1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
#include "DataFormats/Math/interface/Graph.h"
#include "DataFormats/Math/interface/GraphWalker.h"
#include "DataFormats/Math/interface/GraphUtil.h"
#include <iostream>
#include <string>
using namespace std;
using graph_type = math::Graph<string, string>;
using walker_type = math::GraphWalker<string, string>;
void build_graph(graph_type& g) {
/*
A B
//\ |
C D E
\ /
G F
|/
H
edge direction is from top to down, e.g. from D to G
edge-names e.g.: B-E: e1
F-H: h1
The graph has 3 possible roots: A, B, F
*/
g.addEdge("B", "E", "e1");
g.addEdge("G", "H", "h1");
g.addEdge("A", "C", "c1");
g.addEdge("D", "G", "g1");
g.addEdge("A", "C", "c2");
g.addEdge("C", "G", "g1");
g.addEdge("F", "H", "f1");
g.addEdge("A", "D", "d1");
}
void build_graph2(graph_type& g) {
/*
AA
/ \ EE
BB CC / \
\\ / FF GG
DD
*/
g.addEdge("AA", "BB", "bb1");
g.addEdge("AA", "CC", "cc1");
g.addEdge("BB", "DD", "dd1");
g.addEdge("BB", "DD", "dd2");
g.addEdge("CC", "DD", "dd3");
g.addEdge("EE", "FF", "ff1");
g.addEdge("EE", "GG", "gg2");
}
/* invert the graph of build_graph2():
DD
// \ FF GG
BB CC \ /
\ / EE
A
*/
void build_graph3(const graph_type& input, graph_type& output) { input.invert(output); }
void list_roots(const graph_type& g, ostream& os) {
graph_type::edge_list roots;
g.findRoots(roots);
while (roots.size()) {
os << g.nodeData(roots.back().first) << ' ';
roots.pop_back();
}
}
void serialize(const graph_type& g, const string& root, ostream& os) {
walker_type w(g, root);
bool go = true;
while (go) {
os << w.current().first << ' ';
go = w.next();
}
}
void serialize(const graph_type& g, ostream& os) {
walker_type w(g);
bool go = true;
while (go) {
os << w.current().first << ' ';
go = w.next();
}
}
void dfs_bfs(const graph_type& g, const string& root, ostream& os) {
walker_type w1(g, root);
walker_type w2(g, root);
bool doit = true;
os << "bfs iteration:" << endl;
while (doit) {
os << w2.current_bfs().first << ' ';
doit = w2.next_bfs();
}
os << endl;
doit = true;
os << "dfs iteration:" << endl;
while (doit) {
os << w2.current().first << ' ';
doit = w2.next();
}
os << endl;
}
int main() {
ostream& os = cout;
graph_type g1;
build_graph(g1);
dfs_bfs(g1, "A", os);
os << "roots of the graph are: ";
list_roots(g1, os);
os << endl;
os << "tree serialization: ";
serialize(g1, "A", os);
os << "tree hierarchy: " << endl;
graph_tree_output(g1, string("A"), os);
os << "exchanging node C through node Y." << endl;
unsigned int idx = g1.replace("C", "Y");
os << idx << endl;
graph_tree_output(g1, string("A"), os);
os << "replacing edge h1 with exchanged_h1 " << endl;
g1.replaceEdge("h1", "exchanged_h1");
graph_tree_output(g1, string("A"), os);
graph_type g2;
build_graph2(g2);
os << "second graph:" << endl;
serialize(g2, "AA", os);
os << endl << "combining g1 and g2:" << endl;
os << "g1: ";
serialize(g1, "A", os);
os << endl;
os << "g2: ";
serialize(g2, "AA", os);
os << endl;
graph_type g3;
graph_combine<string, string>(g1, g2, "A", "AA", "NewRoot", g3);
os << "g3: ";
serialize(g3, "NewRoot", os);
os << endl;
graph_tree_output(g3, string("NewRoot"), os);
os << endl << "inverting g2:" << endl;
graph_type g4;
g2.invert(g4);
graph_tree_output(g4, string("DD"), os);
graph_tree_output(g4, string("FF"), os);
graph_tree_output(g4, string("GG"), os);
os << endl << "graph-iterator test: loop over g1" << endl;
graph_type gg1;
build_graph(gg1);
graph_type::const_iterator it(gg1.begin_iter());
graph_type::const_iterator ed(gg1.end_iter());
for (; it != ed; ++it) {
cout << "looping! from=" << (*it).from() << " to=" << flush;
cout << (*it).to() << " edge=" << flush;
cout << it->edge() << endl;
}
return 0;
}
|