1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
|
#include "DataFormats/MuonReco/interface/MuonSelectors.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/MuonDetId/interface/MuonSubdetId.h"
#include "DataFormats/MuonDetId/interface/CSCDetId.h"
#include "DataFormats/VertexReco/interface/Vertex.h"
#include "DataFormats/MuonReco/interface/MuonRPCHitMatch.h"
namespace muon {
SelectionType selectionTypeFromString(const std::string& label) {
SelectionType value = (SelectionType)-1;
bool found = false;
for (int i = 0; selectionTypeStringToEnumMap[i].label && (!found); ++i)
if (!strcmp(label.c_str(), selectionTypeStringToEnumMap[i].label)) {
found = true;
value = selectionTypeStringToEnumMap[i].value;
}
// in case of unrecognized selection type
if (!found)
throw cms::Exception("MuonSelectorError") << label << " is not a recognized SelectionType";
return value;
}
reco::Muon::Selector selectorFromString(const std::string& label) {
reco::Muon::Selector value = (reco::Muon::Selector)-1;
bool found = false;
for (int i = 0; selectorStringToEnumMap[i].label && (!found); ++i)
if (!strcmp(label.c_str(), selectorStringToEnumMap[i].label)) {
found = true;
value = selectorStringToEnumMap[i].value;
}
// in case of unrecognized selection type
if (!found)
throw cms::Exception("MuonSelectorError") << label << " is not a recognized reco::Muon::Selector";
return value;
}
} // namespace muon
unsigned int muon::RequiredStationMask(const reco::Muon& muon,
double maxChamberDist,
double maxChamberDistPull,
reco::Muon::ArbitrationType arbitrationType) {
unsigned int theMask = 0;
for (int stationIdx = 1; stationIdx < 5; ++stationIdx) {
for (int detectorIdx = 1; detectorIdx < 3; ++detectorIdx) {
float dist = muon.trackDist(stationIdx, detectorIdx, arbitrationType);
if (dist < maxChamberDist &&
dist < maxChamberDistPull * muon.trackDistErr(stationIdx, detectorIdx, arbitrationType))
theMask += 1 << ((stationIdx - 1) + 4 * (detectorIdx - 1));
}
}
return theMask;
}
// ------------ method to calculate the calo compatibility for a track with matched muon info ------------
float muon::caloCompatibility(const reco::Muon& muon) { return muon.caloCompatibility(); }
// ------------ method to calculate the segment compatibility for a track with matched muon info ------------
float muon::segmentCompatibility(const reco::Muon& muon, reco::Muon::ArbitrationType arbitrationType) {
bool use_weight_regain_at_chamber_boundary = true;
bool use_match_dist_penalty = true;
int nr_of_stations_crossed = 0;
std::vector<int> stations_w_track(8);
std::vector<int> station_has_segmentmatch(8);
std::vector<int> station_was_crossed(8);
std::vector<float> stations_w_track_at_boundary(8);
std::vector<float> station_weight(8);
int position_in_stations = 0;
float full_weight = 0.;
for (int i = 1; i <= 8; ++i) {
// ********************************************************;
// *** fill local info for this muon (do some counting) ***;
// ************** begin ***********************************;
if (i <= 4) { // this is the section for the DTs
float thisTrackDist = muon.trackDist(i, 1, arbitrationType);
if (thisTrackDist < 999999) { //current "raw" info that a track is close to a chamber
++nr_of_stations_crossed;
station_was_crossed[i - 1] = 1;
if (thisTrackDist > -10.)
stations_w_track_at_boundary[i - 1] = thisTrackDist;
else
stations_w_track_at_boundary[i - 1] = 0.;
}
//current "raw" info that a segment is matched to the current track
if (muon.segmentX(i, 1, arbitrationType) < 999999) {
station_has_segmentmatch[i - 1] = 1;
}
} else { // this is the section for the CSCs
float thisTrackDist = muon.trackDist(i - 4, 2, arbitrationType);
if (thisTrackDist < 999999) { //current "raw" info that a track is close to a chamber
++nr_of_stations_crossed;
station_was_crossed[i - 1] = 1;
if (thisTrackDist > -10.)
stations_w_track_at_boundary[i - 1] = thisTrackDist;
else
stations_w_track_at_boundary[i - 1] = 0.;
}
//current "raw" info that a segment is matched to the current track
if (muon.segmentX(i - 4, 2, arbitrationType) < 999999) {
station_has_segmentmatch[i - 1] = 1;
}
}
// rough estimation of chamber border efficiency (should be parametrized better, this is just a quick guess):
// TF1 * merf = new TF1("merf","-0.5*(TMath::Erf(x/6.)-1)",-100,100);
// use above value to "unpunish" missing segment if close to border, i.e. rather than not adding any weight, add
// the one from the function. Only for dist ~> -10 cm, else full punish!.
// ********************************************************;
// *** fill local info for this muon (do some counting) ***;
// ************** end *************************************;
}
// ********************************************************;
// *** calculate weights for each station *****************;
// ************** begin ***********************************;
// const float slope = 0.5;
// const float attenuate_weight_regain = 1.;
// if attenuate_weight_regain < 1., additional punishment if track is close to boundary and no segment
const float attenuate_weight_regain = 0.5;
for (int i = 1; i <= 8; ++i) { // loop over all possible stations
// first set all weights if a station has been crossed
// later penalize if a station did not have a matching segment
//old logic if(station_has_segmentmatch[i-1] > 0 ) { // the track has an associated segment at the current station
if (station_was_crossed[i - 1] > 0) { // the track crossed this chamber (or was nearby)
// - Apply a weight depending on the "depth" of the muon passage.
