1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
#ifndef DATA_FORMATS_MATH_GRAPH_H
#define DATA_FORMATS_MATH_GRAPH_H
#include <iostream>
#include <map>
#include <vector>
// Adjecencylist Graph
namespace math {
// N,E must be concepts of default constructable, assignable, copyable, operator<
template <class N, class E>
class Graph {
public:
using index_type = std::vector<double>::size_type;
// (node-index target, edge)
using edge_type = std::pair<index_type, index_type>;
// (std::vector of edge_types for the adj_list)
using edge_list = std::vector<edge_type>;
// (node-index -> edge_list) the adjacency-list
using adj_list = std::vector<edge_list>;
class const_iterator {
friend class Graph<N, E>;
public:
using index_type = Graph::index_type;
using adj_list = Graph::adj_list;
using edge_list = Graph::edge_list;
struct value_type {
friend class Graph<N, E>::const_iterator;
value_type(const Graph &g, index_type a, index_type e) : gr_(g), a_(a), e_(e) {}
const N &from(void) const { return gr_.nodeData(a_); }
const N &to(void) const { return gr_.nodeData(gr_.adjl_[a_][e_].first); }
const E &edge(void) const { return gr_.edgeData(gr_.adjl_[a_][e_].second); }
private:
const Graph &gr_;
index_type a_, e_;
};
using reference = value_type &;
using pointer = value_type *;
bool operator==(const const_iterator &i) const {
return ((vt_.a_ == i.vt_.a_) && (vt_.e_ == i.vt_.e_)) ? true : false;
}
bool operator!=(const const_iterator &i) const {
return ((vt_.a_ == i.vt_.a_) && (vt_.e_ == i.vt_.e_)) ? false : true;
}
void operator++() {
while (vt_.gr_.size() > vt_.a_) {
index_type i = vt_.gr_.adjl_[vt_.a_].size();
if (i > vt_.e_ + 1) {
++vt_.e_;
return;
}
vt_.e_ = 0;
++vt_.a_;
while (vt_.gr_.size() > vt_.a_) {
if (!vt_.gr_.adjl_[vt_.a_].empty()) {
return;
}
++vt_.a_;
}
}
}
const value_type &operator*() const { return vt_; }
const value_type *operator->() const { return &vt_; }
private:
explicit const_iterator(const Graph &g) : vt_(g, 0, 0) {}
const_iterator(const Graph &g, index_type ait, index_type eit) : vt_(g, ait, eit) {}
value_type vt_;
bool operator<(const const_iterator &i) const { return (vt_.a_ < i.vt_.a_) && (vt_.e_ < i.vt_.e_); }
bool operator>(const const_iterator &i) const { return (vt_.a_ > i.vt_.a_) && (vt_.e_ > i.vt_.e_); }
};
// Graphtypes
struct value_type {
value_type(const N &n, const E &e) : first(n), second(e) {}
const N &first;
const E &second;
N firstToValue() const { return first; }
E secondToValue() const { return second; }
};
// (node-index -> node)
using node_list = std::vector<N>;
using edge_store = std::vector<E>;
// (node-index -> edge_list) the adjacency-list
using adj_iterator = adj_list::iterator;
using const_adj_iterator = adj_list::const_iterator;
// assigns a node-index to the node
using indexer_type = std::map<N, index_type>;
using indexer_iterator = typename indexer_type::iterator;
using const_indexer_iterator = typename indexer_type::const_iterator;
// supported iterators and ranges
using edge_iterator = edge_list::iterator;
using const_edge_iterator = edge_list::const_iterator;
using edge_range = std::pair<edge_iterator, edge_iterator>;
using const_edge_range = std::pair<const_edge_iterator, const_edge_iterator>;
using index_result = std::pair<index_type, bool>;
public:
// creation, deletion
Graph() : edges_(1) {}
~Graph() {}
// operations
// O(log(n)), n...number of nodes
index_type addNode(const N &);
// O(log(n*e)), n,e...number of nodes,edges
void addEdge(const N &from, const N &to, const E &edge);
// O(1)
//index_type addNode(const node_type &);
// O(log(e))
//index_type addEdge(const node_type & from, const node_type & to, const E & e);
inline index_result nodeIndex(const N &) const;
//index_type edgeIndex(const E &) const;
// indexed edge_ranges, O(1) operation
inline edge_range edges(index_type nodeIndex);
inline const_edge_range edges(index_type nodeIndex) const;
// indexed edge_ranges, O(log(n)) operation, n...number of nodes
inline edge_range edges(const N &);
inline const_edge_range edges(const N &) const;
inline const N &nodeData(const edge_type &) const;
inline const N &nodeData(index_type) const;
inline const N &nodeData(const const_adj_iterator &) const;
// replace oldNode by newNode O(log(n))
bool replace(const N &oldNode, const N &newNode);
//replace oldEdge by newEdge
bool replaceEdge(const E &ldEdge, const E &newEdge);
const E &edgeData(index_type i) const { return edges_[i]; }
// const N & nodeData(const adj_iterator &) const;
// index of a node (O(log(n))
//! it clear everything!
