Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cmath>

#include "DataFormats/Math/interface/approx_exp.h"
#include "DataFormats/Math/interface/approx_log.h"

inline int diff(float a, float b) {
  approx_math::binary32 ba(a);
  approx_math::binary32 bb(b);
  return ba.i32 - bb.i32;
}

inline int bits(int a) {
  unsigned int aa = abs(a);
  int b = 0;
  if (a == 0)
    return 0;
  while ((aa /= 2) > 0)
    ++b;
  return (a > 0) ? b : -b;
}

void testIt() {
  float y[10];
  int a[10]{0}, h[10]{0}, l[10]{9999999};
  const int N = 1000000;
  for (int i = 0; i != N; ++i) {
    float x = 1.e-9 + 1.e9 * drand48();
    y[0] = logf(x);
    y[2] = unsafe_logf<2>(x);
    y[3] = unsafe_logf<3>(x);
    y[4] = unsafe_logf<4>(x);
    y[5] = unsafe_logf<5>(x);
    y[6] = unsafe_logf<6>(x);
    y[7] = unsafe_logf<7>(x);
    y[8] = unsafe_logf<8>(x);
    for (int k = 2; k != 9; k++) {
      a[k] += diff(y[0], y[k]);
      h[k] = std::max(h[k], diff(y[0], y[k]));
      l[k] = std::min(l[k], diff(y[0], y[k]));
    }
  }
  for (int k = 2; k != 9; k++) {
    std::cout << k << ": ave/min/max " << double(a[k]) / double(N) << " " << l[k] << " " << h[k] << std::endl;
  }
}

inline float ms(float radLen, float m2, float p2) {
  constexpr float amscon = 1.8496e-4;  // (13.6MeV)**2
  float e2 = p2 + m2;

  float fact = 1.f + 0.038f * log(radLen);
  fact /= p2;
  fact *= fact;
  float a = e2 * fact;
  return amscon * radLen * a;
}

inline float msf(float radLen, float m2, float p2) {
  constexpr float amscon = 1.8496e-4;  // (13.6MeV)**2
  float e2 = p2 + m2;

  float fact = 1.f + 0.038f * unsafe_logf<2>(radLen);
  fact /= p2;
  fact *= fact;
  float a = e2 * fact;
  return amscon * radLen * a;
}

inline float ms2(float radLen, float m2, float p2) {
  constexpr float amscon = 1.8496e-4;  // (13.6MeV)**2
  float e2 = p2 + m2;
  float beta2 = p2 / e2;
  float fact = 1.f + 0.038f * log(radLen);
  fact *= fact;
  float a = fact / (beta2 * p2);
  return amscon * radLen * a;
}

template <typename T>
inline float bb2(float xi, float m2, float p2) {
  const T emass = 0.511e-3;
  const T poti = 16.e-9 * 10.75;                     // = 16 eV * Z**0.9, for Si Z=14
  const T eplasma = 28.816e-9 * sqrt(2.33 * 0.498);  // 28.816 eV * sqrt(rho*(Z/A)) for Si
  const T delta0 = 2 * log(eplasma / poti) - 1.;

  // calculate general physics things
  T p = sqrt(p2);
  T m = sqrt(m2);
  T e = sqrt(p2 + m2);
  T beta = p / e;
  T gamma = e / m;
  T eta2 = beta * gamma;
  eta2 *= eta2;
  T ratio = emass / m;
  T emax = 2. * emass * eta2 / (1. + 2. * ratio * gamma + ratio * ratio);

  xi /= (beta * beta);

  return xi * (log(2. * emass * emax / (poti * poti)) - 2. * (beta * beta) - delta0);
}

template <typename T>
inline float bb(float xi, float m2, float p2) {
  const T emass = 0.511e-3;
  const T poti = 16.e-9 * 10.75;                     // = 16 eV * Z**0.9, for Si Z=14
  const T eplasma = 28.816e-9 * sqrt(2.33 * 0.498);  // 28.816 eV * sqrt(rho*(Z/A)) for Si
  const T delta0 = 2 * log(eplasma / poti) - 1.;

  // calculate general physics things
  T im2 = T(1.) / m2;
  T e2 = p2 + m2;
  T e = sqrt(e2);
  T beta2 = p2 / e2;
  T eta2 = p2 * im2;
  T ratio2 = (emass * emass) * im2;
  T emax = T(2.) * emass * eta2 / (T(1.) + T(2.) * emass * e * im2 + ratio2);

  xi /= beta2;

  return xi * (log(T(2.) * emass * emax / (poti * poti)) - T(2.) * (beta2)-delta0);
}

template <typename T>
inline float bbf(float xi, float m2, float p2) {
  const T emass = 0.511e-3;
  const T poti = 16.e-9 * 10.75;                     // = 16 eV * Z**0.9, for Si Z=14
  const T eplasma = 28.816e-9 * sqrt(2.33 * 0.498);  // 28.816 eV * sqrt(rho*(Z/A)) for Si
  const T delta0 = 2 * log(eplasma / poti) - 1.;

