dasi

fasi

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
#pragma GCC diagnostic ignored "-Wformat"
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstdio>

namespace almostEqualDetail {
  union fasi {
    int i;
    float f;
  };

  union dasi {
    long long i;
    double f;
  };

}  // namespace almostEqualDetail

inline int intDiff(float a, float b) {
  using namespace almostEqualDetail;
  // Make sure maxUlps is non-negative and small enough that the
  // default NAN won't compare as equal to anything.
  fasi fa;
  fa.f = a;
  // Make aInt lexicographically ordered as a twos-complement int
  if (fa.i < 0)
    fa.i = 0x80000000 - fa.i;
  // Make bInt lexicographically ordered as a twos-complement int
  fasi fb;
  fb.f = b;
  if (fb.i < 0)
    fb.i = 0x80000000 - fb.i;
  return std::abs(fa.i - fb.i);
}

inline long long intDiff(double a, double b) {
  using namespace almostEqualDetail;
  dasi fa;
  fa.f = a;
  // Make aInt lexicographically ordered as a twos-complement int
  if (fa.i < 0)
    fa.i = 0x8000000000000000LL - fa.i;
  // Make bInt lexicographically ordered as a twos-complement int
  dasi fb;
  fb.f = b;
  if (fb.i < 0)
    fb.i = 0x8000000000000000LL - fb.i;
  return std::abs(fa.i - fb.i);
}

template <typename T>
inline bool almostEqual(T a, T b, int maxUlps) {
  // Make sure maxUlps is non-negative and small enough that the
  // default NAN won't compare as equal to anything.
  // assert(maxUlps > 0 && maxUlps < 4 * 1024 * 1024);
  return intDiff(a, b) <= maxUlps;
}

namespace {
  template <typename T>
  inline T eta(T x, T y, T z) {
    T t(z / std::sqrt(x * x + y * y));
    return std::log(t + std::sqrt(t * t + T(1)));
  }
  template <typename T>
  inline T eta2(T x, T y, T z) {
    T t = (z * z) / (x * x + y * y);
    return copysign(std::log(std::sqrt(t) + std::sqrt(t + T(1))), z);
  }

  inline float eta3(float x, float y, float z) {
    float t(z / std::sqrt(x * x + y * y));
    return ::asinhf(t);
  }
  inline double eta3(double x, double y, double z) {
    double t(z / std::sqrt(x * x + y * y));
    return ::asinh(t);
  }

  void look(float x) {
    int e;
    float r = ::frexpf(x, &e);
    std::cout << x << " exp " << e << " res " << r << std::endl;

    union {
      float val;
      int bin;
    } f;

    f.val = x;
    printf("%e %a %x\n", f.val, f.val, f.bin);
    // printf("%e %x\n", f.val,  f.bin);
    int log_2 = ((f.bin >> 23) & 255) - 127;  //exponent
    f.bin &= 0x7FFFFF;                        //mantissa (aka significand)

    std::cout << "exp " << log_2 << " mant in binary " << std::hex << f.bin << " mant as float " << std::dec
              << (f.bin | 0x800000) * ::pow(2., -23) << std::endl
              << std::endl;
  }

  void look(double x) {
    // int e;
    // float r = ::frexpf(x,&e);
    // std::cout << x << " exp " << e << " res " << r << std::endl;

    union {
      double val;
      long long bin;
    } f;

    f.val = x;

    printf("%e %a %x\n", f.val, f.val, f.bin);
    // printf("%e %x\n", f.val,  f.bin);
  }

}  // namespace

void peta() {
  std::cout << "T t(z/std::sqrt(x*x+y*y)); return std::log(t+std::sqrt(t*t+T(1)));" << std::endl;
  {
    float xn = 122.436f, yn = 10.7118f, zn = -1115.f;
    float etan = eta(xn, yn, zn);

    std::cout << etan << std::endl;
    look(etan);
    std::cout << -etan << std::endl;
    look(-etan);

    float xp = 122.436f, yp = 10.7118f, zp = 1115.f;
    float etap = eta(xp, yp, zp);

    std::cout << etap << std::endl;
    look(etap);

    std::cout << intDiff(etap, -etan) << std::endl << std::endl;
  }

  {
    double xn = 122.436, yn = 10.7118, zn = -1115.;
    double etan = eta(xn, yn, zn);

    std::cout << etan << std::endl;
    look(etan);
    std::cout << -etan << std::endl;
    look(-etan);

    double xp = 122.436, yp = 10.7118, zp = 1115.;
    double etap = eta(xp, yp, zp);

    std::cout << etap << std::endl;
    look(etap);

    std::cout << intDiff(etap, -etan) << std::endl << std::endl;
  }
}

void peta2() {
  std::cout << "T t = (z*z)/(x*x+y*y); return copysign(std::log(std::sqrt(t)+std::sqrt(t+T(1))), z);" << std::endl;
  {
    float xn = 122.436f, yn = 10.7118f, zn = -1115.f;
    float etan = eta2(xn, yn, zn);

    std::cout << etan << std::endl;
    look(etan);
    std::cout << -etan << std::endl;
    look(-etan);

    float xp = 122.436f, yp = 10.7118f, zp = 1115.f;
    float etap = eta2(xp, yp, zp);

    std::cout << etap << std::endl;
    look(etap);

    std::cout << intDiff(etap, -etan) << std::endl << std::endl;
  }

  {
    double xn = 122.436, yn = 10.7118, zn = -1115.;
    double etan = eta2(xn, yn, zn);

    std::cout << etan << std::endl;
    look(etan);
    std::cout << -etan << std::endl;
    look(-etan);

    double xp = 122.436, yp = 10.7118, zp = 1115.;
    double etap = eta2(xp, yp, zp);

    std::cout << etap << std::endl;
    look(etap);

    std::cout << intDiff(etap, -etan) << std::endl << std::endl;
  }
}

void peta3() {
  std::cout << "t(z/std::sqrt(x*x+y*y)); return ::asinh(t);" << std::endl;
  {
    float xn = 122.436f, yn = 10.7118f, zn = -1115.f;
    float etan = eta3(xn, yn, zn);

    std::cout << etan << std::endl;
    look(etan);
    std::cout << -etan << std::endl;
    look(-etan);

    float xp = 122.436f, yp = 10.7118f, zp = 1115.f;
    float etap = eta3(xp, yp, zp);

    std::cout << etap << std::endl;
    look(etap);

    std::cout << intDiff(etap, -etan) << std::endl << std::endl;
  }

  {
    double xn = 122.436, yn = 10.7118, zn = -1115.;
    double etan = eta3(xn, yn, zn);

    std::cout << etan << std::endl;
    look(etan);
    std::cout << -etan << std::endl;
    look(-etan);

    double xp = 122.436, yp = 10.7118, zp = 1115.;
    double etap = eta3(xp, yp, zp);

    std::cout << etap << std::endl;
    look(etap);

    std::cout << intDiff(etap, -etan) << std::endl << std::endl;
  }
}

int main() {
  peta();
  peta2();
  peta3();

  return 0;
}