1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
//
//
#include "DataFormats/PatCandidates/interface/MET.h"
using namespace pat;
/// default constructor
MET::MET() { initCorMap(); }
/// constructor from reco::MET
MET::MET(const reco::MET &aMET) : PATObject<reco::MET>(aMET) {
const reco::CaloMET *calo = dynamic_cast<const reco::CaloMET *>(&aMET);
if (calo != nullptr)
caloMET_.push_back(calo->getSpecific());
const reco::PFMET *pf = dynamic_cast<const reco::PFMET *>(&aMET);
if (pf != nullptr)
pfMET_.push_back(pf->getSpecific());
const pat::MET *pm = dynamic_cast<const pat::MET *>(&aMET);
if (pm != nullptr)
this->operator=(*pm);
metSig_ = 0.;
sumPtUnclustered_ = 0.;
initCorMap();
}
/// constructor from ref to reco::MET
MET::MET(const edm::RefToBase<reco::MET> &aMETRef) : PATObject<reco::MET>(aMETRef) {
const reco::CaloMET *calo = dynamic_cast<const reco::CaloMET *>(aMETRef.get());
if (calo != nullptr)
caloMET_.push_back(calo->getSpecific());
const reco::PFMET *pf = dynamic_cast<const reco::PFMET *>(aMETRef.get());
if (pf != nullptr)
pfMET_.push_back(pf->getSpecific());
const pat::MET *pm = dynamic_cast<const pat::MET *>(aMETRef.get());
if (pm != nullptr)
this->operator=(*pm);
metSig_ = 0.;
sumPtUnclustered_ = 0.;
initCorMap();
}
/// constructor from ref to reco::MET
MET::MET(const edm::Ptr<reco::MET> &aMETRef) : PATObject<reco::MET>(aMETRef) {
const reco::CaloMET *calo = dynamic_cast<const reco::CaloMET *>(aMETRef.get());
if (calo != nullptr)
caloMET_.push_back(calo->getSpecific());
const reco::PFMET *pf = dynamic_cast<const reco::PFMET *>(aMETRef.get());
if (pf != nullptr)
pfMET_.push_back(pf->getSpecific());
const pat::MET *pm = dynamic_cast<const pat::MET *>(aMETRef.get());
if (pm != nullptr)
this->operator=(*pm);
metSig_ = 0.;
sumPtUnclustered_ = 0.;
initCorMap();
}
/// copy constructor
MET::MET(MET const &iOther)
: PATObject<reco::MET>(iOther),
genMET_(iOther.genMET_),
caloMET_(iOther.caloMET_),
pfMET_(iOther.pfMET_),
metSig_(iOther.metSig_),
sumPtUnclustered_(iOther.sumPtUnclustered_),
uncertaintiesRaw_(iOther.uncertaintiesRaw_), //74X reading compatibility
uncertaintiesType1_(iOther.uncertaintiesType1_), //74X compatibility
uncertaintiesType1p2_(iOther.uncertaintiesType1p2_), //74X compatibility
uncertainties_(iOther.uncertainties_),
corrections_(iOther.corrections_),
caloPackedMet_(iOther.caloPackedMet_) {
initCorMap();
}
/// constructor for corrected mets, keeping track of srcMET informations,
// old uncertainties discarded on purpose to avoid confusion
MET::MET(const reco::MET &corMET, const MET &srcMET)
: PATObject<reco::MET>(corMET),
genMET_(srcMET.genMET_),
caloMET_(srcMET.caloMET_),
pfMET_(srcMET.pfMET_),
metSig_(srcMET.metSig_),
sumPtUnclustered_(srcMET.sumPtUnclustered_),
caloPackedMet_(srcMET.caloPackedMet_) {
setSignificanceMatrix(srcMET.getSignificanceMatrix());
initCorMap();
}
/// destructor
MET::~MET() {}
MET &MET::operator=(MET const &iOther) {
PATObject<reco::MET>::operator=(iOther);
genMET_ = iOther.genMET_;
caloMET_ = iOther.caloMET_;
pfMET_ = iOther.pfMET_;
uncertaintiesRaw_ = iOther.uncertaintiesRaw_; //74X compatibility
uncertaintiesType1_ = iOther.uncertaintiesType1_;
uncertaintiesType1p2_ = iOther.uncertaintiesType1p2_;
