1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
|
//
//
#ifndef DataFormats_PatCandidates_Jet_h
#define DataFormats_PatCandidates_Jet_h
/**
\class pat::Jet Jet.h "DataFormats/PatCandidates/interface/Jet.h"
\brief Analysis-level calorimeter jet class
Jet implements the analysis-level calorimeter jet class within the
'pat' namespace
\author Steven Lowette, Giovanni Petrucciani, Roger Wolf, Christian Autermann
*/
#include "DataFormats/JetReco/interface/CaloJet.h"
#include "DataFormats/JetReco/interface/BasicJet.h"
#include "DataFormats/JetReco/interface/JPTJet.h"
#include "DataFormats/JetReco/interface/PFJet.h"
#include "DataFormats/CaloTowers/interface/CaloTower.h"
#include "DataFormats/JetReco/interface/GenJet.h"
#include "DataFormats/Candidate/interface/Particle.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackFwd.h"
#include "DataFormats/BTauReco/interface/JetTag.h"
#include "DataFormats/PatCandidates/interface/PATObject.h"
#include "DataFormats/BTauReco/interface/CandIPTagInfo.h"
#include "DataFormats/BTauReco/interface/TrackIPTagInfo.h"
#include "DataFormats/BTauReco/interface/TrackProbabilityTagInfo.h"
#include "DataFormats/BTauReco/interface/TrackCountingTagInfo.h"
#include "DataFormats/BTauReco/interface/CandSoftLeptonTagInfo.h"
#include "DataFormats/BTauReco/interface/SoftLeptonTagInfo.h"
#include "DataFormats/JetMatching/interface/JetFlavourInfo.h"
#include "DataFormats/BTauReco/interface/PixelClusterTagInfo.h"
#include "DataFormats/BTauReco/interface/CandSecondaryVertexTagInfo.h"
#include "DataFormats/BTauReco/interface/SecondaryVertexTagInfo.h"
#include "DataFormats/BTauReco/interface/BoostedDoubleSVTagInfo.h"
#include "DataFormats/PatCandidates/interface/JetCorrFactors.h"
#include "DataFormats/JetReco/interface/JetID.h"
#include "DataFormats/ParticleFlowCandidate/interface/PFCandidateFwd.h"
#include "DataFormats/ParticleFlowCandidate/interface/PFCandidate.h"
#include "DataFormats/Common/interface/Ptr.h"
#include "DataFormats/Common/interface/OwnVector.h"
#include "DataFormats/Common/interface/AtomicPtrCache.h"
#include <numeric>
// Define typedefs for convenience
namespace pat {
class Jet;
typedef std::vector<Jet> JetCollection;
typedef edm::Ref<JetCollection> JetRef;
typedef edm::RefVector<JetCollection> JetRefVector;
} // namespace pat
namespace reco {
/// pipe operator (introduced to use pat::Jet with PFTopProjectors)
std::ostream& operator<<(std::ostream& out, const pat::Jet& obj);
} // namespace reco
// Class definition
namespace pat {
class PATJetSlimmer;
typedef reco::CaloJet::Specific CaloSpecific;
typedef reco::JPTJet::Specific JPTSpecific;
typedef reco::PFJet::Specific PFSpecific;
typedef std::vector<edm::FwdPtr<reco::BaseTagInfo> > TagInfoFwdPtrCollection;
typedef std::vector<edm::FwdPtr<reco::PFCandidate> > PFCandidateFwdPtrCollection;
typedef std::vector<edm::FwdPtr<CaloTower> > CaloTowerFwdPtrCollection;
typedef std::vector<edm::Ptr<pat::Jet> > JetPtrCollection;
class Jet : public PATObject<reco::Jet> {
/// make friends with PATJetProducer so that it can set the an initial
/// jet energy scale unequal to raw calling the private initializeJEC
/// function, which should be non accessible to any other user
friend class PATJetProducer;
friend class PATJetSlimmer;
friend class PATJetUpdater;
public:
/// default constructor
Jet();
/// constructor from a reco::Jet
Jet(const reco::Jet& aJet);
/// constructor from ref to reco::Jet
Jet(const edm::RefToBase<reco::Jet>& aJetRef);
/// constructor from ref to reco::Jet
Jet(const edm::Ptr<reco::Jet>& aJetRef);
/// constructure from ref to pat::Jet
Jet(const edm::RefToBase<pat::Jet>& aJetRef);
/// constructure from ref to pat::Jet
Jet(const edm::Ptr<pat::Jet>& aJetRef);
/// destructor
~Jet() override;
/// required reimplementation of the Candidate's clone method
Jet* clone() const override { return new Jet(*this); }
/// ---- methods for MC matching ----
/// return the matched generated parton
const reco::GenParticle* genParton() const { return genParticle(); }
/// return the matched generated jet
const reco::GenJet* genJet() const;
/// return the parton-based flavour of the jet
int partonFlavour() const;
/// return the hadron-based flavour of the jet
int hadronFlavour() const;
/// return the JetFlavourInfo of the jet
const reco::JetFlavourInfo& jetFlavourInfo() const;
public:
/// ---- methods for jet corrections ----
/// returns the labels of all available sets of jet energy corrections
const std::vector<std::string> availableJECSets() const;
// returns the available JEC Levels for a given jecSet
const std::vector<std::string> availableJECLevels(const int& set = 0) const;
