1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
#include "DataFormats/ParticleFlowReco/interface/PFBlock.h"
#include "DataFormats/ParticleFlowReco/interface/PFCluster.h"
#include "DataFormats/ParticleFlowReco/interface/PFLayer.h"
#include <iomanip>
#include <sstream>
using namespace std;
using namespace reco;
void PFBlock::addElement(PFBlockElement* element) {
element->setIndex(elements_.size());
element->lock();
elements_.push_back(element->clone());
}
void PFBlock::bookLinkData() {}
void PFBlock::setLink(unsigned i1, unsigned i2, double Dist, LinkData& linkData, LinkTest test) const {
assert(test < LINKTEST_ALL);
unsigned index = 0;
bool ok = matrix2vector(i1, i2, index);
if (ok) {
//ignore the -1, -1 pair
if (Dist > -0.5) {
Link& l = linkData[index];
l.distance = Dist;
l.test |= (1 << test);
} else //delete if existing
{
LinkData::iterator it = linkData.find(index);
if (it != linkData.end())
linkData.erase(it);
}
} else {
assert(0);
}
}
// void PFBlock::lock(unsigned i, LinkData& linkData ) const {
// assert( linkData.size() == linkDataSize() );
// for(unsigned j=0; j<elements_.size(); j++) {
// if(i==j) continue;
// unsigned index = 0;
// bool ok = matrix2vector(i,j, index);
// if(ok)
// linkData[index] = -1;
// else
// assert(0);
// }
// }
void PFBlock::associatedElements(unsigned i,
const LinkData& linkData,
multimap<double, unsigned>& sortedAssociates,
PFBlockElement::Type type,
LinkTest test) const {
sortedAssociates.clear();
// i is too large
if (i > elements_.size())
return;
// assert(i>=0); i >= 0, since i is unsigned
for (unsigned ie = 0; ie < elements_.size(); ie++) {
// considered element itself
if (ie == i) {
continue;
}
// not the right type
if (type != PFBlockElement::NONE && elements_[ie].type() != type) {
continue;
}
// Order the elements by increasing distance !
unsigned index = 0;
if (!matrix2vector(i, ie, index))
continue;
double c2 = -1;
LinkData::const_iterator it = linkData.find(index);
if (it != linkData.end() && (((1 << test) & it->second.test) != 0 || (test == LINKTEST_ALL)))
c2 = it->second.distance;
// not associated
if (c2 < 0) {
continue;
}
sortedAssociates.insert(pair<double, unsigned>(c2, ie));
}
}
bool PFBlock::matrix2vector(unsigned iindex, unsigned jindex, unsigned& index) const {
unsigned size = elements_.size();
if (iindex == jindex || iindex >= size || jindex >= size) {
return false;
}
if (iindex > jindex)
std::swap(iindex, jindex);
index = jindex - iindex - 1;
if (iindex > 0) {
index += iindex * size;
unsigned missing = iindex * (iindex + 1) / 2;
index -= missing;
}
return true;
}
double PFBlock::dist(unsigned ie1, unsigned ie2, const LinkData& linkData) const {
double Dist = -1;
unsigned index = 0;
if (!matrix2vector(ie1, ie2, index))
return Dist;
LinkData::const_iterator it = linkData.find(index);
if (it != linkData.end())
Dist = it->second.distance;
return Dist;
}
ostream& reco::operator<<(ostream& out, const reco::PFBlock& block) {
if (!out)
return out;
const edm::OwnVector<reco::PFBlockElement>& elements = block.elements();
out << "\t--- PFBlock --- " << endl;
out << "\tnumber of elements: " << elements.size() << endl;
// Build element label (string) : elid from type, layer and occurence number
// use stringstream instead of sprintf to concatenate string and integer into string
vector<string> elid;
string s;
stringstream ss;
int iel = 0;
int iTK = 0;
int iGSF = 0;
int iBREM = 0;
int iPS1 = 0;
int iPS2 = 0;
int iEE = 0;
int iEB = 0;
int iHE = 0;
int iHB = 0;
int iHFEM = 0;
int iHFHAD = 0;
int iSC = 0;
int iHO = 0;
// for each element in turn
std::vector<bool> toPrint(elements.size(), static_cast<bool>(true));