void clear();
// access to the linear-iterator
const_iterator begin_iter() const { return const_iterator(*this); }
const_iterator end_iter() const { return const_iterator(*this, adjl_.size(), 0); }
size_t edge_size() const { return edges_.size(); }
// access to the adjacency-list
adj_iterator begin() { return adjl_.begin(); }
const_adj_iterator begin() const { return adjl_.begin(); }
adj_iterator end() { return adjl_.end(); }
const_adj_iterator end() const { return adjl_.end(); }
auto size() const -> adj_list::size_type { return adjl_.size(); }
// finds all roots of the Graph and puts them into the edge_list
void findRoots(edge_list &) const;
// inverts the directed Graph, i.e. edge(A,B) -> edge(B,A)
void invert(Graph &g) const;
void swap(Graph<N, E> &);
// Data
private:
// adjacency list
adj_list adjl_;
// std::mapping of index to node
node_list nodes_;
// std::mapping of indes to edge
edge_store edges_;
// indexer for N and E
indexer_type indexer_; // eIndexer_;
// dummy
edge_list emptyEdges_;
};
template <class N, class E>
typename Graph<N, E>::index_type Graph<N, E>::addNode(const N &node) {
index_type idx = indexer_.size(); // +1;
std::pair<indexer_iterator, bool> result = indexer_.insert(typename indexer_type::value_type(node, idx));
if (result.second) { // new index!
nodes_.emplace_back(node);
adjl_.emplace_back(edge_list());
} else {
idx = result.first->second;
}
return idx;
}
template <class N, class E>
typename Graph<N, E>::index_result Graph<N, E>::nodeIndex(const N &node) const {
typename indexer_type::const_iterator result = indexer_.find(node);
index_type idx = 0;
bool flag = false;
if (result != indexer_.end()) {
flag = true;
idx = result->second;
}
return index_result(idx, flag);
}
template <class N, class E>
void Graph<N, E>::addEdge(const N &from, const N &to, const E &edge) {
index_type iFrom = addNode(from);
index_type iTo = addNode(to);
adjl_[iFrom].emplace_back(edge_type(iTo, edges_.size()));
edges_.emplace_back(edge);
}
template <class N, class E>
typename Graph<N, E>::edge_range Graph<N, E>::edges(index_type nodeIndex) {
edge_list &edges = adjl_[nodeIndex];
return edge_range(edges.begin(), edges.end());
}
template <class N, class E>
typename Graph<N, E>::const_edge_range Graph<N, E>::edges(index_type nodeIndex) const {
const edge_list &edges = adjl_[nodeIndex];
return const_edge_range(edges.begin(), edges.end());
}
template <class N, class E>
typename Graph<N, E>::edge_range Graph<N, E>::edges(const N &node) {
index_result idxResult = nodeIndex(node);
edge_range result(emptyEdges_.begin(), emptyEdges_.end());
if (idxResult.second) {
result = edges(idxResult.first);
}
return result;
}
template <class N, class E>
typename Graph<N, E>::const_edge_range Graph<N, E>::edges(const N &node) const {
index_result idxResult = nodeIndex(node);
const_edge_range result(emptyEdges_.begin(), emptyEdges_.end());
if (idxResult.second) {
