1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
#ifndef DataFormats_NanoAOD_FlatTable_h
#define DataFormats_NanoAOD_FlatTable_h
#include "DataFormats/Math/interface/libminifloat.h"
#include "FWCore/Utilities/interface/Exception.h"
#include <cstdint>
#include <vector>
#include <span>
#include <string>
#include <type_traits>
namespace nanoaod {
namespace flatTableHelper {
template <typename T>
struct MaybeMantissaReduce {
MaybeMantissaReduce(int mantissaBits) {}
inline T one(const T &val) const { return val; }
template <typename Span>
inline void bulk(Span const &data) const {}
};
template <>
struct MaybeMantissaReduce<float> {
int bits_;
MaybeMantissaReduce(int mantissaBits) : bits_(mantissaBits) {}
inline float one(const float &val) const {
return (bits_ > 0 ? MiniFloatConverter::reduceMantissaToNbitsRounding(val, bits_) : val);
}
template <typename Span>
inline void bulk(Span &&data) const {
if (bits_ > 0)
MiniFloatConverter::reduceMantissaToNbitsRounding(bits_, data.begin(), data.end(), data.begin());
}
};
} // namespace flatTableHelper
class FlatTable {
public:
//Int8, //removed due to mis-interpretation in ROOT/pyroot
enum class ColumnType {
UInt8,
Int16,
UInt16,
Int32,
UInt32,
Int64,
UInt64,
Bool,
Float,
Double,
}; // We could have other Float types with reduced mantissa, and similar
// special case: bool stored as vector of uint8
template <typename T>
using ColumnStorageType = std::conditional_t<std::is_same_v<T, bool>, uint8_t, T>;
FlatTable() : size_(0) {}
FlatTable(unsigned int size, const std::string &name, bool singleton, bool extension = false)
: size_(size), name_(name), singleton_(singleton), extension_(extension) {}
~FlatTable() {}
unsigned int nColumns() const { return columns_.size(); };
unsigned int nRows() const { return size_; };
unsigned int size() const { return size_; }
bool singleton() const { return singleton_; }
bool extension() const { return extension_; }
const std::string &name() const { return name_; }
const std::string &columnName(unsigned int col) const { return columns_[col].name; }
int columnIndex(const std::string &name) const;
ColumnType columnType(unsigned int col) const { return columns_[col].type; }
void setDoc(const std::string &doc) { doc_ = doc; }
const std::string &doc() const { return doc_; }
const std::string &columnDoc(unsigned int col) const { return columns_[col].doc; }
/// get a column by index (const)
template <typename T>
auto columnData(unsigned int column) const {
auto begin = beginData<T>(column);
return std::span<const ColumnStorageType<T>>(begin, size_t(size_));
}
/// get a column by index (non-const)
template <typename T>
auto columnData(unsigned int column) {
auto begin = beginData<T>(column);
return std::span<ColumnStorageType<T>>(begin, size_);
}
/// get a column value for singleton (const)
template <typename T>
const auto &columValue(unsigned int column) const {
if (!singleton())
throw cms::Exception("LogicError", "columnValue works only for singleton tables");
return *beginData<T>(column);
}
double getAnyValue(unsigned int row, unsigned int column) const;
class RowView {
public:
RowView() {}
RowView(const FlatTable &table, unsigned int row) : table_(&table), row_(row) {}
double getAnyValue(unsigned int column) const { return table_->getAnyValue(row_, column); }
double getAnyValue(const std::string &column) const {
auto index = table_->columnIndex(column);
if (index == -1)
throwUnknownColumn(column);
return table_->getAnyValue(row_, index);
}
const FlatTable &table() const { return *table_; }
unsigned int row() const { return row_; }
private:
[[noreturn]] static void throwUnknownColumn(const std::string &column) noexcept(false);
const FlatTable *table_;
unsigned int row_;
};
RowView row(unsigned int row) const { return RowView(*this, row); }
template <typename T, typename C>
void addColumn(const std::string &name, const C &values, const std::string &docString, int mantissaBits = -1) {
if (columnIndex(name) != -1)
throw cms::Exception("LogicError", "Duplicated column: " + name);
