1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
//
//
#include "DataFormats/PatCandidates/interface/Electron.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "DataFormats/Common/interface/RefToPtr.h"
#include <limits>
using namespace pat;
/// default constructor
Electron::Electron()
: Lepton<reco::GsfElectron>(),
embeddedGsfElectronCore_(false),
embeddedGsfTrack_(false),
embeddedSuperCluster_(false),
embeddedPflowSuperCluster_(false),
embeddedTrack_(false),
embeddedSeedCluster_(false),
embeddedRecHits_(false),
embeddedPFCandidate_(false),
ecalDrivenMomentum_(Candidate::LorentzVector(0., 0., 0., 0.)),
ecalRegressionEnergy_(0.0),
ecalTrackRegressionEnergy_(0.0),
ecalRegressionError_(0.0),
ecalTrackRegressionError_(0.0),
ecalScale_(-99999.),
ecalSmear_(-99999.),
ecalRegressionScale_(-99999.),
ecalRegressionSmear_(-99999.),
ecalTrackRegressionScale_(-99999.),
ecalTrackRegressionSmear_(-99999.),
packedPFCandidates_(),
associatedPackedFCandidateIndices_() {
initImpactParameters();
}
/// constructor from reco::GsfElectron
Electron::Electron(const reco::GsfElectron& anElectron)
: Lepton<reco::GsfElectron>(anElectron),
embeddedGsfElectronCore_(false),
embeddedGsfTrack_(false),
embeddedSuperCluster_(false),
embeddedPflowSuperCluster_(false),
embeddedTrack_(false),
embeddedSeedCluster_(false),
embeddedRecHits_(false),
embeddedPFCandidate_(false),
ecalDrivenMomentum_(anElectron.p4()) {
initImpactParameters();
}
/// constructor from a RefToBase to a reco::GsfElectron (to be superseded by Ptr counterpart)
Electron::Electron(const edm::RefToBase<reco::GsfElectron>& anElectronRef)
: Lepton<reco::GsfElectron>(anElectronRef),
embeddedGsfElectronCore_(false),
embeddedGsfTrack_(false),
embeddedSuperCluster_(false),
embeddedPflowSuperCluster_(false),
embeddedTrack_(false),
embeddedSeedCluster_(false),
embeddedRecHits_(false),
embeddedPFCandidate_(false),
ecalDrivenMomentum_(anElectronRef->p4()) {
initImpactParameters();
}
/// constructor from a Ptr to a reco::GsfElectron
Electron::Electron(const edm::Ptr<reco::GsfElectron>& anElectronRef)
: Lepton<reco::GsfElectron>(anElectronRef),
embeddedGsfElectronCore_(false),
embeddedGsfTrack_(false),
embeddedSuperCluster_(false),
embeddedPflowSuperCluster_(false),
embeddedTrack_(false),
embeddedSeedCluster_(false),
embeddedRecHits_(false),
embeddedPFCandidate_(false),
ecalDrivenMomentum_(anElectronRef->p4()) {
initImpactParameters();
}
/// destructor
Electron::~Electron() {}
/// pipe operator (introduced to use pat::Electron with PFTopProjectors)
std::ostream& reco::operator<<(std::ostream& out, const pat::Electron& obj) {
if (!out)
return out;
out << "\tpat::Electron: ";
out << std::setiosflags(std::ios::right);
out << std::setiosflags(std::ios::fixed);
out << std::setprecision(3);
out << " E/pT/eta/phi " << obj.energy() << "/" << obj.pt() << "/" << obj.eta() << "/" << obj.phi();
return out;
}
/// initializes the impact parameter container vars
void Electron::initImpactParameters() {
std::fill(ip_, ip_ + IpTypeSize, 0.0f);
std::fill(eip_, eip_ + IpTypeSize, 0.0f);
cachedIP_ = 0;
}
/// override the reco::GsfElectron::gsfTrack method, to access the internal storage of the supercluster
reco::GsfTrackRef Electron::gsfTrack() const {
if (embeddedGsfTrack_) {
return reco::GsfTrackRef(&gsfTrack_, 0);
} else {
return reco::GsfElectron::gsfTrack();
}
}
/// override the virtual reco::GsfElectron::core method, so that the embedded core can be used by GsfElectron client methods