// - The station_weight is later reduced for stations with badly matched segments.
// - Even if there is no segment but the track passes close to a chamber boundary, the
// weight is set non zero and can go up to 0.5 of the full weight if the track is quite
// far from any station.
++position_in_stations;
switch (nr_of_stations_crossed) { // define different weights depending on how many stations were crossed
case 1:
station_weight[i - 1] = 1.f;
break;
case 2:
if (position_in_stations == 1)
station_weight[i - 1] = 0.33f;
else
station_weight[i - 1] = 0.67f;
break;
case 3:
if (position_in_stations == 1)
station_weight[i - 1] = 0.23f;
else if (position_in_stations == 2)
station_weight[i - 1] = 0.33f;
else
station_weight[i - 1] = 0.44f;
break;
case 4:
if (position_in_stations == 1)
station_weight[i - 1] = 0.10f;
else if (position_in_stations == 2)
station_weight[i - 1] = 0.20f;
else if (position_in_stations == 3)
station_weight[i - 1] = 0.30f;
else
station_weight[i - 1] = 0.40f;
break;
default:
// LogTrace("MuonIdentification")<<" // Message: A muon candidate track has more than 4 stations with matching segments.";
// LogTrace("MuonIdentification")<<" // Did not expect this - please let me know: ibloch@fnal.gov";
// for all other cases
station_weight[i - 1] = 1.f / nr_of_stations_crossed;
}
if (use_weight_regain_at_chamber_boundary) { // reconstitute some weight if there is no match but the segment is close to a boundary:
if (station_has_segmentmatch[i - 1] <= 0 && stations_w_track_at_boundary[i - 1] != 0.) {
// if segment is not present but track in inefficient region, do not count as "missing match" but add some reduced weight.
// original "match weight" is currently reduced by at least attenuate_weight_regain, variing with an error function down to 0 if the track is
// inside the chamber.
// remark: the additional scale of 0.5 normalizes Err to run from 0 to 1 in y
station_weight[i - 1] = station_weight[i - 1] * attenuate_weight_regain * 0.5f *
(std::erf(stations_w_track_at_boundary[i - 1] / 6.f) + 1.f);
} else if (station_has_segmentmatch[i - 1] <= 0 &&
stations_w_track_at_boundary[i - 1] == 0.f) { // no segment match and track well inside chamber
// full penalization
station_weight[i - 1] = 0.f;
}
} else { // always fully penalize tracks with no matching segment, whether the segment is close to the boundary or not.
if (station_has_segmentmatch[i - 1] <= 0)
station_weight[i - 1] = 0.f;
}
// if track has matching segment, but the matching is not high quality, penalize
if (station_has_segmentmatch[i - 1] > 0) {
if (i <= 4) { // we are in the DTs
if (muon.dY(i, 1, arbitrationType) < 999999.f &&
muon.dX(i, 1, arbitrationType) < 999999.f) { // have both X and Y match
const float pullTot2 =
std::pow(muon.pullX(i, 1, arbitrationType), 2.) + std::pow(muon.pullY(i, 1, arbitrationType), 2.);
if (pullTot2 > 1.f) {
const float dxy2 =
std::pow(muon.dX(i, 1, arbitrationType), 2.) + std::pow(muon.dY(i, 1, arbitrationType), 2.);
// reduce weight
if (use_match_dist_penalty) {
// only use pull if 3 sigma is not smaller than 3 cm
if (dxy2 < 9.f && pullTot2 > 9.f) {
if (dxy2 > 1.f)
station_weight[i - 1] *= 1.f / std::pow(dxy2, .125);
} else {
station_weight[i - 1] *= 1.f / std::pow(pullTot2, .125);
}
}
}
} else if (muon.dY(i, 1, arbitrationType) >= 999999.f) { // has no match in Y
// has a match in X. Pull larger that 1 to avoid increasing the weight (just penalize, don't anti-penalize)
if (muon.pullX(i, 1, arbitrationType) > 1.f) {
// reduce weight
if (use_match_dist_penalty) {
// only use pull if 3 sigma is not smaller than 3 cm
if (muon.dX(i, 1, arbitrationType) < 3.f && muon.pullX(i, 1, arbitrationType) > 3.f) {
if (muon.dX(i, 1, arbitrationType) > 1.f)
station_weight[i - 1] *= 1.f / std::pow(muon.dX(i, 1, arbitrationType), .25);
} else {
station_weight[i - 1] *= 1.f / std::pow(muon.pullX(i, 1, arbitrationType), .25);
}
}
}
} else { // has no match in X
// has a match in Y. Pull larger that 1 to avoid increasing the weight (just penalize, don't anti-penalize)
if (muon.pullY(i, 1, arbitrationType) > 1.f) {
// reduce weight
if (use_match_dist_penalty) {
// only use pull if 3 sigma is not smaller than 3 cm
if (muon.dY(i, 1, arbitrationType) < 3. && muon.pullY(i, 1, arbitrationType) > 3.) {
if (muon.dY(i, 1, arbitrationType) > 1.f)
station_weight[i - 1] *= 1.f / std::pow(muon.dY(i, 1, arbitrationType), .25);
} else {
station_weight[i - 1] *= 1.f / std::pow(muon.pullY(i, 1, arbitrationType), .25);
}
}
}
}
} else { // We are in the CSCs
const float pullTot2 =
std::pow(muon.pullX(i - 4, 2, arbitrationType), 2.) + std::pow(muon.pullY(i - 4, 2, arbitrationType), 2.);
if (pullTot2 > 1.f) {
// reduce weight
if (use_match_dist_penalty) {
const float dxy2 =
std::pow(muon.dX(i - 4, 2, arbitrationType), 2.) + std::pow(muon.dY(i - 4, 2, arbitrationType), 2.);
// only use pull if 3 sigma is not smaller than 3 cm
if (dxy2 < 9.f && pullTot2 > 9.f) {
if (dxy2 > 1.f)
station_weight[i - 1] *= 1.f / std::pow(dxy2, .125);
} else {
station_weight[i - 1] *= 1.f / std::pow(pullTot2, .125);
}
}
}
}
}
// Thoughts:
// - should penalize if the segment has only x OR y info
// - should also use the segment direction, as it now works!