// returns the available JEC Levels for a given jecSet
const std::vector<std::string> availableJECLevels(const std::string& set) const {
return availableJECLevels(jecSet(set));
};
/// returns true if the jet carries jet energy correction information
/// at all
bool jecSetsAvailable() const { return !jec_.empty(); }
/// returns true if the jet carries a set of jet energy correction
/// factors with the given label
bool jecSetAvailable(const std::string& set) const { return (jecSet(set) >= 0); };
/// returns true if the jet carries a set of jet energy correction
/// factors with the given label
bool jecSetAvailable(const unsigned int& set) const { return (set < jec_.size()); };
/// returns the label of the current set of jet energy corrections
std::string currentJECSet() const {
return currentJECSet_ < jec_.size() ? jec_.at(currentJECSet_).jecSet() : std::string("ERROR");
}
/// return the name of the current step of jet energy corrections
std::string currentJECLevel() const {
return currentJECSet_ < jec_.size() ? jec_.at(currentJECSet_).jecLevel(currentJECLevel_) : std::string("ERROR");
};
/// return flavour of the current step of jet energy corrections
JetCorrFactors::Flavor currentJECFlavor() const { return currentJECFlavor_; };
/// correction factor to the given level for a specific set
/// of correction factors, starting from the current level
float jecFactor(const std::string& level, const std::string& flavor = "none", const std::string& set = "") const;
/// correction factor to the given level for a specific set
/// of correction factors, starting from the current level
float jecFactor(const unsigned int& level,
const JetCorrFactors::Flavor& flavor = JetCorrFactors::NONE,
const unsigned int& set = 0) const;
/// copy of the jet corrected up to the given level for the set
/// of jet energy correction factors, which is currently in use
Jet correctedJet(const std::string& level, const std::string& flavor = "none", const std::string& set = "") const;
/// copy of the jet corrected up to the given level for the set
/// of jet energy correction factors, which is currently in use
Jet correctedJet(const unsigned int& level,
const JetCorrFactors::Flavor& flavor = JetCorrFactors::NONE,
const unsigned int& set = 0) const;
/// p4 of the jet corrected up to the given level for the set
/// of jet energy correction factors, which is currently in use
const LorentzVector correctedP4(const std::string& level,
const std::string& flavor = "none",
const std::string& set = "") const {
return correctedJet(level, flavor, set).p4();
};
/// p4 of the jet corrected up to the given level for the set
/// of jet energy correction factors, which is currently in use
const LorentzVector correctedP4(const unsigned int& level,
const JetCorrFactors::Flavor& flavor = JetCorrFactors::NONE,
const unsigned int& set = 0) const {
return correctedJet(level, flavor, set).p4();
};
/// Scale energy and correspondingly adjust raw jec factors
void scaleEnergy(double fScale) override { scaleEnergy(fScale, "Unscaled"); }
void scaleEnergy(double fScale, const std::string& level);
private:
/// index of the set of jec factors with given label; returns -1 if no set
/// of jec factors exists with the given label
int jecSet(const std::string& label) const;
/// update the current JEC set; used by correctedJet
void currentJECSet(const unsigned int& set) { currentJECSet_ = set; };
/// update the current JEC level; used by correctedJet
void currentJECLevel(const unsigned int& level) { currentJECLevel_ = level; };
/// update the current JEC flavor; used by correctedJet
void currentJECFlavor(const JetCorrFactors::Flavor& flavor) { currentJECFlavor_ = flavor; };
/// add more sets of energy correction factors
void addJECFactors(const JetCorrFactors& jec) { jec_.push_back(jec); };
/// initialize the jet to a given JEC level during creation starting from Uncorrected
void initializeJEC(unsigned int level,
const JetCorrFactors::Flavor& flavor = JetCorrFactors::NONE,
unsigned int set = 0);
public:
/// ---- methods for accessing b-tagging info ----
/// get b discriminant from label name
float bDiscriminator(const std::string& theLabel) const;
/// get vector of paire labelname-disciValue
const std::vector<std::pair<std::string, float> >& getPairDiscri() const;
/// get list of tag info labels
std::vector<std::string> const& tagInfoLabels() const { return tagInfoLabels_; }
/// check to see if the given tag info is nonzero
bool hasTagInfo(const std::string label) const { return tagInfo(label) != nullptr; }
/// get a tagInfo with the given name, or NULL if none is found.
