1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
#include "DataFormats/ParticleFlowReco/interface/PFDisplacedVertex.h"
#include "TMath.h"
using namespace std;
using namespace reco;
PFDisplacedVertex::PFDisplacedVertex() : Vertex(), vertexType_(ANY), primaryDirection_(0, 0, 0) {}
PFDisplacedVertex::PFDisplacedVertex(Vertex& v) : Vertex(v), vertexType_(ANY), primaryDirection_(0, 0, 0) {}
void PFDisplacedVertex::addElement(const TrackBaseRef& r,
const Track& refTrack,
const PFTrackHitFullInfo& hitInfo,
VertexTrackType trackType,
float w) {
add(r, refTrack, w);
trackTypes_.push_back(trackType);
trackHitFullInfos_.push_back(hitInfo);
}
void PFDisplacedVertex::cleanTracks() {
removeTracks();
trackTypes_.clear();
trackHitFullInfos_.clear();
}
const bool PFDisplacedVertex::isThereKindTracks(VertexTrackType T) const {
vector<VertexTrackType>::const_iterator iter = find(trackTypes_.begin(), trackTypes_.end(), T);
return (iter != trackTypes_.end());
}
const int PFDisplacedVertex::nKindTracks(VertexTrackType T) const {
return count(trackTypes_.begin(), trackTypes_.end(), T);
}
const size_t PFDisplacedVertex::trackPosition(const reco::TrackBaseRef& originalTrack) const {
size_t pos = -1;
const Track refittedTrack = PFDisplacedVertex::refittedTrack(originalTrack);
std::vector<Track> refitTrks = refittedTracks();
for (size_t i = 0; i < refitTrks.size(); i++) {
if (fabs(refitTrks[i].pt() - refittedTrack.pt()) < 1.e-5) {
pos = i;
continue;
}
}
// cout << "pos = " << pos << endl;
return pos;
}
void PFDisplacedVertex::setPrimaryDirection(const math::XYZPoint& pvtx) {
primaryDirection_ = math::XYZVector(position().x(), position().y(), position().z());
math::XYZVector vtx(pvtx.x(), pvtx.y(), pvtx.z());
primaryDirection_ = primaryDirection_ - vtx;
primaryDirection_ /= (sqrt(primaryDirection_.Mag2()) + 1e-10);
}
std::string PFDisplacedVertex::nameVertexType() const {
switch (vertexType_) {
case ANY:
return "ANY";
case FAKE:
return "FAKE";
case LOOPER:
return "LOOPER";
case NUCL:
return "NUCL";
case NUCL_LOOSE:
return "NUCL_LOOSE";
case NUCL_KINK:
return "NUCL_KINK";
case CONVERSION:
return "CONVERSION";
case CONVERSION_LOOSE:
return "CONVERSION_LOOSE";
case CONVERTED_BREMM:
return "CONVERTED_BREMM";
case K0_DECAY:
return "K0_DECAY";
case LAMBDA_DECAY:
return "LAMBDA_DECAY";
case LAMBDABAR_DECAY:
return "LAMBDABAR_DECAY";
case KPLUS_DECAY:
return "KPLUS_DECAY";
case KMINUS_DECAY:
return "KMINUS_DECAY";
case KPLUS_DECAY_LOOSE:
return "KPLUS_DECAY_LOOSE";
case KMINUS_DECAY_LOOSE:
return "KMINUS_DECAY_LOOSE";
case BSM_VERTEX:
return "BSM_VERTEX";
default:
return "?";
}
return "?";
}
const math::XYZTLorentzVector PFDisplacedVertex::momentum(string massHypo,
VertexTrackType T,
bool useRefitted,
double mass) const {
M_Hypo mHypo = M_CUSTOM;
if (massHypo.find("PI") != string::npos)
mHypo = M_PION;
else if (massHypo.find("KAON") != string::npos)
mHypo = M_KAON;
else if (massHypo.find("LAMBDA") != string::npos)
mHypo = M_LAMBDA;
else if (massHypo.find("MASSLESS") != string::npos)
mHypo = M_MASSLESS;
else if (massHypo.find("CUSTOM") != string::npos)
mHypo = M_CUSTOM;
return momentum(mHypo, T, useRefitted, mass);
}
const math::XYZTLorentzVector PFDisplacedVertex::momentum(M_Hypo massHypo,
VertexTrackType T,
bool useRefitted,
double mass) const {
const double m2 = getMass2(massHypo, mass);
math::XYZTLorentzVector P;
for (size_t i = 0; i < tracksSize(); i++) {
bool bType = (trackTypes_[i] == T);
if (T == T_TO_VERTEX || T == T_MERGED)
bType = (trackTypes_[i] == T_TO_VERTEX || trackTypes_[i] == T_MERGED);
if (bType) {
if (!useRefitted) {
TrackBaseRef trackRef = originalTrack(refittedTracks()[i]);
double p2 = trackRef->momentum().Mag2();
P += math::XYZTLorentzVector(
trackRef->momentum().x(), trackRef->momentum().y(), trackRef->momentum().z(), sqrt(m2 + p2));
} else {
// cout << "m2 " << m2 << endl;
double p2 = refittedTracks()[i].momentum().Mag2();