} else { // track did not pass a chamber in this station - just reset weight
station_weight[i - 1] = 0.f;
}
//increment final weight for muon:
full_weight += station_weight[i - 1];
}
// if we don't expect any matches, we set the compatibility to
// 0.5 as the track is as compatible with a muon as it is with
// background - we should maybe rather set it to -0.5!
if (nr_of_stations_crossed == 0) {
// full_weight = attenuate_weight_regain*0.5;
full_weight = 0.5f;
}
// ********************************************************;
// *** calculate weights for each station *****************;
// ************** end *************************************;
return full_weight;
}
bool muon::isGoodMuon(const reco::Muon& muon,
AlgorithmType type,
double minCompatibility,
reco::Muon::ArbitrationType arbitrationType) {
if (!muon.isMatchesValid())
return false;
bool goodMuon = false;
switch (type) {
case TM2DCompatibility:
// Simplistic first cut in the 2D segment- vs calo-compatibility plane. Will have to be refined!
if (((0.8 * caloCompatibility(muon)) + (1.2 * segmentCompatibility(muon, arbitrationType))) > minCompatibility)
goodMuon = true;
else
goodMuon = false;
return goodMuon;
break;
default:
// LogTrace("MuonIdentification")<<" // Invalid Algorithm Type called!";
goodMuon = false;
return goodMuon;
break;
}
}
bool muon::isGoodMuon(const reco::Muon& muon,
AlgorithmType type,
int minNumberOfMatches,
double maxAbsDx,
double maxAbsPullX,
double maxAbsDy,
double maxAbsPullY,
double maxChamberDist,
double maxChamberDistPull,
reco::Muon::ArbitrationType arbitrationType,
bool syncMinNMatchesNRequiredStationsInBarrelOnly,
bool applyAlsoAngularCuts) {
if (!muon.isMatchesValid())
return false;
bool goodMuon = false;
if (type == TMLastStation) {
// To satisfy my own paranoia, if the user specifies that the
// minimum number of matches is zero, then return true.
if (minNumberOfMatches == 0)
return true;
unsigned int theStationMask = muon.stationMask(arbitrationType);
unsigned int theRequiredStationMask =
RequiredStationMask(muon, maxChamberDist, maxChamberDistPull, arbitrationType);
// Require that there be at least a minimum number of segments
int numSegs = 0;
int numRequiredStations = 0;
for (int it = 0; it < 8; ++it) {
if (theStationMask & 1 << it)
++numSegs;
if (theRequiredStationMask & 1 << it)
++numRequiredStations;
}
// Make sure the minimum number of matches is not greater than
// the number of required stations but still greater than zero
if (syncMinNMatchesNRequiredStationsInBarrelOnly) {
// Note that we only do this in the barrel region!
if (std::abs(muon.eta()) < 1.2) {
if (minNumberOfMatches > numRequiredStations)
minNumberOfMatches = numRequiredStations;
if (minNumberOfMatches < 1) //SK: this only happens for negative values
minNumberOfMatches = 1;
}
} else {
if (minNumberOfMatches > numRequiredStations)
minNumberOfMatches = numRequiredStations;
if (minNumberOfMatches < 1) //SK: this only happens for negative values
minNumberOfMatches = 1;
}
if (numSegs >= minNumberOfMatches)
goodMuon = true;
// Require that last required station have segment
// If there are zero required stations keep track
// of the last station with a segment so that we may
// apply the quality cuts below to it instead
int lastSegBit = 0;
if (theRequiredStationMask) {
for (int stationIdx = 7; stationIdx >= 0; --stationIdx)
if (theRequiredStationMask & 1 << stationIdx) {
if (theStationMask & 1 << stationIdx) {
lastSegBit = stationIdx;
goodMuon &= 1;
break;
} else {
goodMuon = false;
break;
}
}
} else {
for (int stationIdx = 7; stationIdx >= 0; --stationIdx)
if (theStationMask & 1 << stationIdx) {
lastSegBit = stationIdx;
break;
}
}
if (!goodMuon)
return false;
// Impose pull cuts on last segment
int station = 0, detector = 0;
station = lastSegBit < 4 ? lastSegBit + 1 : lastSegBit - 3;
detector = lastSegBit < 4 ? 1 : 2;
// Check x information
if (std::abs(muon.pullX(station, detector, arbitrationType, true)) > maxAbsPullX &&
std::abs(muon.dX(station, detector, arbitrationType)) > maxAbsDx)
return false;
if (applyAlsoAngularCuts && std::abs(muon.pullDxDz(station, detector, arbitrationType, true)) > maxAbsPullX)
return false;
// Is this a tight algorithm, i.e. do we bother to check y information?
if (maxAbsDy < 999999) { // really if maxAbsDy < 1E9 as currently defined
// Check y information
if (detector == 2) { // CSC
if (std::abs(muon.pullY(station, 2, arbitrationType, true)) > maxAbsPullY &&
std::abs(muon.dY(station, 2, arbitrationType)) > maxAbsDy)
return false;
if (applyAlsoAngularCuts && std::abs(muon.pullDyDz(station, 2, arbitrationType, true)) > maxAbsPullY)
return false;
} else {
//
// In DT, if this is a "Tight" algorithm and the last segment is
// missing y information (always the case in station 4!!!), impose
// respective cuts on the next station in the stationMask that has
// a segment with y information. If there are no segments with y
// information then there is nothing to penalize. Should we
// penalize in Tight for having zero segments with y information?