/// You should omit the 'TagInfos' part from the label
const reco::BaseTagInfo* tagInfo(const std::string& label) const;
/// get a tagInfo with the given name and type or NULL if none is found.
/// If the label is empty or not specified, it returns the first tagInfo of that type (if any one exists)
/// you should omit the 'TagInfos' part from the label
const reco::CandIPTagInfo* tagInfoCandIP(const std::string& label = "") const;
const reco::TrackIPTagInfo* tagInfoTrackIP(const std::string& label = "") const;
/// get a tagInfo with the given name and type or NULL if none is found.
/// If the label is empty or not specified, it returns the first tagInfo of that type (if any one exists)
/// you should omit the 'TagInfos' part from the label
const reco::CandSoftLeptonTagInfo* tagInfoCandSoftLepton(const std::string& label = "") const;
const reco::SoftLeptonTagInfo* tagInfoSoftLepton(const std::string& label = "") const;
/// get a tagInfo with the given name and type or NULL if none is found.
/// If the label is empty or not specified, it returns the first tagInfo of that type (if any one exists)
/// you should omit the 'TagInfos' part from the label
const reco::CandSecondaryVertexTagInfo* tagInfoCandSecondaryVertex(const std::string& label = "") const;
const reco::SecondaryVertexTagInfo* tagInfoSecondaryVertex(const std::string& label = "") const;
const reco::BoostedDoubleSVTagInfo* tagInfoBoostedDoubleSV(const std::string& label = "") const;
/// get a tagInfo with the given name and type or NULL if none is found.
/// If the label is empty or not specified, it returns the first tagInfo of that type (if any one exists)
/// you should omit the 'TagInfos' part from the label
const reco::PixelClusterTagInfo* tagInfoPixelCluster(const std::string& label = "") const;
/// method to add a algolabel-discriminator pair
void addBDiscriminatorPair(const std::pair<std::string, float>& thePair);
/// sets a tagInfo with the given name from an edm::Ptr<T> to it.
/// If the label ends with 'TagInfos', the 'TagInfos' is stripped out.
