Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
// nvcc -O3 CholeskyDecomp_t.cu --expt-relaxed-constexpr -gencode arch=compute_61,code=sm_61 --compiler-options="-Ofast -march=native"
// add -DDOPROF to run  nvprof --metrics all

#include <algorithm>
#include <cassert>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <random>

#include <Eigen/Core>
#include <Eigen/Eigenvalues>

#include "DataFormats/Math/interface/choleskyInversion.h"

constexpr int stride() { return 5 * 1024; }
template <int DIM>
using MXN = Eigen::Matrix<double, DIM, DIM>;
template <int DIM>
using MapMX = Eigen::Map<MXN<DIM>, 0, Eigen::Stride<DIM * stride(), stride()> >;

// generate matrices
template <class M>
void genMatrix(M& m) {
  using T = typename std::remove_reference<decltype(m(0, 0))>::type;
  int n = M::ColsAtCompileTime;
  std::mt19937 eng;
  // std::mt19937 eng2;
  std::uniform_real_distribution<T> rgen(0., 1.);

  // generate first diagonal elemets
  for (int i = 0; i < n; ++i) {
    double maxVal = i * 10000 / (n - 1) + 1;  // max condition is 10^4
    m(i, i) = maxVal * rgen(eng);
  }
  for (int i = 0; i < n; ++i) {
    for (int j = 0; j < i; ++j) {
      double v = 0.3 * std::sqrt(m(i, i) * m(j, j));  // this makes the matrix pos defined
      m(i, j) = v * rgen(eng);
      m(j, i) = m(i, j);
    }
  }
}

template <int N>
void go(bool soa) {
  constexpr unsigned int DIM = N;
  using MX = MXN<DIM>;
  std::cout << "testing Matrix of dimension " << DIM << " size " << sizeof(MX) << " in " << (soa ? "SOA" : "AOS")
            << " mode" << std::endl;

  auto start = std::chrono::high_resolution_clock::now();
  auto delta = start - start;

  constexpr unsigned int SIZE = 4 * 1024;

  alignas(128) MX mm[stride()];  // just storage in case of SOA
  double* __restrict__ p = (double*)__builtin_assume_aligned(mm, 128);

  if (soa) {
    for (unsigned int i = 0; i < SIZE; ++i) {
      MapMX<N> m(p + i);
      genMatrix(m);
    }
  } else {
    for (auto& m : mm)
      genMatrix(m);
  }

  std::cout << mm[SIZE / 2](1, 1) << std::endl;

  if (soa)
    for (unsigned int i = 0; i < SIZE; ++i) {
      MapMX<N> m(p + i);
      math::cholesky::invert(m, m);
      math::cholesky::invert(m, m);
    }
  else
    for (auto& m : mm) {
      math::cholesky::invert(m, m);
      math::cholesky::invert(m, m);
    }

  std::cout << mm[SIZE / 2](1, 1) << std::endl;

  constexpr int NKK =
#ifdef DOPROF
      2;
#else
      1000;
#endif
  for (int kk = 0; kk < NKK; ++kk) {
    delta -= (std::chrono::high_resolution_clock::now() - start);
    if (soa)
#ifdef USE_VECTORIZATION_PRAGMA
#pragma GCC ivdep
#ifdef __clang__
#pragma clang loop vectorize(enable) interleave(enable)
#endif
#endif
      for (unsigned int i = 0; i < SIZE; ++i) {
        MapMX<N> m(p + i);
        math::cholesky::invert(m, m);
      }
    else
#ifdef USE_VECTORIZATION_PRAGMA
#pragma GCC ivdep
#ifdef __clang__
#pragma clang loop vectorize(enable) interleave(enable)
#endif
#endif
      for (auto& m : mm) {
        math::cholesky::invert(m, m);
      }

    delta += (std::chrono::high_resolution_clock::now() - start);
  }

  std::cout << mm[SIZE / 2](1, 1) << std::endl;

  double DNNK = NKK;
  std::cout << "x86 computation took " << std::chrono::duration_cast<std::chrono::milliseconds>(delta).count() / DNNK
            << ' ' << " ms" << std::endl;
}

int main() {
  go<2>(false);
  go<3>(false);
  go<4>(false);
  go<5>(false);
  go<6>(false);

  go<2>(true);
  go<3>(true);
  go<4>(true);
  go<5>(true);
  go<6>(true);

  go<10>(false);
  go<10>(true);
  return 0;
}