// That is the fundamental question. Of course I am being uber
// paranoid; if this is a good muon then there will probably be at
// least one segment with y information but not always. Suppose
// somehow a muon only creates segments in station 4, then we
// definitely do not want to require that there be at least one
// segment with y information because we will lose it completely.
//
for (int stationIdx = station; stationIdx > 0; --stationIdx) {
if (!(theStationMask & 1 << (stationIdx - 1))) // don't bother if the station is not in the stationMask
continue;
if (muon.dY(stationIdx, 1, arbitrationType) > 999998) // no y-information
continue;
if (std::abs(muon.pullY(stationIdx, 1, arbitrationType, true)) > maxAbsPullY &&
std::abs(muon.dY(stationIdx, 1, arbitrationType)) > maxAbsDy) {
return false;
}
if (applyAlsoAngularCuts && std::abs(muon.pullDyDz(stationIdx, 1, arbitrationType, true)) > maxAbsPullY)
return false;
// If we get this far then great this is a good muon
return true;
}
}
}
return goodMuon;
} // TMLastStation
// TMOneStation requires only that there be one "good" segment, regardless
// of the required stations. We do not penalize if there are absolutely zero
// segments with y information in the Tight algorithm. Maybe I'm being
// paranoid but so be it. If it's really a good muon then we will probably
// find at least one segment with both x and y information but you never
// know, and I don't want to deal with a potential inefficiency in the DT
// like we did with the original TMLastStation. Incidentally, not penalizing
// for total lack of y information in the Tight algorithm is what is done in
// the new TMLastStation
//
if (type == TMOneStation) {
unsigned int theStationMask = muon.stationMask(arbitrationType);
// Of course there must be at least one segment
if (!theStationMask)
return false;
int station = 0, detector = 0;
// Keep track of whether or not there is a DT segment with y information.
// In the end, if it turns out there are absolutely zero DT segments with
// y information, require only that there was a segment with good x info.
// This of course only applies to the Tight algorithms.
bool existsGoodDTSegX = false;
bool existsDTSegY = false;
// Impose cuts on the segments in the station mask until we find a good one
// Might as well start with the lowest bit to speed things up.
for (int stationIdx = 0; stationIdx <= 7; ++stationIdx)
if (theStationMask & 1 << stationIdx) {
station = stationIdx < 4 ? stationIdx + 1 : stationIdx - 3;
detector = stationIdx < 4 ? 1 : 2;
if ((std::abs(muon.pullX(station, detector, arbitrationType, true)) > maxAbsPullX &&
std::abs(muon.dX(station, detector, arbitrationType)) > maxAbsDx) ||
(applyAlsoAngularCuts && std::abs(muon.pullDxDz(station, detector, arbitrationType, true)) > maxAbsPullX))
continue;
else if (detector == 1)
existsGoodDTSegX = true;
// Is this a tight algorithm? If yes, use y information
if (maxAbsDy < 999999) {
if (detector == 2) { // CSC
if ((std::abs(muon.pullY(station, 2, arbitrationType, true)) > maxAbsPullY &&
std::abs(muon.dY(station, 2, arbitrationType)) > maxAbsDy) ||
(applyAlsoAngularCuts && std::abs(muon.pullDyDz(station, 2, arbitrationType, true)) > maxAbsPullY))
continue;
} else {
if (muon.dY(station, 1, arbitrationType) > 999998) // no y-information
continue;
else
existsDTSegY = true;
if ((std::abs(muon.pullY(station, 1, arbitrationType, true)) > maxAbsPullY &&
std::abs(muon.dY(station, 1, arbitrationType)) > maxAbsDy) ||
(applyAlsoAngularCuts && std::abs(muon.pullDyDz(station, 1, arbitrationType, true)) > maxAbsPullY)) {
continue;
}
}
}
// If we get this far then great this is a good muon
return true;
}
// If we get this far then for sure there are no "good" CSC segments. For
// DT, check if there were any segments with y information. If there
// were none, but there was a segment with good x, then we're happy. If
// there WERE segments with y information, then they must have been shit
// since we are here so fail it. Of course, if this is a Loose algorithm
// then fail immediately since if we had good x we would already have
// returned true