void addTagInfo(const std::string& label, const TagInfoFwdPtrCollection::value_type& info);
// ---- track related methods ----
/// method to return the JetCharge computed when creating the Jet
float jetCharge() const;
/// method to return a vector of refs to the tracks associated to this jet
const reco::TrackRefVector& associatedTracks() const;
/// method to set the jet charge
void setJetCharge(float jetCharge);
/// method to set the vector of refs to the tracks associated to this jet
void setAssociatedTracks(const reco::TrackRefVector& tracks);
// ---- methods for content embedding ----
/// method to store the CaloJet constituents internally
void setCaloTowers(const CaloTowerFwdPtrCollection& caloTowers);
/// method to store the PFCandidate constituents internally
void setPFCandidates(const PFCandidateFwdPtrCollection& pfCandidates);
/// method to set the matched parton
void setGenParton(const reco::GenParticleRef& gp, bool embed = false) { setGenParticleRef(gp, embed); }
/// method to set the matched generated jet reference, embedding if requested
void setGenJetRef(const edm::FwdRef<reco::GenJetCollection>& gj);
/// method to set the parton-based flavour of the jet
void setPartonFlavour(int partonFl);
/// method to set the hadron-based flavour of the jet
void setHadronFlavour(int hadronFl);
/// method to set the JetFlavourInfo of the jet
void setJetFlavourInfo(const reco::JetFlavourInfo& jetFlavourInfo);
/// methods for jet ID
void setJetID(reco::JetID const& id) { jetID_ = id; }
// ---- jet specific methods ----
/// check to see if the jet is a reco::CaloJet
bool isCaloJet() const { return !specificCalo_.empty() && !isJPTJet(); }
/// check to see if the jet is a reco::JPTJet
bool isJPTJet() const { return !specificJPT_.empty(); }
/// check to see if the jet is a reco::PFJet
bool isPFJet() const { return !specificPF_.empty(); }
/// check to see if the jet is no more than a reco::BasicJet
bool isBasicJet() const { return !(isCaloJet() || isPFJet() || isJPTJet()); }
/// retrieve the calo specific part of the jet
const CaloSpecific& caloSpecific() const {
if (specificCalo_.empty())
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a CaloJet.\n";
return specificCalo_[0];
}
/// retrieve the jpt specific part of the jet
const JPTSpecific& jptSpecific() const {
if (specificJPT_.empty())
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet.\n";
return specificJPT_[0];
}
/// check to see if the PFSpecific object is stored
bool hasPFSpecific() const { return !specificPF_.empty(); }
/// retrieve the pf specific part of the jet
const PFSpecific& pfSpecific() const {
if (specificPF_.empty())
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a PFJet.\n";
return specificPF_[0];
}
/// set the calo specific part of the jet
void setCaloSpecific(const CaloSpecific& newCaloSpecific) {
if (specificCalo_.empty())
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a CaloJet.\n";
specificCalo_[0] = newCaloSpecific;
}
/// set the jpt specific part of the jet
void setJPTSpecific(const JPTSpecific& newJPTSpecific) {
if (specificJPT_.empty())
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet.\n";
specificJPT_[0] = newJPTSpecific;
}
/// set the pf specific part of the jet
void setPFSpecific(const PFSpecific& newPFSpecific) {
if (specificPF_.empty())
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a PFJet.\n";
specificPF_[0] = newPFSpecific;
}
// ---- Calo Jet specific information ----
/// returns the maximum energy deposited in ECAL towers
float maxEInEmTowers() const { return caloSpecific().mMaxEInEmTowers; }
/// returns the maximum energy deposited in HCAL towers
float maxEInHadTowers() const { return caloSpecific().mMaxEInHadTowers; }
/// returns the jet hadronic energy fraction
float energyFractionHadronic() const { return caloSpecific().mEnergyFractionHadronic; }
/// returns the jet electromagnetic energy fraction
float emEnergyFraction() const { return caloSpecific().mEnergyFractionEm; }
/// returns the jet hadronic energy in HB
float hadEnergyInHB() const { return caloSpecific().mHadEnergyInHB; }
/// returns the jet hadronic energy in HO
float hadEnergyInHO() const { return caloSpecific().mHadEnergyInHO; }
/// returns the jet hadronic energy in HE
float hadEnergyInHE() const { return caloSpecific().mHadEnergyInHE; }
/// returns the jet hadronic energy in HF
float hadEnergyInHF() const { return caloSpecific().mHadEnergyInHF; }
/// returns the jet electromagnetic energy in EB
float emEnergyInEB() const { return caloSpecific().mEmEnergyInEB; }
/// returns the jet electromagnetic energy in EE
float emEnergyInEE() const { return caloSpecific().mEmEnergyInEE; }
/// returns the jet electromagnetic energy extracted from HF
float emEnergyInHF() const { return caloSpecific().mEmEnergyInHF; }
/// returns area of contributing towers
float towersArea() const { return caloSpecific().mTowersArea; }
/// returns the number of constituents carrying a 90% of the total Jet energy*/
int n90() const { return nCarrying(0.9); }
/// returns the number of constituents carrying a 60% of the total Jet energy*/
int n60() const { return nCarrying(0.6); }
/// convert generic constituent to specific type
// static CaloTowerPtr caloTower (const reco::Candidate* fConstituent);
/// get specific constituent of the CaloJet.
