Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * Derived from the nVIDIA CUDA 8.0 samples by
 *
 *   Eyal Rozenberg <E.Rozenberg@cwi.nl>
 *
 * The derivation is specifically permitted in the nVIDIA CUDA Samples EULA
 * and the deriver is the owner of this code according to the EULA.
 *
 * Use this reasonably. If you want to discuss licensing formalities, please
 * contact the author.
 *
 *  Modified by VinInn for testing math funcs
 */

/* to run test
foreach f ( $CMSSW_BASE/test/$SCRAM_ARCH/DFM_Vector* )
echo $f; $f
end
*/

#include <algorithm>
#include <cassert>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <memory>
#include <random>
#include <stdexcept>

#ifdef __CUDACC__
#define inline __host__ __device__ inline
#include <vdt/sin.h>
#undef inline
#else
#include <vdt/sin.h>
#endif

#include "DataFormats/Math/interface/approx_log.h"
#include "DataFormats/Math/interface/approx_exp.h"
#include "DataFormats/Math/interface/approx_atan2.h"
#include "HeterogeneousCore/CUDAUtilities/interface/device_unique_ptr.h"
#include "HeterogeneousCore/CUDAUtilities/interface/cudaCheck.h"
#include "HeterogeneousCore/CUDAUtilities/interface/requireDevices.h"
#include "HeterogeneousCore/CUDAUtilities/interface/launch.h"

std::mt19937 eng;
std::mt19937 eng2;
std::uniform_real_distribution<float> rgen(0., 1.);

constexpr float myExp(float x) { return unsafe_expf<6>(x); }

constexpr float myLog(float x) { return unsafe_logf<6>(x); }

__host__ __device__ inline float mySin(float x) { return vdt::fast_sinf(x); }

constexpr int USEEXP = 0, USESIN = 1, USELOG = 2;

template <int USE, bool ADDY = false>
// __host__ __device__
constexpr float testFunc(float x, float y) {
  float ret = 0;
  if (USE == USEEXP)
    ret = myExp(x);
  else if (USE == USESIN)
    ret = mySin(x);
  else
    ret = myLog(x);
  return ADDY ? ret + y : ret;
}

template <int USE, bool ADDY>
__global__ void vectorOp(const float *A, const float *B, float *C, int numElements) {
  int i = blockDim.x * blockIdx.x + threadIdx.x;
  if (i < numElements) {
    C[i] = testFunc<USE, ADDY>(A[i], B[i]);
  }
}

template <int USE, bool ADDY>
void vectorOpH(const float *A, const float *B, float *C, int numElements) {
  for (int i = 0; i < numElements; ++i) {
    C[i] = testFunc<USE, ADDY>(A[i], B[i]);
  }
}

template <int USE, bool ADDY = false>
void go() {
  auto start = std::chrono::high_resolution_clock::now();
  auto delta = start - start;

  int numElements = 200000;
  size_t size = numElements * sizeof(float);
  std::cout << "[Vector of " << numElements << " elements]\n";

  auto h_A = std::make_unique<float[]>(numElements);
  auto h_B = std::make_unique<float[]>(numElements);
  auto h_C = std::make_unique<float[]>(numElements);
  auto h_C2 = std::make_unique<float[]>(numElements);

  std::generate(h_A.get(), h_A.get() + numElements, [&]() { return rgen(eng); });
  std::generate(h_B.get(), h_B.get() + numElements, [&]() { return rgen(eng); });

  delta -= (std::chrono::high_resolution_clock::now() - start);
  auto d_A = cms::cuda::make_device_unique<float[]>(numElements, nullptr);
  auto d_B = cms::cuda::make_device_unique<float[]>(numElements, nullptr);
  auto d_C = cms::cuda::make_device_unique<float[]>(numElements, nullptr);

  cudaCheck(cudaMemcpy(d_A.get(), h_A.get(), size, cudaMemcpyHostToDevice));
  cudaCheck(cudaMemcpy(d_B.get(), h_B.get(), size, cudaMemcpyHostToDevice));
  delta += (std::chrono::high_resolution_clock::now() - start);
  std::cout << "cuda alloc+copy took " << std::chrono::duration_cast<std::chrono::milliseconds>(delta).count() << " ms"
            << std::endl;