if (maxAbsDy < 999999) {
if (existsDTSegY)
return false;
else if (existsGoodDTSegX)
return true;
} else
return false;
} // TMOneStation
if (type == RPCMu) {
if (minNumberOfMatches == 0)
return true;
int nMatch = 0;
for (const auto& chamberMatch : muon.matches()) {
if (chamberMatch.detector() != MuonSubdetId::RPC)
continue;
const float trkX = chamberMatch.x;
const float errX = chamberMatch.xErr;
for (const auto& rpcMatch : chamberMatch.rpcMatches) {
const float rpcX = rpcMatch.x;
const float dX = std::abs(rpcX - trkX);
if (dX < maxAbsDx or dX < maxAbsPullX * errX) {
++nMatch;
break;
}
}
}
if (nMatch >= minNumberOfMatches)
return true;
else
return false;
} // RPCMu
if (type == ME0Mu) {
if (minNumberOfMatches == 0)
return true;
int nMatch = 0;
for (const auto& chamberMatch : muon.matches()) {
if (chamberMatch.detector() != MuonSubdetId::ME0)
continue;
const float trkX = chamberMatch.x;
const float errX2 = chamberMatch.xErr * chamberMatch.xErr;
const float trkY = chamberMatch.y;
const float errY2 = chamberMatch.yErr * chamberMatch.yErr;
for (const auto& segment : chamberMatch.me0Matches) {
const float me0X = segment.x;
const float me0ErrX2 = segment.xErr * segment.xErr;
const float me0Y = segment.y;
const float me0ErrY2 = segment.yErr * segment.yErr;
const float dX = std::abs(me0X - trkX);
const float dY = std::abs(me0Y - trkY);
const float invPullX2 = errX2 + me0ErrX2;
const float invPullY2 = errY2 + me0ErrY2;
if ((dX < maxAbsDx or dX < maxAbsPullX * std::sqrt(invPullX2)) and
(dY < maxAbsDy or dY < maxAbsPullY * std::sqrt(invPullY2))) {
++nMatch;
break;
}
}
}
return (nMatch >= minNumberOfMatches);
} // ME0Mu
if (type == GEMMu) {
if (minNumberOfMatches == 0)
return true;
int nMatch = 0;
for (const auto& chamberMatch : muon.matches()) {
if (chamberMatch.detector() != MuonSubdetId::GEM)
continue;
const float trkX = chamberMatch.x;
const float errX2 = chamberMatch.xErr * chamberMatch.xErr;
const float trkY = chamberMatch.y;
const float errY2 = chamberMatch.yErr * chamberMatch.yErr;
for (const auto& segment : chamberMatch.gemMatches) {
const float gemX = segment.x;
const float gemErrX2 = segment.xErr * segment.xErr;
const float gemY = segment.y;
const float gemErrY2 = segment.yErr * segment.yErr;
const float dX = std::abs(gemX - trkX);
const float dY = std::abs(gemY - trkY);
const float invPullX2 = errX2 + gemErrX2;
const float invPullY2 = errY2 + gemErrY2;
if ((dX < maxAbsDx or dX < maxAbsPullX * std::sqrt(invPullX2)) and
(dY < maxAbsDy or dY < maxAbsPullY * std::sqrt(invPullY2))) {
++nMatch;
break;
}
}
}
return (nMatch >= minNumberOfMatches);
} // GEMMu
return goodMuon;
}
bool muon::isGoodMuon(const reco::Muon& muon, SelectionType type, reco::Muon::ArbitrationType arbitrationType) {
switch (type) {
case muon::All:
return true;
break;
case muon::AllGlobalMuons:
return muon.isGlobalMuon();
break;
case muon::AllTrackerMuons:
return muon.isTrackerMuon();
break;
case muon::AllStandAloneMuons:
return muon.isStandAloneMuon();
break;
case muon::TrackerMuonArbitrated:
return muon.isTrackerMuon() && muon.numberOfMatches(arbitrationType) > 0;
break;
case muon::AllArbitrated:
return !muon.isTrackerMuon() || muon.numberOfMatches(arbitrationType) > 0;
break;
case muon::GlobalMuonPromptTight:
return muon.isGlobalMuon() && muon.globalTrack()->normalizedChi2() < 10. &&
muon.globalTrack()->hitPattern().numberOfValidMuonHits() > 0;
break;
// For "Loose" algorithms we choose maximum y quantity cuts of 1E9 instead of
// 9999 as before. We do this because the muon methods return 999999 (note
// there are six 9's) when the requested information is not available. For
// example, if a muon fails to traverse the z measuring superlayer in a station
// in the DT, then all methods involving segmentY in this station return
// 999999 to demonstrate that the information is missing. In order to not
// penalize muons for missing y information in Loose algorithms where we do
// not care at all about y information, we raise these limits. In the
// TMLastStation and TMOneStation algorithms we actually use this huge number
// to determine whether to consider y information at all.