P += math::XYZTLorentzVector(refittedTracks()[i].momentum().x(),
refittedTracks()[i].momentum().y(),
refittedTracks()[i].momentum().z(),
sqrt(m2 + p2));
}
}
}
return P;
}
const int PFDisplacedVertex::totalCharge() const {
int charge = 0;
for (size_t i = 0; i < tracksSize(); i++) {
if (trackTypes_[i] == T_TO_VERTEX)
charge += refittedTracks()[i].charge();
else if (trackTypes_[i] == T_FROM_VERTEX)
charge -= refittedTracks()[i].charge();
}
return charge;
}
const double PFDisplacedVertex::angle_io() const {
math::XYZTLorentzVector momentumSec = secondaryMomentum((string) "PI", true);
math::XYZVector p_out = momentumSec.Vect();
math::XYZVector p_in = primaryDirection();
if (p_in.Mag2() < 1e-10)
return -1;
return acos(p_in.Dot(p_out) / sqrt(p_in.Mag2() * p_out.Mag2())) / TMath::Pi() * 180.0;
}
const math::XYZVector PFDisplacedVertex::primaryDirection() const {
math::XYZTLorentzVector momentumPrim = primaryMomentum((string) "PI", true);
math::XYZTLorentzVector momentumSec = secondaryMomentum((string) "PI", true);
math::XYZVector p_in;
if ((isThereKindTracks(T_TO_VERTEX) || isThereKindTracks(T_MERGED)) && momentumPrim.E() > momentumSec.E()) {
p_in = momentumPrim.Vect() / sqrt(momentumPrim.Vect().Mag2() + 1e-10);
} else {
p_in = primaryDirection_;
}
return p_in;
}
const double PFDisplacedVertex::getMass2(M_Hypo massHypo, double mass) const {
// pion_mass = 0.1396 GeV
double pion_mass2 = 0.0194;
// k0_mass = 0.4976 GeV
double kaon_mass2 = 0.2476;
// lambda0_mass = 1.116 GeV
double lambda_mass2 = 1.267;
if (massHypo == M_PION)
return pion_mass2;
else if (massHypo == M_KAON)
return kaon_mass2;
else if (massHypo == M_LAMBDA)
return lambda_mass2;
else if (massHypo == M_MASSLESS)
return 0;
else if (massHypo == M_CUSTOM)
return mass * mass;
cout << "Warning: undefined mass hypothesis" << endl;
return 0;
}
void PFDisplacedVertex::Dump(ostream& out) const {
if (!out)
return;
out << "" << endl;
out << "==================== This is a Displaced Vertex type " << nameVertexType() << " ===============" << endl;
out << " Vertex chi2 = " << chi2() << " ndf = " << ndof() << " normalised chi2 = " << normalizedChi2() << endl;
out << " The vertex Fitted Position is: x = " << position().x() << " y = " << position().y()
<< " rho = " << position().rho() << " z = " << position().z() << endl;
out << "\t--- Structure --- " << endl;
out << "Number of tracks: " << nTracks() << " nPrimary " << nPrimaryTracks() << " nMerged " << nMergedTracks()
<< " nSecondary " << nSecondaryTracks() << endl;
vector<PFDisplacedVertex::PFTrackHitFullInfo> pattern = trackHitFullInfos();
vector<PFDisplacedVertex::VertexTrackType> trackType = trackTypes();
for (unsigned i = 0; i < pattern.size(); i++) {
out << "track " << i << " type = " << trackType[i] << " nHit BeforeVtx = " << pattern[i].first.first
<< " AfterVtx = " << pattern[i].second.first << " MissHit BeforeVtx = " << pattern[i].first.second
<< " AfterVtx = " << pattern[i].second.second << endl;
}
math::XYZTLorentzVector mom_prim = primaryMomentum((string) "PI", true);
math::XYZTLorentzVector mom_sec = secondaryMomentum((string) "PI", true);
// out << "Primary P:\t E " << setprecision(3) << setw(5) << mom_prim.E()
out << "Primary P:\t E " << mom_prim.E() << "\tPt = " << mom_prim.Pt() << "\tPz = " << mom_prim.Pz()
<< "\tM = " << mom_prim.M() << "\tEta = " << mom_prim.Eta() << "\tPhi = " << mom_prim.Phi() << endl;
out << "Secondary P:\t E " << mom_sec.E() << "\tPt = " << mom_sec.Pt() << "\tPz = " << mom_sec.Pz()
<< "\tM = " << mom_sec.M() << "\tEta = " << mom_sec.Eta() << "\tPhi = " << mom_sec.Phi() << endl;
out << " The vertex Direction is x = " << primaryDirection().x() << " y = " << primaryDirection().y()
<< " z = " << primaryDirection().z() << " eta = " << primaryDirection().eta()
<< " phi = " << primaryDirection().phi() << endl;
out << " Angle_io = " << angle_io() << " deg" << endl << endl;
}
|