reco::GsfElectronCoreRef Electron::core() const {
if (embeddedGsfElectronCore_) {
return reco::GsfElectronCoreRef(&gsfElectronCore_, 0);
} else {
return reco::GsfElectron::core();
}
}
/// override the reco::GsfElectron::superCluster method, to access the internal storage of the supercluster
reco::SuperClusterRef Electron::superCluster() const {
if (embeddedSuperCluster_) {
if (embeddedSeedCluster_ || !basicClusters_.empty() || !preshowerClusters_.empty()) {
if (!superClusterRelinked_.isSet()) {
std::unique_ptr<std::vector<reco::SuperCluster> > sc(new std::vector<reco::SuperCluster>(superCluster_));
if (embeddedSeedCluster_ && !(*sc)[0].seed().isAvailable()) {
(*sc)[0].setSeed(seed());
}
if (!basicClusters_.empty() && !(*sc)[0].clusters().isAvailable()) {
reco::CaloClusterPtrVector clusters;
for (unsigned int iclus = 0; iclus < basicClusters_.size(); ++iclus) {
clusters.push_back(reco::CaloClusterPtr(&basicClusters_, iclus));
}
(*sc)[0].setClusters(clusters);
}
if (!preshowerClusters_.empty() && !(*sc)[0].preshowerClusters().isAvailable()) {
reco::CaloClusterPtrVector clusters;
for (unsigned int iclus = 0; iclus < preshowerClusters_.size(); ++iclus) {
clusters.push_back(reco::CaloClusterPtr(&preshowerClusters_, iclus));
}
(*sc)[0].setPreshowerClusters(clusters);
}
superClusterRelinked_.set(std::move(sc));
}
return reco::SuperClusterRef(&*superClusterRelinked_, 0);
} else {
return reco::SuperClusterRef(&superCluster_, 0);
}
//relink caloclusters if needed
return reco::SuperClusterRef(&superCluster_, 0);
} else {
return reco::GsfElectron::superCluster();
}
}
/// override the reco::GsfElectron::pflowSuperCluster method, to access the internal storage of the supercluster
reco::SuperClusterRef Electron::parentSuperCluster() const {
if (embeddedPflowSuperCluster_) {
return reco::SuperClusterRef(&pflowSuperCluster_, 0);
} else {
return reco::GsfElectron::parentSuperCluster();
}
}
/// direct access to the seed cluster
reco::CaloClusterPtr Electron::seed() const {
if (embeddedSeedCluster_) {
return reco::CaloClusterPtr(&seedCluster_, 0);
} else {
return reco::GsfElectron::superCluster()->seed();
}
}
/// override the reco::GsfElectron::closestCtfTrack method, to access the internal storage of the track
reco::TrackRef Electron::closestCtfTrackRef() const {
if (embeddedTrack_) {
return reco::TrackRef(&track_, 0);
} else {
return reco::GsfElectron::closestCtfTrackRef();
}
}
// the name of the method is misleading, users should use gsfTrack of closestCtfTrack
reco::TrackRef Electron::track() const { return reco::TrackRef(); }
/// Stores the electron's core (reco::GsfElectronCoreRef) internally
void Electron::embedGsfElectronCore() {
gsfElectronCore_.clear();
if (reco::GsfElectron::core().isNonnull()) {
gsfElectronCore_.push_back(*reco::GsfElectron::core());
embeddedGsfElectronCore_ = true;
}
}
/// Stores the electron's gsfTrack (reco::GsfTrackRef) internally
void Electron::embedGsfTrack() {
gsfTrack_.clear();
if (reco::GsfElectron::gsfTrack().isNonnull()) {
gsfTrack_.push_back(*reco::GsfElectron::gsfTrack());
embeddedGsfTrack_ = true;
}
}
/// Stores the electron's SuperCluster (reco::SuperClusterRef) internally
void Electron::embedSuperCluster() {
superCluster_.clear();
if (reco::GsfElectron::superCluster().isNonnull()) {
superCluster_.push_back(*reco::GsfElectron::superCluster());
embeddedSuperCluster_ = true;
