits:" << bInfo.recHits.size() << endl;
// cout << "no of neighbouring DetIds:" << bInfo.detIds.size() << endl;
// cout << "boundary energy:" << bInfo.boundaryEnergy << endl;
// cout << "Channel stati: ";
// for (std::vector<int>::iterator it = bInfo.channelStatus.begin(); it != bInfo.channelStatus.end(); ++it) {
// cout << *it << " ";
// }
// cout << endl;
// }
return true;
} else
return false;
}
bool isGapEcalCluster(double maxGapEnergyEB = 10, double maxGapEnergyEE = 10) const {
float highestEnergyDepositAlongGapEB = 0;
for (int i = 0; i < (int)v_enNeighboursGap_EB.size(); ++i) {
BoundaryInformation gapInfo = v_enNeighboursGap_EB[i];
if (gapInfo.boundaryEnergy > highestEnergyDepositAlongGapEB) {
highestEnergyDepositAlongGapEB = gapInfo.boundaryET;
//highestEnergyDepositAlongGapEB = gapInfo.boundaryEnergy;
}
}
float highestEnergyDepositAlongGapEE = 0;
for (int i = 0; i < (int)v_enNeighboursGap_EE.size(); ++i) {
BoundaryInformation gapInfo = v_enNeighboursGap_EE[i];
if (gapInfo.boundaryEnergy > highestEnergyDepositAlongGapEE) {
highestEnergyDepositAlongGapEE = gapInfo.boundaryET;
//highestEnergyDepositAlongGapEE = gapInfo.boundaryEnergy;
}
}
if (highestEnergyDepositAlongGapEB > maxGapEnergyEB || highestEnergyDepositAlongGapEE > maxGapEnergyEE) {
// cout << "<<<<<<<<<< List of EB Gap objects <<<<<<<<<<" << endl;
// for (int i = 0; i < (int) v_enNeighboursGap_EB.size(); ++i) {
// BoundaryInformation gapInfo = v_enNeighboursGap_EB[i];
// cout << "no of neighbouring RecHits:" << gapInfo.recHits.size() << endl;
// cout << "no of neighbouring DetIds:" << gapInfo.detIds.size() << endl;
// cout << "gap energy:" << gapInfo.boundaryEnergy << endl;
// }
// cout << "<<<<<<<<<< List of EE Gap objects <<<<<<<<<<" << endl;
// for (int i = 0; i < (int) v_enNeighboursGap_EE.size(); ++i) {
// BoundaryInformation gapInfo = v_enNeighboursGap_EE[i];
// cout << "no of neighbouring RecHits:" << gapInfo.recHits.size() << endl;
// cout << "no of neighbouring DetIds:" << gapInfo.detIds.size() << endl;
// cout << "gap energy:" << gapInfo.boundaryEnergy << endl;
// }
return true;
} else
return false;
}
std::vector<BoundaryInformation> v_enNeighboursGap_EB;
std::vector<BoundaryInformation> v_enNeighboursGap_EE;
std::vector<BoundaryInformation> v_boundaryInfoDeadCells_EB;
std::vector<BoundaryInformation> v_boundaryInfoDeadCells_EE;
private:
};
#endif /*ANOMALOUSECALVARIABLES_H_*/
|