for (unsigned ie = 0; ie < elements.size(); ie++) {
PFBlockElement::Type type = elements[ie].type();
std::multimap<double, unsigned> ecalElems;
switch (type) {
case PFBlockElement::TRACK:
iTK++;
ss << "TK" << iTK;
break;
case PFBlockElement::GSF:
iGSF++;
ss << "GSF" << iGSF;
break;
case PFBlockElement::BREM:
block.associatedElements(
ie, block.linkData(), ecalElems, reco::PFBlockElement::ECAL, reco::PFBlock::LINKTEST_ALL);
iBREM++;
if (!ecalElems.empty()) {
ss << "BR" << iBREM;
} else {
toPrint[ie] = false;
}
break;
case PFBlockElement::SC:
iSC++;
ss << "SC" << iSC;
break;
default: {
PFClusterRef clusterref = elements[ie].clusterRef();
int layer = clusterref->layer();
switch (layer) {
case PFLayer::PS1:
iPS1++;
ss << "PV" << iPS1;
break;
case PFLayer::PS2:
iPS2++;
ss << "PH" << iPS2;
break;
case PFLayer::ECAL_ENDCAP:
iEE++;
ss << "EE" << iEE;
break;
case PFLayer::ECAL_BARREL:
iEB++;
ss << "EB" << iEB;
break;
case PFLayer::HCAL_ENDCAP:
iHE++;
ss << "HE" << iHE;
break;
case PFLayer::HCAL_BARREL1:
iHB++;
ss << "HB" << iHB;
break;
case PFLayer::HCAL_BARREL2:
iHO++;
ss << "HO" << iHO;
break;
case PFLayer::HF_EM:
iHFEM++;
ss << "FE" << iHFEM;
break;
case PFLayer::HF_HAD:
iHFHAD++;
ss << "FH" << iHFHAD;
break;
default:
iel++;
ss << "??" << iel;
break;
}
break;
}
}
s = ss.str();
elid.push_back(s);
// clear stringstream
ss.str("");
if (toPrint[ie])
out << "\t" << s << " " << elements[ie] << endl;
}
out << endl;
int width = 6;
if (!block.linkData().empty()) {
out << endl << "\tlink data (distance x 1000): " << endl;
out << setiosflags(ios::right);
out << "\t" << setw(width) << " ";
for (unsigned ie = 0; ie < elid.size(); ie++)
if (toPrint[ie])
out << setw(width) << elid[ie];
out << endl;
out << setiosflags(ios::fixed);
out << setprecision(1);
for (unsigned i = 0; i < block.elements().size(); i++) {
if (!toPrint[i])
continue;
out << "\t";
out << setw(width) << elid[i];
for (unsigned j = 0; j < block.elements().size(); j++) {
if (!toPrint[j])
continue;
double Dist = block.dist(i, j, block.linkData()); //,PFBlock::LINKTEST_ALL);
// out<<setw(width)<< Dist*1000.;
if (Dist > -0.5)
out << setw(width) << Dist * 1000.;
else
out << setw(width) << " ";
}
out << endl;
}
out << endl << "\tlink data (distance x 1000) for tracking links : " << endl;
out << setiosflags(ios::right);
out << "\t" << setw(width) << " ";
for (unsigned ie = 0; ie < elid.size(); ie++)
if (toPrint[ie] &&
(block.elements()[ie].type() == PFBlockElement::TRACK || block.elements()[ie].type() == PFBlockElement::GSF))
out << setw(width) << elid[ie];
out << endl;
out << setiosflags(ios::fixed);
out << setprecision(1);
for (unsigned i = 0; i < block.elements().size(); i++) {
if (!toPrint[i] ||
(block.elements()[i].type() != PFBlockElement::TRACK && block.elements()[i].type() != PFBlockElement::GSF))
continue;
out << "\t";
out << setw(width) << elid[i];
for (unsigned j = 0; j < block.elements().size(); j++) {
if (!toPrint[j] ||
(block.elements()[j].type() != PFBlockElement::TRACK && block.elements()[j].type() != PFBlockElement::GSF))
continue;
double Dist = block.dist(i, j, block.linkData()); //,PFBlock::LINKTEST_ALL);
// out<<setw(width)<< Dist*1000.;
if (Dist > -0.5)
out << setw(width) << Dist * 1000.;
else
out << setw(width) << " ";
}
out << endl;
}
out << setprecision(3);
out << resetiosflags(ios::right | ios::fixed);
} else {
out << "\tno links." << endl;
}
return out;
}
unsigned PFBlock::linkDataSize() const {
unsigned n = elements_.size();
// number of possible undirected links between n elements.
// reflective links impossible.
return n * (n - 1) / 2;
}
|