1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
// test of Matrices
#define SMATRIX_USE_CONSTEXPR
#include "DataFormats/Math/interface/invertPosDefMatrix.h"
#include "Math/SMatrix.h"
#include "Math/SVector.h"
#include <memory>
#include "FWCore/Utilities/interface/HRRealTime.h"
#include <iostream>
typedef ROOT::Math::SMatrix<double, 2, 2, ROOT::Math::MatRepSym<double, 2> > Matrix2;
typedef ROOT::Math::SMatrix<double, 3, 3, ROOT::Math::MatRepSym<double, 3> > Matrix3;
void finvert(Matrix2& mm) {
auto m = mm.Array();
auto c0 = 1 / m[0];
auto c1 = m[1] * m[1] * c0;
auto c2 = 1 / (m[2] - c1);
auto li21 = c1 * c0 * c2;
m[0] = li21 + c0;
m[1] = -m[1] * c0 * c2;
m[2] = c2;
}
void st() {}
void en() {}
int main(int argc, char* argv[]) {
double v[3] = {1., -0.2, 0.5};
Matrix2& m = *(new Matrix2(v, 3));
std::cout << m << std::endl;
invertPosDefMatrix(m);
std::cout << m << std::endl;
invertPosDefMatrix(m);
std::cout << m << std::endl;
m.Invert();
std::cout << m << std::endl;
m.Invert();
std::cout << m << std::endl;
finvert(m);
std::cout << m << std::endl;
finvert(m);
std::cout << m << std::endl;
if (argc > 1) {
{
edm::HRTimeType s = edm::hrRealTime();
st();
invertPosDefMatrix(m);
en();
edm::HRTimeType e = edm::hrRealTime();
std::cout << e - s << std::endl;
}
{
edm::HRTimeType s = edm::hrRealTime();
st();
invertPosDefMatrix(m);
en();
edm::HRTimeType e = edm::hrRealTime();
std::cout << e - s << std::endl;
}
} else {
{
edm::HRTimeType s = edm::hrRealTime();
st();
m.Invert();
en();
edm::HRTimeType e = edm::hrRealTime();
std::cout << e - s << std::endl;
}
{
edm::HRTimeType s = edm::hrRealTime();
st();
m.Invert();
en();
edm::HRTimeType e = edm::hrRealTime();
std::cout << e - s << std::endl;
}
}
return 0;
}
|