uncertainties_ = iOther.uncertainties_;
corrections_ = iOther.corrections_;
metSig_ = iOther.metSig_;
sumPtUnclustered_ = iOther.sumPtUnclustered_;
caloPackedMet_ = iOther.caloPackedMet_;
return *this;
}
/// return the generated MET from neutrinos
const reco::GenMET *MET::genMET() const { return (!genMET_.empty() ? &genMET_.front() : nullptr); }
/// method to set the generated MET
void MET::setGenMET(const reco::GenMET &gm) {
genMET_.clear();
genMET_.push_back(gm);
}
//Method to set the MET significance
void MET::setMETSignificance(const double &metSig) { metSig_ = metSig; }
double MET::metSignificance() const { return metSig_; }
void MET::setMETSumPtUnclustered(const double &sumPtUnclustered) { sumPtUnclustered_ = sumPtUnclustered; }
double MET::metSumPtUnclustered() const { return sumPtUnclustered_; }
void MET::initCorMap() {
std::vector<MET::METCorrectionType> tmpRaw;
std::vector<MET::METCorrectionType> tmpType1;
std::vector<MET::METCorrectionType> tmpType01;
std::vector<MET::METCorrectionType> tmpTypeXY;
std::vector<MET::METCorrectionType> tmpType1XY;
std::vector<MET::METCorrectionType> tmpType01XY;
std::vector<MET::METCorrectionType> tmpType1Smear;
std::vector<MET::METCorrectionType> tmpType01Smear;
std::vector<MET::METCorrectionType> tmpType1SmearXY;
std::vector<MET::METCorrectionType> tmpType01SmearXY;
tmpRaw.push_back(MET::None);
tmpType1.push_back(MET::T1);
tmpType01.push_back(MET::T1);
tmpType1XY.push_back(MET::T1);
tmpType01XY.push_back(MET::T1);
tmpType1Smear.push_back(MET::T1);
tmpType01Smear.push_back(MET::T1);
tmpType1SmearXY.push_back(MET::T1);
tmpType01SmearXY.push_back(MET::T1);
tmpType01.push_back(MET::T0);
tmpType01XY.push_back(MET::T0);
tmpType01Smear.push_back(MET::T0);
tmpType01SmearXY.push_back(MET::T0);
tmpType1Smear.push_back(MET::Smear);
tmpType01Smear.push_back(MET::Smear);
tmpType1SmearXY.push_back(MET::Smear);
tmpType01SmearXY.push_back(MET::Smear);
tmpTypeXY.push_back(MET::TXYForRaw);
tmpType1XY.push_back(MET::TXY);
tmpType01XY.push_back(MET::TXYForT01);
tmpType1SmearXY.push_back(MET::TXYForT1Smear);
tmpType01SmearXY.push_back(MET::TXYForT01Smear);
corMap_[MET::Raw] = tmpRaw;
corMap_[MET::Type1] = tmpType1;
corMap_[MET::Type01] = tmpType01;
corMap_[MET::TypeXY] = tmpTypeXY;
corMap_[MET::Type1XY] = tmpType1XY;
corMap_[MET::Type01XY] = tmpType01XY;
corMap_[MET::Type1Smear] = tmpType1Smear;
corMap_[MET::Type01Smear] = tmpType01Smear;
corMap_[MET::Type1SmearXY] = tmpType1SmearXY;
corMap_[MET::Type01SmearXY] = tmpType01SmearXY;
//specific calo case
std::vector<MET::METCorrectionType> tmpRawCalo;
tmpRawCalo.push_back(MET::Calo);
corMap_[MET::RawCalo] = tmpRawCalo;
//specific chs case
std::vector<MET::METCorrectionType> tmpRawChs;
tmpRawChs.push_back(MET::Chs);
corMap_[MET::RawChs] = tmpRawChs;
//specific trk case
std::vector<MET::METCorrectionType> tmpRawTrk;
tmpRawTrk.push_back(MET::Trk);
corMap_[MET::RawTrk] = tmpRawTrk;
//specific deep response tune case
std::vector<MET::METCorrectionType> tmpDeepResponse;
tmpDeepResponse.push_back(MET::DeepResponseTune);
corMap_[MET::RawDeepResponseTune] = tmpDeepResponse;
//specific deep resolution tune case
std::vector<MET::METCorrectionType> tmpDeepResolution;
