AssignAsSym

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
#define SMATRIX_USE_CONSTEXPR
#include "Math/SMatrix.h"
#include <cmath>
#include <cstddef>
#include <random>

typedef unsigned int IndexType;
//typedef unsigned long long IndexType;

namespace ROOT {

  namespace Math {

    /** 
       Force Expression evaluation from general to symmetric. 
       To be used when is known (like in similarity products) that the result 
       is symmetric
       Note this is function used in the simmilarity product: no check for temporary is 
       done since in that case is not needed
   */
    struct AssignAsSym {
      /// assign a symmetric matrix from an expression
      template <class T, IndexType D, class A, class R>
      static void Evaluate(SMatrix<T, D, D, MatRepStd<T, D> >& lhs, const Expr<A, T, D, D, R>& rhs) {
        // for(unsigned int i=0; i<D*D; ++i) lhs.fRep[i] = rhs.apply(i);

        // in principle this will do only half+D evaluations (and is ~4 times faster than the above for a multiplication)
        for (IndexType i = 0; i < D; ++i)
          // storage of symmetric matrix is in lower block
          for (IndexType j = 0; j <= i; ++j)
            lhs(i, j) = rhs(i, j);
        // symmetrize
        for (IndexType i = 0; i != D - 1; ++i)
          for (IndexType j = i + 1; j != D; ++j)
            lhs(i, j) = lhs(j, i);
      }
      /// assign the "symmetric" matric  from a general matrix
      template <class T, IndexType D, class R>
      static void Evaluate(SMatrix<T, D, D, MatRepStd<T, D> >& lhs, const SMatrix<T, D, D, R>& rhs) {
        for (IndexType i = 0; i != D * D; ++i)
          lhs.fRep[i] = rhs.apply(i);
        /*
       // useful only if we do not store the upper triangle
       for( IndexType i=0; i<D; ++i)
       // storage of symmetric matrix is in lower block
       for( IndexType j=0; j<=i; ++j) 
       lhs(i,j) = rhs(i,j);
       for (IndexType i=0; i!=D-1; ++i) 
	 for (IndexType j=i+1; j!=D; ++j)
	   lhs(i,j) = lhs(j,i); 
       */
      }
    };  // struct AssignAsSym

    template <class T, IndexType D1, IndexType D2, class R>
    inline SMatrix<T, D1, D1, MatRepSym<T, D1> > Similarity1(const SMatrix<T, D1, D2, R>& lhs,
                                                             const SMatrix<T, D2, D2, MatRepStd<T, D2> >& rhs) {
      SMatrix<T, D1, D2, MatRepStd<T, D1, D2> > tmp = lhs * rhs;
      typedef SMatrix<T, D1, D1, MatRepSym<T, D1> > SMatrixSym;
      SMatrixSym mret{SMatrixNoInit{}};
      AssignSym::Evaluate(mret, tmp * Transpose(lhs));
      return mret;
    }

    template <class T, IndexType D1, IndexType D2>
    inline SMatrix<T, D1, D1, MatRepStd<T, D1> > Similarity2(const SMatrix<T, D1, D2, MatRepStd<T, D1, D2> >& lhs,
                                                             const SMatrix<T, D2, D2, MatRepStd<T, D2> >& rhs) {
      SMatrix<T, D1, D2, MatRepStd<T, D1, D2> > tmp = lhs * rhs;
      typedef SMatrix<T, D1, D1, MatRepStd<T, D1> > SMatrixSym;
      SMatrixSym mret = SMatrixNoInit();
      AssignAsSym::Evaluate(mret, tmp * Transpose(lhs));
      return mret;
    }
  }  // namespace Math
}  // namespace ROOT

// U(i,k) * A(k,l) * U(j,l)
template <typename T, IndexType D1, IndexType D2>
inline void similarity(ROOT::Math::SMatrix<T, D1, D1, ROOT::Math::MatRepStd<T, D1> >& b,
                       ROOT::Math::SMatrix<T, D1, D2, ROOT::Math::MatRepStd<T, D1, D2> > const& u,
                       ROOT::Math::SMatrix<T, D2, D2, ROOT::Math::MatRepStd<T, D2> > const& a) {
  // brute force loop
  for (IndexType i = 0; i != D1; ++i)
    for (IndexType j = 0; j <= i; ++j)
      for (IndexType k = 0; k != D2; ++k)
        for (IndexType l = 0; l != D2; ++l)
          b(i, j) += u(i, k) * a(k, l) * u(j, l);