if (values.size() != size())
throw cms::Exception("LogicError", "Mismatched size for " + name);
auto &vec = bigVector<T>();
columns_.emplace_back(name, docString, defaultColumnType<T>(), vec.size());
vec.insert(vec.end(), values.begin(), values.end());
flatTableHelper::MaybeMantissaReduce<T>(mantissaBits).bulk(columnData<T>(columns_.size() - 1));
}
template <typename T, typename C>
void addColumnValue(const std::string &name, const C &value, const std::string &docString, int mantissaBits = -1) {
if (!singleton())
throw cms::Exception("LogicError", "addColumnValue works only for singleton tables");
if (columnIndex(name) != -1)
throw cms::Exception("LogicError", "Duplicated column: " + name);
auto &vec = bigVector<T>();
columns_.emplace_back(name, docString, defaultColumnType<T>(), vec.size());
vec.push_back(flatTableHelper::MaybeMantissaReduce<T>(mantissaBits).one(value));
}
void addExtension(const FlatTable &extension);
template <class T>
struct dependent_false : std::false_type {};
template <typename T>
static ColumnType defaultColumnType() {
if constexpr (std::is_same<T, uint8_t>())
return ColumnType::UInt8;
else if constexpr (std::is_same<T, int16_t>())
return ColumnType::Int16;
else if constexpr (std::is_same<T, uint16_t>())
return ColumnType::UInt16;
else if constexpr (std::is_same<T, int32_t>())
return ColumnType::Int32;
else if constexpr (std::is_same<T, uint32_t>())
return ColumnType::UInt32;
else if constexpr (std::is_same<T, int64_t>())
return ColumnType::Int64;
else if constexpr (std::is_same<T, uint64_t>())
return ColumnType::UInt64;
else if constexpr (std::is_same<T, bool>())
return ColumnType::Bool;
else if constexpr (std::is_same<T, float>())
return ColumnType::Float;
else if constexpr (std::is_same<T, double>())
return ColumnType::Double;
else
static_assert(dependent_false<T>::value, "unsupported type");
}
// this below needs to be public for ROOT, but it is to be considered private otherwise
struct Column {
std::string name, doc;
ColumnType type;
unsigned int firstIndex;
Column() {} // for ROOT
Column(const std::string &aname, const std::string &docString, ColumnType atype, unsigned int anIndex)
: name(aname), doc(docString), type(atype), firstIndex(anIndex) {}
};
private:
template <typename T>
auto beginData(unsigned int column) const {
return bigVector<T>().cbegin() + columns_[column].firstIndex;
}
template <typename T>
auto beginData(unsigned int column) {
return bigVector<T>().begin() + columns_[column].firstIndex;
}
template <typename T>
auto const &bigVector() const {
return bigVectorImpl<T>(*this);
}
template <typename T>
auto &bigVector() {
return bigVectorImpl<T>(*this);
}
template <typename T, class This>
static auto &bigVectorImpl(This &table) {
// helper function to avoid code duplication, for the two accessor functions that differ only in const-ness
using StorageT = ColumnStorageType<T>;
if constexpr (std::is_same<StorageT, uint8_t>())
return table.uint8s_;
else if constexpr (std::is_same<StorageT, int16_t>())
return table.int16s_;
else if constexpr (std::is_same<StorageT, uint16_t>())
return table.uint16s_;
else if constexpr (std::is_same<StorageT, int32_t>())
return table.int32s_;
else if constexpr (std::is_same<StorageT, uint32_t>())
return table.uint32s_;
else if constexpr (std::is_same<StorageT, int64_t>())
return table.int64s_;
else if constexpr (std::is_same<StorageT, uint64_t>())
return table.uint64s_;
else if constexpr (std::is_same<StorageT, float>())
return table.floats_;
else if constexpr (std::is_same<StorageT, double>())
return table.doubles_;
else
static_assert(dependent_false<T>::value, "unsupported type");
}
unsigned int size_;
std::string name_, doc_;
bool singleton_, extension_;
std::vector<Column> columns_;
std::vector<uint8_t> uint8s_;
std::vector<int16_t> int16s_;
std::vector<uint16_t> uint16s_;
std::vector<int32_t> int32s_;
std::vector<uint32_t> uint32s_;
std::vector<int64_t> int64s_;
std::vector<uint64_t> uint64s_;
std::vector<float> floats_;
std::vector<double> doubles_;
};
} // namespace nanoaod
#endif
|