case muon::TMLastStationLoose:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 1E9, 1E9, -3, -3, arbitrationType, true, false);
break;
case muon::TMLastStationTight:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 3, 3, -3, -3, arbitrationType, true, false);
break;
case muon::TMOneStationLoose:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 1E9, 1E9, 1E9, 1E9, arbitrationType, false, false);
break;
case muon::TMOneStationTight:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 3, 3, 1E9, 1E9, arbitrationType, false, false);
break;
case muon::TMLastStationOptimizedLowPtLoose:
if (muon.pt() < 8. && std::abs(muon.eta()) < 1.2)
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 1E9, 1E9, 1E9, 1E9, arbitrationType, false, false);
else
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 1E9, 1E9, -3, -3, arbitrationType, false, false);
break;
case muon::TMLastStationOptimizedLowPtTight:
if (muon.pt() < 8. && std::abs(muon.eta()) < 1.2)
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 3, 3, 1E9, 1E9, arbitrationType, false, false);
else
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 3, 3, -3, -3, arbitrationType, false, false);
break;
//compatibility loose
case muon::TM2DCompatibilityLoose:
return muon.isTrackerMuon() && isGoodMuon(muon, TM2DCompatibility, 0.7, arbitrationType);
break;
//compatibility tight
case muon::TM2DCompatibilityTight:
return muon.isTrackerMuon() && isGoodMuon(muon, TM2DCompatibility, 1.0, arbitrationType);
break;
case muon::GMTkChiCompatibility:
return muon.isGlobalMuon() && muon.isQualityValid() &&
std::abs(muon.combinedQuality().trkRelChi2 - muon.innerTrack()->normalizedChi2()) < 2.0;
break;
case muon::GMStaChiCompatibility:
return muon.isGlobalMuon() && muon.isQualityValid() &&
std::abs(muon.combinedQuality().staRelChi2 - muon.outerTrack()->normalizedChi2()) < 2.0;
break;
case muon::GMTkKinkTight:
return muon.isGlobalMuon() && muon.isQualityValid() && muon.combinedQuality().trkKink < 100.0;
break;
case muon::TMLastStationAngLoose:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 1E9, 1E9, -3, -3, arbitrationType, false, true);
break;
case muon::TMLastStationAngTight:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 3, 3, -3, -3, arbitrationType, false, true);
break;
case muon::TMOneStationAngLoose:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 1E9, 1E9, 1E9, 1E9, arbitrationType, false, true);
break;
case muon::TMOneStationAngTight:
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 3, 3, 1E9, 1E9, arbitrationType, false, true);
break;
case muon::TMLastStationOptimizedBarrelLowPtLoose:
if (muon.pt() < 8. && std::abs(muon.eta()) < 1.2)
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 1E9, 1E9, 1E9, 1E9, arbitrationType, false, false);
else
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 1E9, 1E9, -3, -3, arbitrationType, true, false);
break;
case muon::TMLastStationOptimizedBarrelLowPtTight:
if (muon.pt() < 8. && std::abs(muon.eta()) < 1.2)
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMOneStation, 1, 3, 3, 3, 3, 1E9, 1E9, arbitrationType, false, false);
else
return muon.isTrackerMuon() &&
isGoodMuon(muon, TMLastStation, 2, 3, 3, 3, 3, -3, -3, arbitrationType, true, false);
break;
case muon::RPCMuLoose:
return muon.isRPCMuon() && isGoodMuon(muon, RPCMu, 2, 20, 4, 1e9, 1e9, 1e9, 1e9, arbitrationType, false, false);
break;
case muon::AllME0Muons:
return muon.isME0Muon();
break;
case muon::ME0MuonArbitrated:
return muon.isME0Muon() &&
isGoodMuon(muon, ME0Mu, 1, 1e9, 1e9, 1e9, 1e9, 1e9, 1e9, arbitrationType, false, false);
break;
case muon::AllGEMMuons:
return muon.isGEMMuon();
break;
case muon::GEMMuonArbitrated:
return muon.isGEMMuon() &&
isGoodMuon(muon, GEMMu, 1, 1e9, 1e9, 1e9, 1e9, 1e9, 1e9, arbitrationType, false, false);
break;
case muon::TriggerIdLoose:
return isLooseTriggerMuon(muon);
break;
default:
return false;
}
}
bool muon::overlap(
const reco::Muon& muon1, const reco::Muon& muon2, double pullX, double pullY, bool checkAdjacentChambers) {
unsigned int nMatches1 = muon1.numberOfMatches(reco::Muon::SegmentAndTrackArbitration);
unsigned int nMatches2 = muon2.numberOfMatches(reco::Muon::SegmentAndTrackArbitration);
unsigned int betterMuon = (muon1.pt() > muon2.pt() ? 1 : 2);
for (std::vector<reco::MuonChamberMatch>::const_iterator chamber1 = muon1.matches().begin();
chamber1 != muon1.matches().end();
++chamber1)
for (std::vector<reco::MuonChamberMatch>::const_iterator chamber2 = muon2.matches().begin();
chamber2 != muon2.matches().end();
++chamber2) {
// if ( (chamber1->segmentMatches.empty() || chamber2->segmentMatches.empty()) ) continue;
// handle case where both muons have information about the same chamber
// here we know how close they are
if (chamber1->id == chamber2->id) {
// found the same chamber
if (std::abs(chamber1->x - chamber2->x) <
pullX * sqrt(chamber1->xErr * chamber1->xErr + chamber2->xErr * chamber2->xErr)) {
if (betterMuon == 1)
nMatches2--;
else
nMatches1--;
if (nMatches1 == 0 || nMatches2 == 0)
return true;
continue;
}
if (std::abs(chamber1->y - chamber2->y) <
pullY * sqrt(chamber1->yErr * chamber1->yErr + chamber2->yErr * chamber2->yErr)) {
if (betterMuon == 1)
nMatches2--;
else
nMatches1--;
if (nMatches1 == 0 || nMatches2 == 0)
return true;
}
} else {
if (!checkAdjacentChambers)
continue;
// check if tracks are pointing into overlaping region of the CSC detector
if (chamber1->id.subdetId() != MuonSubdetId::CSC || chamber2->id.subdetId() != MuonSubdetId::CSC)
continue;
CSCDetId id1(chamber1->id);
CSCDetId id2(chamber2->id);
if (id1.endcap() != id2.endcap())
continue;
if (id1.station() != id2.station())
continue;
if (id1.ring() != id2.ring())
continue;
if (std::abs(id1.chamber() - id2.chamber()) > 1)
continue;
// FIXME: we don't handle 18->1; 36->1 transitions since
// I don't know how to check for sure how many chambers
// are there. Probably need to hard code some checks.