  // calculate general physics things
  T im2 = T(1.) / m2;
  T e2 = p2 + m2;
  T e = sqrt(e2);
  T beta2 = p2 / e2;
  T eta2 = p2 * im2;
  T ratio2 = (emass * emass) * im2;
  T emax = T(2.) * emass * eta2 / (T(1.) + T(2.) * emass * e * im2 + ratio2);

  xi /= beta2;

  return xi * (unsafe_logf<2>(T(2.) * emass * emax / (poti * poti)) - T(2.) * (beta2)-delta0);
}

template <typename T>
inline float bbf2(float xi, float m2, float p2) {
  const T emass = 0.511e-3;
  const T poti = 16.e-9 * 10.75;                     // = 16 eV * Z**0.9, for Si Z=14
  const T eplasma = 28.816e-9 * sqrt(2.33 * 0.498);  // 28.816 eV * sqrt(rho*(Z/A)) for Si
  const T delta0 = 2 * log(eplasma / poti) - 1.;

  // calculate general physics things
  T im2 = T(1.) / m2;
  T e2 = p2;  //  + m2;
  T e = sqrt(e2);
  T beta2 = T(1);  //  p2/e2;
  T eta2 = p2 * im2;
  T ratio2 = (emass * emass) * im2;
  T emax = T(2.) * emass * eta2 / (T(1.) + T(2.) * emass * e * im2 + ratio2);

  xi /= beta2;

  return xi * (unsafe_logf<2>(T(2.) * emass * emax / (poti * poti)) - T(2.) * (beta2)-delta0);
}

template <typename Fun>
void compare(Fun F, Fun F2, Fun Fapx) {
  std::cout << std::endl;

  float m2 = 0.138;
  m2 *= m2;

  int d1 = 0, d2 = 0, d3 = 0;
  int c1 = 99999999, c2 = c1, c3 = c1;
  int dm = 99999999;

  float p2 = 0.01;
  for (int i = 0; i != 6; ++i) {
    p2 *= 10;
    float rl = 0.001;
    for (int j = 0; j != 4; ++j) {
      rl *= 10;
      float ref = F(rl, m2, p2);
      float rp = F(rl * 1.001, m2, p2);
      float rm = F(rl * 0.999, m2, p2);
      float apx = Fapx(rl, m2, p2);

      int dd = std::min(abs(diff(rm, ref)), abs(diff(rp, ref)));
      dd -= abs(diff(apx, ref));  // negative if apx-ref is bigger than the uncer-interval
      dm = std::min(dm, dd);

      d1 = std::max(d1, abs(diff(F2(rl, m2, p2), ref)));
      d2 = std::max(d2, abs(diff(apx, ref)));
      d3 = std::max(d3, abs(diff(rp, ref)));
      d3 = std::max(d3, abs(diff(rm, ref)));

      c1 = std::min(c1, abs(diff(F2(rl, m2, p2), ref)));
      c2 = std::min(c2, abs(diff(apx, ref)));
      c3 = std::min(c3, abs(diff(rp, ref)));
      c3 = std::min(c3, abs(diff(rm, ref)));

      // std::cout << diff(ms2(rl,m2,p2),ref) << std::endl;
      // std::cout << diff(msf(rl,m2,p2),ref) << std::endl;
      // std::cout << diff(ms(1.001*rl,m2,p2),ref) << std::endl;
      // std::cout << diff(ms(0.999*rl,m2,p2),ref) << std::endl;
    }
  }

  std::cout << dm << "," << bits(dm) << std::endl;

  std::cout << d1 << "," << bits(d1) << " " << d2 << "," << bits(d2) << " " << d3 << "," << bits(d3) << " "
            << std::endl;

  std::cout << c1 << "," << bits(c1) << " " << c2 << "," << bits(c2) << " " << c3 << "," << bits(c3) << " "
            << std::endl;
}

int main() {
  std::cout << bits(0) << " " << bits(1) << " " << bits(2) << " " << bits(-31) << " " << bits(32) << std::endl;

  testIt();
  compare(ms, ms2, msf);
  compare(bb<float>, bb2<float>, bbf<float>);
  compare(bb<float>, bb2<float>, bbf2<float>);
  compare(bb<double>, bb2<double>, bbf<double>);

  return 0;
}