  /*
  for (IndexType is=0; is<D1; is+=4) {
    IndexType ie=std::min(is+4,D1);
    //for (IndexType js=0; js<=is; js+=4) {
      for (IndexType ks=0; ks<D2; ks+=4) { 
	IndexType ke=std::min(ks+4,D2);
	for (IndexType i=is; i!=ie; ++i) 
	  for (IndexType j=0; j<=i; ++j) 
	    //	  for (IndexType j=js; j<=std::min(js+3,i); ++j) 
	    for (IndexType k=ks; k!=ke; ++k) 
	      for (IndexType l=0; l!=D2; ++l) 
		b(i,j) += u(i,k)*a(k,l)*u(j,l);
      }
      //}
  }
  */

  //	for (IndexType l=0; l<=k; ++l)
  //  b(i,j) += (u(i,k)*u(j,l)+u(i,l)*u(j,k))*a(k,l);
  /*
  T s[N];
  for (IndexType i=0; i!=N; ++i) 
    for (IndexType j=0; j<=i; ++j) { 
      for (IndexType k=0; k!=N; ++k) {
	s[k]=0;
	for (IndexType l=0; l!=N; ++l) 
	  s[k] += a(k,l)*u(j,l);
      }
      for (IndexType k=0; k!=N; ++k)
	b(i,j) += u(i,k)*s[k];
    }
  */

  for (IndexType i = 0; i != D1 - 1; ++i)
    for (IndexType j = i + 1; j != D1; ++j)
      b(i, j) = b(j, i);
}

template <typename M1, typename M2>
double eps(M1 const& m1, M2 const& m2) {
  IndexType N = M1::kRows;
  double ret = 0.;
  for (IndexType i = 0; i != N; ++i)
    for (IndexType j = 0; j != N; ++j)
      ret = std::max(ret, std::abs(m1(i, j) - m2(i, j)));
  return ret;
}

template <typename M>
bool isSym(M const& m) {
  IndexType N = M::kRows;
  for (IndexType i = 0; i != N; ++i)
    for (IndexType j = 0; j <= i; ++j)
      if (m(i, j) != m(j, i))
        return false;
  return true;
}

#include <iostream>
#include "FWCore/Utilities/interface/HRRealTime.h"

namespace {
  std::mt19937 eng;
  std::uniform_real_distribution<double> rgen(-5., 5.);

  inline double rr() { return rgen(eng); }

  template <typename T, IndexType D1, IndexType D2>
  inline void fillRandom(ROOT::Math::SMatrix<T, D1, D2, ROOT::Math::MatRepStd<T, D1, D2> >& a) {
    for (IndexType i = 0; i != D1; ++i) {
      for (IndexType j = 0; j != D2; ++j)
        a(i, j) = rr();
    }
  }
  template <typename T, IndexType N>
  inline void fillRandomSym(ROOT::Math::SMatrix<T, N, N, ROOT::Math::MatRepStd<T, N> >& a) {
    for (IndexType i = 0; i != N; ++i) {
      for (IndexType j = 0; j <= i; ++j)
        a(i, j) = rr();
    }
    for (IndexType i = 0; i != N - 1; ++i)
      for (IndexType j = i + 1; j != N; ++j)
        a(i, j) = a(j, i);
  }
}  // namespace

bool ok = true;

template <typename T, IndexType D1, IndexType D2>
void go(edm::HRTimeType& s1, edm::HRTimeType& s2, edm::HRTimeType& s3, edm::HRTimeType& s4, bool print) {
  typedef ROOT::Math::SMatrix<T, D1, D2, ROOT::Math::MatRepStd<T, D1, D2> > JMatrix;
  typedef ROOT::Math::SMatrix<T, D1, D1, ROOT::Math::MatRepStd<T, D1, D1> > Matrix1;
  typedef ROOT::Math::SMatrix<T, D1, D1, ROOT::Math::MatRepSym<T, D1> > SymMatrix1;
  typedef ROOT::Math::SMatrix<T, D2, D2, ROOT::Math::MatRepStd<T, D2, D2> > Matrix2;
  typedef ROOT::Math::SMatrix<T, D2, D2, ROOT::Math::MatRepSym<T, D2> > SymMatrix2;