/// if the caloTowers were embedded, this reference is transient only and must not be persisted
CaloTowerPtr getCaloConstituent(unsigned fIndex) const;
/// get the constituents of the CaloJet.
/// If the caloTowers were embedded, these reference are transient only and must not be persisted
std::vector<CaloTowerPtr> const& getCaloConstituents() const;
// ---- JPT Jet specific information ----
/// pions fully contained in cone
const reco::TrackRefVector& pionsInVertexInCalo() const { return jptSpecific().pionsInVertexInCalo; }
/// pions that curled out
const reco::TrackRefVector& pionsInVertexOutCalo() const { return jptSpecific().pionsInVertexOutCalo; }
/// pions that curled in
const reco::TrackRefVector& pionsOutVertexInCalo() const { return jptSpecific().pionsOutVertexInCalo; }
/// muons fully contained in cone
const reco::TrackRefVector& muonsInVertexInCalo() const { return jptSpecific().muonsInVertexInCalo; }
/// muons that curled out
const reco::TrackRefVector& muonsInVertexOutCalo() const { return jptSpecific().muonsInVertexOutCalo; }
/// muons that curled in
const reco::TrackRefVector& muonsOutVertexInCalo() const { return jptSpecific().muonsOutVertexInCalo; }
/// electrons fully contained in cone
const reco::TrackRefVector& elecsInVertexInCalo() const { return jptSpecific().elecsInVertexInCalo; }
/// electrons that curled out
const reco::TrackRefVector& elecsInVertexOutCalo() const { return jptSpecific().elecsInVertexOutCalo; }
/// electrons that curled in
const reco::TrackRefVector& elecsOutVertexInCalo() const { return jptSpecific().elecsOutVertexInCalo; }
/// chargedMultiplicity
float elecMultiplicity() const {
return jptSpecific().elecsInVertexInCalo.size() + jptSpecific().elecsInVertexOutCalo.size();
}
// ---- JPT or PF Jet specific information ----
/// muonMultiplicity
int muonMultiplicity() const;
/// chargedMultiplicity
int chargedMultiplicity() const;
/// chargedEmEnergy
float chargedEmEnergy() const;
/// neutralEmEnergy
float neutralEmEnergy() const;
/// chargedHadronEnergy
float chargedHadronEnergy() const;
/// neutralHadronEnergy
float neutralHadronEnergy() const;
/// chargedHadronEnergyFraction (relative to uncorrected jet energy)
float chargedHadronEnergyFraction() const {
return chargedHadronEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
/// neutralHadronEnergyFraction (relative to uncorrected jet energy)
float neutralHadronEnergyFraction() const {
return neutralHadronEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
/// chargedEmEnergyFraction (relative to uncorrected jet energy)
float chargedEmEnergyFraction() const {
return chargedEmEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
/// neutralEmEnergyFraction (relative to uncorrected jet energy)
float neutralEmEnergyFraction() const {
return neutralEmEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
// ---- PF Jet specific information ----
/// photonEnergy
float photonEnergy() const { return pfSpecific().mPhotonEnergy; }
/// photonEnergyFraction (relative to corrected jet energy)
float photonEnergyFraction() const {
return photonEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
/// electronEnergy
float electronEnergy() const { return pfSpecific().mElectronEnergy; }
/// electronEnergyFraction (relative to corrected jet energy)
float electronEnergyFraction() const {
return electronEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
/// muonEnergy
float muonEnergy() const { return pfSpecific().mMuonEnergy; }
/// muonEnergyFraction (relative to corrected jet energy)
float muonEnergyFraction() const { return muonEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy()); }
/// HFHadronEnergy
float HFHadronEnergy() const { return pfSpecific().mHFHadronEnergy; }
/// HFHadronEnergyFraction (relative to corrected jet energy)
float HFHadronEnergyFraction() const {
return HFHadronEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
/// HFEMEnergy
float HFEMEnergy() const { return pfSpecific().mHFEMEnergy; }
/// HFEMEnergyFraction (relative to corrected jet energy)
float HFEMEnergyFraction() const { return HFEMEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy()); }
/// chargedHadronMultiplicity
int chargedHadronMultiplicity() const { return pfSpecific().mChargedHadronMultiplicity; }
/// neutralHadronMultiplicity
int neutralHadronMultiplicity() const { return pfSpecific().mNeutralHadronMultiplicity; }
/// photonMultiplicity
int photonMultiplicity() const { return pfSpecific().mPhotonMultiplicity; }
/// electronMultiplicity
int electronMultiplicity() const { return pfSpecific().mElectronMultiplicity; }
/// HFHadronMultiplicity
int HFHadronMultiplicity() const { return pfSpecific().mHFHadronMultiplicity; }
/// HFEMMultiplicity
int HFEMMultiplicity() const { return pfSpecific().mHFEMMultiplicity; }
/// chargedMuEnergy
float chargedMuEnergy() const { return pfSpecific().mChargedMuEnergy; }
/// chargedMuEnergyFraction
float chargedMuEnergyFraction() const {
return chargedMuEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy());
}
/// neutralMultiplicity
int neutralMultiplicity() const { return pfSpecific().mNeutralMultiplicity; }
/// hoEnergy
float hoEnergy() const { return pfSpecific().mHOEnergy; }
/// hoEnergyFraction (relative to corrected jet energy)
float hoEnergyFraction() const { return hoEnergy() / ((jecSetsAvailable() ? jecFactor(0) : 1.) * energy()); }
/// convert generic constituent to specific type
// static CaloTowerPtr caloTower (const reco::Candidate* fConstituent);
/// get specific constituent of the CaloJet.
/// if the caloTowers were embedded, this reference is transient only and must not be persisted
reco::PFCandidatePtr getPFConstituent(unsigned fIndex) const;
/// get the constituents of the CaloJet.
/// If the caloTowers were embedded, these reference are transient only and must not be persisted
std::vector<reco::PFCandidatePtr> const& getPFConstituents() const;
/// get a pointer to a Candididate constituent of the jet
/// If using refactorized PAT, return that. (constituents size > 0)
/// Else check the old version of PAT (embedded constituents size > 0)
/// Else return the reco Jet number of constituents
const reco::Candidate* daughter(size_t i) const override;
reco::CandidatePtr daughterPtr(size_t i) const override;
const reco::CompositePtrCandidate::daughters& daughterPtrVector() const override;
using reco::LeafCandidate::daughter; // avoid hiding the base implementation
/// Return number of daughters:
/// If using refactorized PAT, return that. (constituents size > 0)
/// Else check the old version of PAT (embedded constituents size > 0)
/// Else return the reco Jet number of constituents
size_t numberOfDaughters() const override;
/// clear daughter references
void clearDaughters() override {
PATObject<reco::Jet>::clearDaughters();
daughtersTemp_.reset(); // need to reset daughtersTemp_ as well
}
/// accessing Jet ID information
reco::JetID const& jetID() const { return jetID_; }
/// Access to bare FwdPtr collections
CaloTowerFwdPtrVector const& caloTowersFwdPtr() const { return caloTowersFwdPtr_; }
reco::PFCandidateFwdPtrVector const& pfCandidatesFwdPtr() const { return pfCandidatesFwdPtr_; }
edm::FwdRef<reco::GenJetCollection> const& genJetFwdRef() const { return genJetFwdRef_; }
TagInfoFwdPtrCollection const& tagInfosFwdPtr() const { return tagInfosFwdPtr_; }
/// Update bare FwdPtr and FwdRef "forward" pointers while keeping the
/// "back" pointers the same (i.e. the ref "forwarding")
void updateFwdCaloTowerFwdPtr(unsigned int index, const edm::Ptr<CaloTower>& updateFwd) {
if (index < caloTowersFwdPtr_.size()) {
caloTowersFwdPtr_[index] = CaloTowerFwdPtrVector::value_type(updateFwd, caloTowersFwdPtr_[index].backPtr());