result = edges(idxResult.first);
}
return result;
}
template <class N, class E>
const N &Graph<N, E>::nodeData(const edge_type &edge) const {
return nodes_[edge.first];
}
template <class N, class E>
const N &Graph<N, E>::nodeData(index_type i) const {
return nodes_[i];
}
template <class N, class E>
const N &Graph<N, E>::nodeData(const const_adj_iterator &it) const {
return nodes_[it - adjl_.begin()];
}
template <class N, class E>
void Graph<N, E>::findRoots(edge_list &result) const {
result.clear();
const_adj_iterator it = begin();
const_adj_iterator ed = end();
std::vector<bool> rootCandidate(size(), true);
for (; it != ed; ++it) {
const edge_list &el = *it;
for (auto const &el_it : el) {
rootCandidate[el_it.first] = false;
}
}
std::vector<bool>::size_type v_sz = 0;
std::vector<bool>::size_type v_ed = rootCandidate.size();
for (; v_sz < v_ed; ++v_sz) {
if (rootCandidate[v_sz]) {
result.emplace_back(edge_type(v_sz, 0));
}
}
}
template <class N, class E>
bool Graph<N, E>::replace(const N &oldNode, const N &newNode) {
typename indexer_type::iterator it = indexer_.find(oldNode);
if (it != indexer_.end()) {
index_type oldIndex = it->second;
nodes_[oldIndex] = newNode;
indexer_[newNode] = oldIndex;
indexer_.erase(it);
} else
throw(oldNode);
return true;
}
template <class N, class E>
bool Graph<N, E>::replaceEdge(const E &oldEdge, const E &newEdge) {
typename edge_store::size_type it = 0;
typename edge_store::size_type ed = edges_.size();
bool result = false;
for (; it < ed; ++it) {
if (edges_[it] == oldEdge) {
result = true;
edges_[it] = newEdge;
break;
}
}
return result;
}
template <class N, class E>
void Graph<N, E>::clear() {
adjl_.clear();
nodes_.clear();
edges_.clear();
indexer_.clear();
}
template <class N, class E>
void Graph<N, E>::invert(Graph<N, E> &g) const {
adj_list::size_type it = 0;
adj_list::size_type ed = adjl_.size();
// loop over adjacency-list of this Graph
for (; it < ed; ++it) {
const edge_list &el = adjl_[it];
edge_list::size_type eit = 0;
edge_list::size_type eed = el.size();
// loop over edges of current node
for (; eit < eed; ++eit) {
const edge_type &e = el[eit];
g.addEdge(nodeData(e.first), nodeData(it), edgeData(e.second));
}
}
}
template <class N, class E>
void Graph<N, E>::swap(Graph<N, E> &g) {
adjl_.swap(g.adjl_);
nodes_.swap(g.nodes_);
edges_.swap(g.edges_);
indexer_.swap(g.indexer_);
emptyEdges_.swap(g.emptyEdges_);
}
template <typename T>
std::ostream &operator<<(std::ostream &o, const std::vector<std::vector<std::pair<T, T> > > v) {
typedef typename std::vector<std::vector<std::pair<T, T> > > v_t;
typedef typename std::vector<std::pair<T, T> > i_t;
typename v_t::const_iterator it(v.begin()), ed(v.end());
for (; it != ed; ++it) {
typename i_t::const_iterator iit(it->begin()), ied(it->end());
for (; iit != ied; ++iit) {
o << iit->first << ':' << iit->second << std::endl;
}
}
return o;
}
} // namespace math
#endif
|