}
}
/// Stores the electron's SuperCluster (reco::SuperClusterRef) internally
void Electron::embedPflowSuperCluster() {
pflowSuperCluster_.clear();
if (reco::GsfElectron::parentSuperCluster().isNonnull()) {
pflowSuperCluster_.push_back(*reco::GsfElectron::parentSuperCluster());
embeddedPflowSuperCluster_ = true;
}
}
/// Stores the electron's SeedCluster (reco::BasicClusterPtr) internally
void Electron::embedSeedCluster() {
seedCluster_.clear();
if (reco::GsfElectron::superCluster().isNonnull() && reco::GsfElectron::superCluster()->seed().isNonnull()) {
seedCluster_.push_back(*reco::GsfElectron::superCluster()->seed());
embeddedSeedCluster_ = true;
}
}
/// Stores the electron's BasicCluster (reco::CaloCluster) internally
void Electron::embedBasicClusters() {
basicClusters_.clear();
if (reco::GsfElectron::superCluster().isNonnull()) {
reco::CaloCluster_iterator itscl = reco::GsfElectron::superCluster()->clustersBegin();
reco::CaloCluster_iterator itsclE = reco::GsfElectron::superCluster()->clustersEnd();
for (; itscl != itsclE; ++itscl) {
basicClusters_.push_back(**itscl);
}
}
}
/// Stores the electron's PreshowerCluster (reco::CaloCluster) internally
void Electron::embedPreshowerClusters() {
preshowerClusters_.clear();
if (reco::GsfElectron::superCluster().isNonnull()) {
reco::CaloCluster_iterator itscl = reco::GsfElectron::superCluster()->preshowerClustersBegin();
reco::CaloCluster_iterator itsclE = reco::GsfElectron::superCluster()->preshowerClustersEnd();
for (; itscl != itsclE; ++itscl) {
preshowerClusters_.push_back(**itscl);
}
}
}
/// Stores the electron's PflowBasicCluster (reco::CaloCluster) internally
void Electron::embedPflowBasicClusters() {
pflowBasicClusters_.clear();
if (reco::GsfElectron::parentSuperCluster().isNonnull()) {
reco::CaloCluster_iterator itscl = reco::GsfElectron::parentSuperCluster()->clustersBegin();
reco::CaloCluster_iterator itsclE = reco::GsfElectron::parentSuperCluster()->clustersEnd();
for (; itscl != itsclE; ++itscl) {
pflowBasicClusters_.push_back(**itscl);
}
}
}
/// Stores the electron's PflowPreshowerCluster (reco::CaloCluster) internally
void Electron::embedPflowPreshowerClusters() {
pflowPreshowerClusters_.clear();
if (reco::GsfElectron::parentSuperCluster().isNonnull()) {
reco::CaloCluster_iterator itscl = reco::GsfElectron::parentSuperCluster()->preshowerClustersBegin();
reco::CaloCluster_iterator itsclE = reco::GsfElectron::parentSuperCluster()->preshowerClustersEnd();
for (; itscl != itsclE; ++itscl) {
pflowPreshowerClusters_.push_back(**itscl);
}
}
}
/// method to store the electron's track internally
void Electron::embedTrack() {
track_.clear();
if (reco::GsfElectron::closestCtfTrackRef().isNonnull()) {
track_.push_back(*reco::GsfElectron::closestCtfTrackRef());
embeddedTrack_ = true;
}
}
// method to store the RecHits internally
void Electron::embedRecHits(const EcalRecHitCollection* rechits) {
if (rechits != nullptr) {
recHits_ = *rechits;
embeddedRecHits_ = true;
}
}
/// Returns a specific electron ID associated to the pat::Electron given its name
/// For cut-based IDs, the value map has the following meaning:
/// 0: fails,
/// 1: passes electron ID only,
/// 2: passes electron Isolation only,
/// 3: passes electron ID and Isolation only,
/// 4: passes conversion rejection,
/// 5: passes conversion rejection and ID,
/// 6: passes conversion rejection and Isolation,
/// 7: passes the whole selection.