} else {
throw cms::Exception("OutOfRange") << "Index " << index << " is out of range" << std::endl;
}
}
void updateFwdPFCandidateFwdPtr(unsigned int index, const edm::Ptr<reco::PFCandidate>& updateFwd) {
if (index < pfCandidatesFwdPtr_.size()) {
pfCandidatesFwdPtr_[index] =
reco::PFCandidateFwdPtrVector::value_type(updateFwd, pfCandidatesFwdPtr_[index].backPtr());
} else {
throw cms::Exception("OutOfRange") << "Index " << index << " is out of range" << std::endl;
}
}
void updateFwdTagInfoFwdPtr(unsigned int index, const edm::Ptr<reco::BaseTagInfo>& updateFwd) {
if (index < tagInfosFwdPtr_.size()) {
tagInfosFwdPtr_[index] = TagInfoFwdPtrCollection::value_type(updateFwd, tagInfosFwdPtr_[index].backPtr());
} else {
throw cms::Exception("OutOfRange") << "Index " << index << " is out of range" << std::endl;
}
}
void updateFwdGenJetFwdRef(edm::Ref<reco::GenJetCollection> updateRef) {
genJetFwdRef_ = edm::FwdRef<reco::GenJetCollection>(updateRef, genJetFwdRef_.backRef());
}
/// pipe operator (introduced to use pat::Jet with PFTopProjectors)
friend std::ostream& reco::operator<<(std::ostream& out, const pat::Jet& obj);
/// Access to subjet list
pat::JetPtrCollection const& subjets(unsigned int index = 0) const;
/// String access to subjet list
pat::JetPtrCollection const& subjets(std::string const& label) const;
/// Add new set of subjets
void addSubjets(pat::JetPtrCollection const& pieces, std::string const& label = "");
/// Check to see if the subjet collection exists
bool hasSubjets(std::string const& label) const {
return find(subjetLabels_.begin(), subjetLabels_.end(), label) != subjetLabels_.end();
}
/// Number of subjet collections
unsigned int nSubjetCollections() const { return subjetCollections_.size(); }
/// Subjet collection names
std::vector<std::string> const& subjetCollectionNames() const { return subjetLabels_; }
/// Access to mass of subjets
double groomedMass(unsigned int index = 0) const {
auto const& sub = subjets(index);
return nSubjetCollections() > index && !sub.empty()
? std::accumulate(
sub.begin(),
sub.end(),
reco::Candidate::LorentzVector(),
[](reco::Candidate::LorentzVector const& a, reco::CandidatePtr const& b) { return a + b->p4(); })
.mass()
: -1.0;
}
double groomedMass(std::string const& label) const {
auto const& sub = subjets(label);
return hasSubjets(label) && !sub.empty()
? std::accumulate(
sub.begin(),
sub.end(),
reco::Candidate::LorentzVector(),
[](reco::Candidate::LorentzVector const& a, reco::CandidatePtr const& b) { return a + b->p4(); })
.mass()
: -1.0;
}
protected:
// ---- for content embedding ----
bool embeddedCaloTowers_;
edm::AtomicPtrCache<std::vector<CaloTowerPtr> > caloTowersTemp_; // to simplify user interface
CaloTowerCollection caloTowers_; // Compatibility embedding
CaloTowerFwdPtrVector caloTowersFwdPtr_; // Refactorized content embedding
bool embeddedPFCandidates_;
edm::AtomicPtrCache<std::vector<reco::PFCandidatePtr> > pfCandidatesTemp_; // to simplify user interface
reco::PFCandidateCollection pfCandidates_; // Compatibility embedding
reco::PFCandidateFwdPtrVector pfCandidatesFwdPtr_; // Refactorized content embedding
// ---- Jet Substructure ----
std::vector<pat::JetPtrCollection> subjetCollections_;
std::vector<std::string> subjetLabels_;
edm::AtomicPtrCache<std::vector<reco::CandidatePtr> > daughtersTemp_;
// ---- MC info ----
std::vector<reco::GenJet> genJet_;
reco::GenJetRefVector genJetRef_;
edm::FwdRef<reco::GenJetCollection> genJetFwdRef_;
reco::JetFlavourInfo jetFlavourInfo_;
// ---- energy scale correction factors ----
// energy scale correction factors; the string carries a potential label if
// more then one set of correction factors is embedded. The label corresponds
// to the label of the jetCorrFactors module that has been embedded.