  JMatrix lh;
  fillRandom(lh);
  Matrix2 rh;
  fillRandomSym(rh);

  SymMatrix2 srh;
  ROOT::Math::AssignSym::Evaluate(srh, rh);

  SymMatrix1 res1;
  s1 = edm::hrRealTime();
  res1 = ROOT::Math::Similarity(lh, srh);
  s1 = edm::hrRealTime() - s1;

  SymMatrix1 res2;
  s2 = edm::hrRealTime();
  res2 = ROOT::Math::Similarity1(lh, rh);
  s2 = edm::hrRealTime() - s2;

  Matrix1 res3;
  s3 = edm::hrRealTime();
  res3 = ROOT::Math::Similarity2(lh, rh);
  s3 = edm::hrRealTime() - s3;

  Matrix1 res4;
  s4 = edm::hrRealTime();
  similarity(res4, lh, rh);
  s4 = edm::hrRealTime() - s4;

  if (print) {
    if (!isSym(rh))
      std::cout << " rh is not sym" << std::endl;
    if (!isSym(res1))
      std::cout << " res1 is not sym" << std::endl;
    if (!isSym(res2))
      std::cout << " res2 is not sym" << std::endl;
    if (!isSym(res3))
      std::cout << " res3 is not sym" << std::endl;
    if (!isSym(res4))
      std::cout << " res4 is not sym" << std::endl;

    std::cout << D1 << "x" << D2 << std::endl;
    std::cout << "eps sim  " << eps(res1, res2) << std::endl;
    std::cout << "eps std  " << eps(res1, res3) << std::endl;
    std::cout << "eps loop  " << eps(res1, res4) << std::endl;
  }

  ok &= isSym(rh) && isSym(res1) && isSym(res2) && isSym(res3) && isSym(res4);
}

template <typename T, IndexType D1, IndexType D2>
void loop(std::ostream& co) {
  ok = true;

  int N = 100000;
  edm::HRTimeType t1 = 0;
  edm::HRTimeType t2 = 0;
  edm::HRTimeType t3 = 0;
  edm::HRTimeType t4 = 0;
  edm::HRTimeType s1 = 0, s2 = 0, s3 = 0, s4 = 0;
  for (int i = 0; i != N; ++i) {
    go<T, D1, D2>(s1, s2, s3, s4, false);
    t1 += s1;
    t2 += s2;
    t3 += s3;
    t4 += s4;
  }

  std::cout << D1 << "x" << D2 << std::endl;
  std::cout << "root sim " << t1 / N << std::endl;
  std::cout << "sym  sim " << t2 / N << std::endl;
  std::cout << "std  sim " << t3 / N << std::endl;
  std::cout << "loop sim " << t4 / N << std::endl;

  co << "|  " << t1 / N << "|  " << t2 / N << "|  " << t3 / N << "|  " << t4 / N << "|";

  if (ok)
    std::cout << " OK " << std::endl;
}

#include <sstream>
int main() {
  edm::HRTimeType s1 = 0, s2 = 0, s3 = 0, s4 = 0;

  go<double, 3, 3>(s1, s2, s3, s4, true);
  go<double, 5, 5>(s1, s2, s3, s4, true);
  go<double, 5, 15>(s1, s2, s3, s4, true);
  go<double, 15, 15>(s1, s2, s3, s4, true);
  std::cout << std::endl;

  std::ostringstream co;
  co << "|  *3x3*  |||| |  *5x5*  |||| |  *5x15*  |||| |  *15x15*  ||||\n";
  co << "|  *root*  |  *sym*  |  *std*  |  *loop*  |";
  co << "|  *root*  |  *sym*  |  *std*  |  *loop*  |";
  co << "|  *root*  |  *sym*  |  *std*  |  *loop*  |";
  co << "|  *root*  |  *sym*  |  *std*  |  *loop*  |\n";
  loop<double, 3, 3>(co);
  loop<double, 5, 5>(co);
  loop<double, 5, 15>(co);
  loop<double, 15, 15>(co);
  std::cout << co.str() << std::endl;

  return 0;
}