/// For more details have a look at:
/// https://twiki.cern.ch/twiki/bin/view/CMS/SimpleCutBasedEleID
/// https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideCategoryBasedElectronID
/// Note: an exception is thrown if the specified ID is not available
float Electron::electronID(const std::string& name) const {
for (std::vector<IdPair>::const_iterator it = electronIDs_.begin(), ed = electronIDs_.end(); it != ed; ++it) {
if (it->first == name)
return it->second;
}
cms::Exception ex("Key not found");
ex << "pat::Electron: the ID " << name << " can't be found in this pat::Electron.\n";
ex << "The available IDs are: ";
for (std::vector<IdPair>::const_iterator it = electronIDs_.begin(), ed = electronIDs_.end(); it != ed; ++it) {
ex << "'" << it->first << "' ";
}
ex << ".\n";
throw ex;
}
/// Checks if a specific electron ID is associated to the pat::Electron.
bool Electron::isElectronIDAvailable(const std::string& name) const {
for (std::vector<IdPair>::const_iterator it = electronIDs_.begin(), ed = electronIDs_.end(); it != ed; ++it) {
if (it->first == name)
return true;
}
return false;
}
/// reference to the source PFCandidates
reco::PFCandidateRef Electron::pfCandidateRef() const {
if (embeddedPFCandidate_) {
return reco::PFCandidateRef(&pfCandidate_, 0);
} else {
return pfCandidateRef_;
}
}
/// Stores the PFCandidate pointed to by pfCandidateRef_ internally
void Electron::embedPFCandidate() {
pfCandidate_.clear();
if (pfCandidateRef_.isAvailable() && pfCandidateRef_.isNonnull()) {
pfCandidate_.push_back(*pfCandidateRef_);
embeddedPFCandidate_ = true;
}
}
/// Returns the reference to the parent PF candidate with index i.
/// For use in TopProjector.
reco::CandidatePtr Electron::sourceCandidatePtr(size_type i) const {
if (pfCandidateRef_.isNonnull()) {
if (i == 0) {
return reco::CandidatePtr(edm::refToPtr(pfCandidateRef_));
} else {
i--;
}
}
if (i >= associatedPackedFCandidateIndices_.size()) {
return reco::CandidatePtr();
} else {
return reco::CandidatePtr(edm::refToPtr(
edm::Ref<pat::PackedCandidateCollection>(packedPFCandidates_, associatedPackedFCandidateIndices_[i])));
}
}
/// dB gives the impact parameter wrt the beamline.
/// If this is not cached it is not meaningful, since
/// it relies on the distance to the beamline.
///
/// IpType defines the type of the impact parameter
/// None is default and reverts to the old functionality.
///
/// Example: electron->dB(pat::Electron::PV2D)
/// will return the electron transverse impact parameter
/// relative to the primary vertex.
double Electron::dB(IpType type_) const {
// more IP types (new)
if (cachedIP_ & (1 << int(type_))) {
return ip_[type_];
} else {
return std::numeric_limits<double>::max();
}
}
/// edB gives the uncertainty on the impact parameter wrt the beamline.
/// If this is not cached it is not meaningful, since
/// it relies on the distance to the beamline.
///
/// IpType defines the type of the impact parameter
/// None is default and reverts to the old functionality.
///
/// Example: electron->edB(pat::Electron::PV2D)
/// will return the electron transverse impact parameter uncertainty
/// relative to the primary vertex.
double Electron::edB(IpType type_) const {
// more IP types (new)
if (cachedIP_ & (1 << int(type_))) {
return eip_[type_];
} else {
return std::numeric_limits<double>::max();
}
}
/// Sets the impact parameter and its error wrt the beamline and caches it.
void Electron::setDB(double dB, double edB, IpType type) {
ip_[type] = dB;
eip_[type] = edB;
cachedIP_ |= (1 << int(type));
}
/// Set additional missing mva input variables for new mva ID (71X update)
void Electron::setMvaVariables(double sigmaIetaIphi, double ip3d) {
sigmaIetaIphi_ = sigmaIetaIphi;
ip3d_ = ip3d;
}
edm::RefVector<pat::PackedCandidateCollection> Electron::associatedPackedPFCandidates() const {
edm::RefVector<pat::PackedCandidateCollection> ret(packedPFCandidates_.id());
for (uint16_t idx : associatedPackedFCandidateIndices_) {
ret.push_back(edm::Ref<pat::PackedCandidateCollection>(packedPFCandidates_, idx));
}
return ret;
}
|