// Now we have to make sure that both tracks are close to an edge
// FIXME: ignored Y coordinate for now
if (std::abs(chamber1->edgeX) > chamber1->xErr * pullX)
continue;
if (std::abs(chamber2->edgeX) > chamber2->xErr * pullX)
continue;
if (chamber1->x * chamber2->x < 0) { // check if the same edge
if (betterMuon == 1)
nMatches2--;
else
nMatches1--;
if (nMatches1 == 0 || nMatches2 == 0)
return true;
}
}
}
return false;
}
bool muon::isLooseTriggerMuon(const reco::Muon& muon) {
// Requirements:
// - no depencence on information not availabe in the muon object
// - use only robust inputs
bool tk_id = muon::isGoodMuon(muon, TMOneStationTight);
if (not tk_id)
return false;
bool layer_requirements = muon.innerTrack()->hitPattern().trackerLayersWithMeasurement() > 5;
bool match_requirements =
(muon.expectedNnumberOfMatchedStations() < 2) or (muon.numberOfMatchedStations() > 1) or (muon.pt() < 8);
return layer_requirements and match_requirements;
}
bool muon::isTightMuon(const reco::Muon& muon, const reco::Vertex& vtx) {
if (!muon.isPFMuon() || !muon.isGlobalMuon())
return false;
bool muID = isGoodMuon(muon, GlobalMuonPromptTight) && (muon.numberOfMatchedStations() > 1);
bool hits = muon.innerTrack()->hitPattern().trackerLayersWithMeasurement() > 5 &&
muon.innerTrack()->hitPattern().numberOfValidPixelHits() > 0;
bool ip = std::abs(muon.muonBestTrack()->dxy(vtx.position())) < 0.2 &&
std::abs(muon.muonBestTrack()->dz(vtx.position())) < 0.5;
return muID && hits && ip;
}
bool muon::isLooseMuon(const reco::Muon& muon) {
return muon.isPFMuon() && (muon.isGlobalMuon() || muon.isTrackerMuon());
}
bool muon::isMediumMuon(const reco::Muon& muon, bool run2016_hip_mitigation) {
if (not isLooseMuon(muon))
return false;
if (run2016_hip_mitigation) {
if (muon.innerTrack()->validFraction() < 0.49)
return false;
} else {
if (muon.innerTrack()->validFraction() < 0.8)
return false;
}
bool goodGlb = muon.isGlobalMuon() && muon.globalTrack()->normalizedChi2() < 3. &&
muon.combinedQuality().chi2LocalPosition < 12. && muon.combinedQuality().trkKink < 20.;
return (segmentCompatibility(muon) > (goodGlb ? 0.303 : 0.451));
}
bool muon::isSoftMuon(const reco::Muon& muon, const reco::Vertex& vtx, bool run2016_hip_mitigation) {
bool muID = muon::isGoodMuon(muon, TMOneStationTight);
if (!muID)
return false;
bool layers = muon.innerTrack()->hitPattern().trackerLayersWithMeasurement() > 5 &&
muon.innerTrack()->hitPattern().pixelLayersWithMeasurement() > 0;
bool ishighq = muon.innerTrack()->quality(reco::Track::highPurity);
bool ip =
std::abs(muon.innerTrack()->dxy(vtx.position())) < 0.3 && std::abs(muon.innerTrack()->dz(vtx.position())) < 20.;
return layers && ip && (ishighq | run2016_hip_mitigation);
}
bool muon::isHighPtMuon(const reco::Muon& muon, const reco::Vertex& vtx) {
if (!muon.isGlobalMuon())
return false;
bool muValHits = (muon.globalTrack()->hitPattern().numberOfValidMuonHits() > 0 ||
muon.tunePMuonBestTrack()->hitPattern().numberOfValidMuonHits() > 0);
bool muMatchedSt = muon.numberOfMatchedStations() > 1;
if (!muMatchedSt) {
if (muon.isTrackerMuon() && muon.numberOfMatchedStations() == 1) {
if (muon.expectedNnumberOfMatchedStations() < 2 || !(muon.stationMask() == 1 || muon.stationMask() == 16) ||
muon.numberOfMatchedRPCLayers() > 2)
muMatchedSt = true;
}
}
bool muID = muValHits && muMatchedSt;
bool hits = muon.innerTrack()->hitPattern().trackerLayersWithMeasurement() > 5 &&
muon.innerTrack()->hitPattern().numberOfValidPixelHits() > 0;
bool momQuality = muon.tunePMuonBestTrack()->ptError() / muon.tunePMuonBestTrack()->pt() < 0.3;
bool ip =
std::abs(muon.innerTrack()->dxy(vtx.position())) < 0.2 && std::abs(muon.innerTrack()->dz(vtx.position())) < 0.5;
return muID && hits && momQuality && ip;
}
bool muon::isTrackerHighPtMuon(const reco::Muon& muon, const reco::Vertex& vtx) {
bool muID = muon.isTrackerMuon() && muon.track().isNonnull() && (muon.numberOfMatchedStations() > 1);
if (!muID)
return false;
bool hits = muon.innerTrack()->hitPattern().trackerLayersWithMeasurement() > 5 &&
muon.innerTrack()->hitPattern().numberOfValidPixelHits() > 0;
bool momQuality = muon.tunePMuonBestTrack()->ptError() < 0.3 * muon.tunePMuonBestTrack()->pt();
bool ip =
std::abs(muon.innerTrack()->dxy(vtx.position())) < 0.2 && std::abs(muon.innerTrack()->dz(vtx.position())) < 0.5;
return muID && hits && momQuality && ip;
}
int muon::sharedSegments(const reco::Muon& mu, const reco::Muon& mu2, unsigned int segmentArbitrationMask) {
int ret = 0;
// Will do with a stupid double loop, since creating and filling a map is probably _more_ inefficient for a single lookup.