std::vector<pat::JetCorrFactors> jec_;
// currently applied set of jet energy correction factors (i.e. the index in
// jetEnergyCorrections_)
unsigned int currentJECSet_;
// currently applied jet energy correction level
unsigned int currentJECLevel_;
// currently applied jet energy correction flavor (can be NONE, GLUON, UDS,
// CHARM or BOTTOM)
JetCorrFactors::Flavor currentJECFlavor_;
// ---- b-tag related members ----
std::vector<std::pair<std::string, float> > pairDiscriVector_;
std::vector<std::string> tagInfoLabels_;
edm::OwnVector<reco::BaseTagInfo> tagInfos_; // Compatibility embedding
TagInfoFwdPtrCollection tagInfosFwdPtr_; // Refactorized embedding
// ---- track related members ----
float jetCharge_;
reco::TrackRefVector associatedTracks_;
// ---- specific members ----
std::vector<CaloSpecific> specificCalo_;
std::vector<JPTSpecific> specificJPT_;
std::vector<PFSpecific> specificPF_;
// ---- id functions ----
reco::JetID jetID_;
private:
// ---- helper functions ----
void tryImportSpecific(const reco::Jet& source);
template <typename T>
const T* tagInfoByType() const {
// First check the factorized PAT version
for (size_t i = 0, n = tagInfosFwdPtr_.size(); i < n; ++i) {
TagInfoFwdPtrCollection::value_type const& val = tagInfosFwdPtr_[i];
reco::BaseTagInfo const* baseTagInfo = val.get();
if (typeid(*baseTagInfo) == typeid(T)) {
return static_cast<const T*>(baseTagInfo);
}
}
// Then check compatibility version
for (size_t i = 0, n = tagInfos_.size(); i < n; ++i) {
edm::OwnVector<reco::BaseTagInfo>::value_type const& val = tagInfos_[i];
reco::BaseTagInfo const* baseTagInfo = &val;
if (typeid(*baseTagInfo) == typeid(T)) {
return static_cast<const T*>(baseTagInfo);
}
}
return nullptr;
}
template <typename T>
const T* tagInfoByTypeOrLabel(const std::string& label = "") const {
return (label.empty() ? tagInfoByType<T>() : dynamic_cast<const T*>(tagInfo(label)));
}
/// return the jet correction factors of a different set, for systematic studies
const JetCorrFactors* corrFactors_(const std::string& set) const;
/// return the correction factor for this jet. Throws if they're not available.
const JetCorrFactors* corrFactors_() const;
/// cache calo towers
void cacheCaloTowers() const;
void cachePFCandidates() const;
void cacheDaughters() const;
};
} // namespace pat
inline float pat::Jet::chargedHadronEnergy() const {
if (isPFJet()) {
return pfSpecific().mChargedHadronEnergy;
} else if (isJPTJet()) {
return jptSpecific().mChargedHadronEnergy;
} else {
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet nor from PFJet.\n";
}
}
inline float pat::Jet::neutralHadronEnergy() const {
if (isPFJet()) {
return pfSpecific().mNeutralHadronEnergy;
} else {
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet nor from PFJet.\n";
}
}
inline float pat::Jet::chargedEmEnergy() const {
if (isPFJet()) {
return pfSpecific().mChargedEmEnergy;
} else if (isJPTJet()) {
return jptSpecific().mChargedEmEnergy;
} else {
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet nor from PFJet.\n";
}
}
inline float pat::Jet::neutralEmEnergy() const {
if (isPFJet()) {
return pfSpecific().mNeutralEmEnergy;
} else {
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet nor from PFJet.\n";
}
}
inline int pat::Jet::muonMultiplicity() const {
if (isPFJet()) {
return pfSpecific().mMuonMultiplicity;
} else if (isJPTJet()) {
return jptSpecific().muonsInVertexInCalo.size() + jptSpecific().muonsInVertexOutCalo.size();
} else {
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet nor from PFJet.\n";
}
}
inline int pat::Jet::chargedMultiplicity() const {
if (isPFJet()) {
return pfSpecific().mChargedMultiplicity;
} else if (isJPTJet()) {
return jptSpecific().muonsInVertexInCalo.size() + jptSpecific().muonsInVertexOutCalo.size() +
jptSpecific().pionsInVertexInCalo.size() + jptSpecific().pionsInVertexOutCalo.size() +
jptSpecific().elecsInVertexInCalo.size() + jptSpecific().elecsInVertexOutCalo.size();
} else {
throw cms::Exception("Type Mismatch") << "This PAT jet was not made from a JPTJet nor from PFJet.\n";
}
}
#endif
|