  // Launch the Vector OP CUDA Kernel
  int threadsPerBlock = 256;
  int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
  std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads\n";

  delta -= (std::chrono::high_resolution_clock::now() - start);
  cms::cuda::launch(
      vectorOp<USE, ADDY>, {blocksPerGrid, threadsPerBlock}, d_A.get(), d_B.get(), d_C.get(), numElements);
  delta += (std::chrono::high_resolution_clock::now() - start);
  std::cout << "cuda computation took " << std::chrono::duration_cast<std::chrono::milliseconds>(delta).count() << " ms"
            << std::endl;

  delta -= (std::chrono::high_resolution_clock::now() - start);
  cms::cuda::launch(
      vectorOp<USE, ADDY>, {blocksPerGrid, threadsPerBlock}, d_A.get(), d_B.get(), d_C.get(), numElements);
  delta += (std::chrono::high_resolution_clock::now() - start);
  std::cout << "cuda computation took " << std::chrono::duration_cast<std::chrono::milliseconds>(delta).count() << " ms"
            << std::endl;

  delta -= (std::chrono::high_resolution_clock::now() - start);
  cudaCheck(cudaMemcpy(h_C.get(), d_C.get(), size, cudaMemcpyDeviceToHost));
  delta += (std::chrono::high_resolution_clock::now() - start);
  std::cout << "cuda copy back took " << std::chrono::duration_cast<std::chrono::milliseconds>(delta).count() << " ms"
            << std::endl;

  // on host now...
  delta -= (std::chrono::high_resolution_clock::now() - start);
  vectorOpH<USE, ADDY>(h_A.get(), h_B.get(), h_C2.get(), numElements);
  delta += (std::chrono::high_resolution_clock::now() - start);
  std::cout << "host computation took " << std::chrono::duration_cast<std::chrono::milliseconds>(delta).count() << " ms"
            << std::endl;

  delta -= (std::chrono::high_resolution_clock::now() - start);
  vectorOpH<USE, ADDY>(h_A.get(), h_B.get(), h_C2.get(), numElements);
  delta += (std::chrono::high_resolution_clock::now() - start);
  std::cout << "host computation took " << std::chrono::duration_cast<std::chrono::milliseconds>(delta).count() << " ms"
            << std::endl;

  // Verify that the result vector is correct
  double ave = 0;
  int maxDiff = 0;
  long long ndiff = 0;
  double fave = 0;
  float fmaxDiff = 0;
  for (int i = 0; i < numElements; ++i) {
    approx_math::binary32 g, c;
    g.f = testFunc<USE, ADDY>(h_A[i], h_B[i]);
    c.f = h_C[i];
    auto diff = std::abs(g.i32 - c.i32);
    maxDiff = std::max(diff, maxDiff);
    ave += diff;
    if (diff != 0)
      ++ndiff;
    auto fdiff = std::abs(g.f - c.f);
    fave += fdiff;
    fmaxDiff = std::max(fdiff, fmaxDiff);
    //           if (diff>7)
    //           std::cerr << "Large diff at element " << i << ' ' << diff << ' ' << std::hexfloat
    //                                  << g.f << "!=" << c.f << "\n";
  }
  std::cout << "ndiff ave, max " << ndiff << ' ' << ave / numElements << ' ' << maxDiff << std::endl;
  std::cout << "float ave, max " << fave / numElements << ' ' << fmaxDiff << std::endl;
  if (!ndiff) {
    std::cout << "Test PASSED\n";
    std::cout << "SUCCESS" << std::endl;
  }
  cudaDeviceSynchronize();
}

int main() {
  cms::cudatest::requireDevices();

  try {
    go<USEEXP>();
    go<USESIN>();
    go<USELOG>();
    go<USELOG, true>();
  } catch (std::runtime_error &ex) {
    std::cerr << "CUDA or std runtime error: " << ex.what() << std::endl;
    exit(EXIT_FAILURE);
  } catch (...) {
    std::cerr << "A non-CUDA error occurred" << std::endl;
    exit(EXIT_FAILURE);
  }

  return EXIT_SUCCESS;
}