for (std::vector<reco::MuonChamberMatch>::const_iterator chamberMatch = mu.matches().begin();
chamberMatch != mu.matches().end();
++chamberMatch) {
if (chamberMatch->segmentMatches.empty())
continue;
for (std::vector<reco::MuonChamberMatch>::const_iterator chamberMatch2 = mu2.matches().begin();
chamberMatch2 != mu2.matches().end();
++chamberMatch2) {
if (chamberMatch2->segmentMatches.empty())
continue;
if (chamberMatch2->id() != chamberMatch->id())
continue;
for (std::vector<reco::MuonSegmentMatch>::const_iterator segmentMatch = chamberMatch->segmentMatches.begin();
segmentMatch != chamberMatch->segmentMatches.end();
++segmentMatch) {
if (!segmentMatch->isMask(segmentArbitrationMask))
continue;
for (std::vector<reco::MuonSegmentMatch>::const_iterator segmentMatch2 = chamberMatch2->segmentMatches.begin();
segmentMatch2 != chamberMatch2->segmentMatches.end();
++segmentMatch2) {
if (!segmentMatch2->isMask(segmentArbitrationMask))
continue;
if ((segmentMatch->cscSegmentRef.isNonnull() &&
segmentMatch->cscSegmentRef == segmentMatch2->cscSegmentRef) ||
(segmentMatch->dtSegmentRef.isNonnull() && segmentMatch->dtSegmentRef == segmentMatch2->dtSegmentRef)) {
++ret;
} // is the same
} // segment of mu2 in chamber
} // segment of mu1 in chamber
} // chamber of mu2
} // chamber of mu1
return ret;
}
bool outOfTimeMuon(const reco::Muon& muon) {
const auto& combinedTime = muon.time();
const auto& rpcTime = muon.rpcTime();
bool combinedTimeIsOk = (combinedTime.nDof > 7);
bool rpcTimeIsOk = (rpcTime.nDof > 1 && std::abs(rpcTime.timeAtIpInOutErr) < 0.001);
bool outOfTime = false;
if (rpcTimeIsOk) {
if ((std::abs(rpcTime.timeAtIpInOut) > 10) && !(combinedTimeIsOk && std::abs(combinedTime.timeAtIpInOut) < 10))
outOfTime = true;
} else {
if (combinedTimeIsOk && (combinedTime.timeAtIpInOut > 20 || combinedTime.timeAtIpInOut < -45))
outOfTime = true;
}
return outOfTime;
}
reco::Muon::Selector muon::makeSelectorBitset(reco::Muon const& muon,
reco::Vertex const* vertex,
bool run2016_hip_mitigation) {
// https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideMuonIdRun2
unsigned int selectors = muon.selectors();
// Compute Id and Isolation variables
double chIso = muon.pfIsolationR04().sumChargedHadronPt;
double nIso = muon.pfIsolationR04().sumNeutralHadronEt;
double phoIso = muon.pfIsolationR04().sumPhotonEt;
double puIso = muon.pfIsolationR04().sumPUPt;
double dbCorrectedIsolation = chIso + std::max(nIso + phoIso - .5 * puIso, 0.);
double dbCorrectedRelIso = dbCorrectedIsolation / muon.pt();
double tkRelIso = muon.isolationR03().sumPt / muon.pt();
// Base selectors
if (muon::isLooseMuon(muon))
selectors |= (1UL << reco::Muon::CutBasedIdLoose);
if (vertex) {
if (muon::isTightMuon(muon, *vertex))
selectors |= (1UL << reco::Muon::CutBasedIdTight);
if (muon::isSoftMuon(muon, *vertex, run2016_hip_mitigation))
selectors |= (1UL << reco::Muon::SoftCutBasedId);
if (muon::isHighPtMuon(muon, *vertex))
selectors |= (1UL << reco::Muon::CutBasedIdGlobalHighPt);
if (muon::isTrackerHighPtMuon(muon, *vertex))
selectors |= (1UL << reco::Muon::CutBasedIdTrkHighPt);
}
if (muon::isMediumMuon(muon, run2016_hip_mitigation)) {
selectors |= (1UL << reco::Muon::CutBasedIdMedium);
if (vertex and std::abs(muon.muonBestTrack()->dz(vertex->position())) < 0.1 and
std::abs(muon.muonBestTrack()->dxy(vertex->position())) < 0.02)
selectors |= (1UL << reco::Muon::CutBasedIdMediumPrompt);
}
// PF isolation
if (dbCorrectedRelIso < 0.40)
selectors |= (1UL << reco::Muon::PFIsoVeryLoose);
if (dbCorrectedRelIso < 0.25)
selectors |= (1UL << reco::Muon::PFIsoLoose);
if (dbCorrectedRelIso < 0.20)
selectors |= (1UL << reco::Muon::PFIsoMedium);
if (dbCorrectedRelIso < 0.15)
selectors |= (1UL << reco::Muon::PFIsoTight);
if (dbCorrectedRelIso < 0.10)
selectors |= (1UL << reco::Muon::PFIsoVeryTight);
if (dbCorrectedRelIso < 0.05)
selectors |= (1UL << reco::Muon::PFIsoVeryVeryTight);
// Tracker isolation
if (tkRelIso < 0.10)
selectors |= (1UL << reco::Muon::TkIsoLoose);
if (tkRelIso < 0.05)
selectors |= (1UL << reco::Muon::TkIsoTight);
// Trigger selectors
if (isLooseTriggerMuon(muon))
selectors |= (1UL << reco::Muon::TriggerIdLoose);
// Timing
if (!outOfTimeMuon(muon))
selectors |= (1UL << reco::Muon::InTimeMuon);
return static_cast<reco::Muon::Selector>(selectors);
}
|