1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
#ifndef DATA_FORMATS_MATH_GRAPH_UTIL_H
#define DATA_FORMATS_MATH_GRAPH_UTIL_H
#include "DataFormats/Math/interface/Graph.h"
#include "DataFormats/Math/interface/GraphWalker.h"
#include <iostream>
#include <string>
template <class N, class E>
void output(const math::Graph<N, E>& g, const N& root) {
math::GraphWalker<N, E> w(g, root);
bool go = true;
while (go) {
std::cout << w.current().first << ' ';
go = w.next();
}
std::cout << std::endl;
}
template <class N, class E>
void graph_combine(const math::Graph<N, E>& g1,
const math::Graph<N, E>& g2,
const N& n1,
const N& n2,
const N& root,
math::Graph<N, E>& result) {
result = g1;
result.replace(n1, n2);
math::GraphWalker<N, E> walker(g2, n2);
while (walker.next()) {
const N& parent = g2.nodeData((++walker.stack().rbegin())->first->first);
result.addEdge(parent, walker.current().first, walker.current().second);
}
result.replace(n2, root);
}
template <class N, class E>
void graph_tree_output(const math::Graph<N, E>& g, const N& root, std::ostream& os) {
math::GraphWalker<N, E> w(g, root);
bool go = true;
unsigned int depth = 0;
while (go) {
std::string s(2 * depth, ' ');
os << ' ' << s << w.current().first << '(' << w.current().second << ')' << std::endl;
go = w.firstChild();
if (go) {
++depth;
} else if (w.stack().size() > 1 && w.nextSibling()) {
go = true;
} else {
go = false;
while (w.parent()) {
--depth;
if (w.stack().size() > 1 && w.nextSibling()) {
go = true;
break;
}
}
}
}
}
#endif
|