tmpDeepResolution.push_back(MET::DeepResolutionTune);
corMap_[MET::RawDeepResolutionTune] = tmpDeepResolution;
}
MET::UnpackedMETUncertainty MET::findMETTotalShift(MET::METCorrectionLevel cor, MET::METUncertainty shift) const {
//find corrections shifts =============================
std::map<MET::METCorrectionLevel, std::vector<MET::METCorrectionType> >::const_iterator itCor_ = corMap_.find(cor);
if (itCor_ == corMap_.end())
throw cms::Exception("Unsupported", "Specified MET correction scheme does not exist");
bool isSmeared = false;
MET::UnpackedMETUncertainty totShift;
unsigned int scor = itCor_->second.size();
for (unsigned int i = 0; i < scor; i++) {
auto up = corrections_[itCor_->second[i]].unpack();
totShift.add(up.dpx(), up.dpy(), up.dsumEt());
if (itCor_->first >= MET::Type1Smear)
isSmeared = true;
}
//find uncertainty shift =============================
if (uncertainties_.empty())
return totShift;
if (shift >= MET::METUncertaintySize)
throw cms::Exception("Unsupported", "MET uncertainty does not exist");
if (isSmeared && shift <= MET::JetResDown)
shift = (MET::METUncertainty)(MET::METUncertaintySize + shift + 1);
auto up = uncertainties_[shift].unpack();
totShift.add(up.dpx(), up.dpy(), up.dsumEt());
return totShift;
}
MET::Vector2 MET::shiftedP2(MET::METUncertainty shift, MET::METCorrectionLevel cor) const {
Vector2 vo;
//backward compatibility with 74X samples -> the only one
// with uncertaintiesType1_/uncertaintiesRaw_ not empty
//will be removed once 74X is not used anymore
if (!uncertaintiesType1_.empty() || !uncertaintiesRaw_.empty()) {
if (cor != MET::METCorrectionLevel::RawCalo) {
vo = shiftedP2_74x(shift, cor);
} else {
Vector2 ret{caloPackedMet_.unpackDpx(), caloPackedMet_.unpackDpy()};
vo = ret;
}
} else {
auto v = findMETTotalShift(cor, shift);
Vector2 ret{(px() + v.dpx()), (py() + v.dpy())};
//return ret;
vo = ret;
}
return vo;
}
MET::Vector MET::shiftedP3(MET::METUncertainty shift, MET::METCorrectionLevel cor) const {
Vector vo;
//backward compatibility with 74X samples -> the only one
// with uncertaintiesType1_/uncertaintiesRaw_ not empty
//will be removed once 74X is not used anymore
if (!uncertaintiesType1_.empty() || !uncertaintiesRaw_.empty()) {
if (cor != MET::METCorrectionLevel::RawCalo) {
vo = shiftedP3_74x(shift, cor);
} else {
Vector tmp(caloPackedMet_.unpackDpx(), caloPackedMet_.unpackDpy(), 0);
vo = tmp;
}
} else {
const MET::UnpackedMETUncertainty &v = findMETTotalShift(cor, shift);
//return Vector(px() + v.dpx(), py() + v.dpy(), 0);
Vector tmp(px() + v.dpx(), py() + v.dpy(), 0);
vo = tmp;
}
return vo;
}
MET::LorentzVector MET::shiftedP4(METUncertainty shift, MET::METCorrectionLevel cor) const {
LorentzVector vo;
//backward compatibility with 74X samples -> the only one
// with uncertaintiesType1_/uncertaintiesRaw_ not empty
//will be removed once 74X is not used anymore
if (!uncertaintiesType1_.empty() || !uncertaintiesRaw_.empty()) {
if (cor != MET::METCorrectionLevel::RawCalo) {
vo = shiftedP4_74x(shift, cor);
} else {
double x = caloPackedMet_.unpackDpx(), y = caloPackedMet_.unpackDpy();
LorentzVector tmp(x, y, 0, std::hypot(x, y));
vo = tmp;
}
} else {
const auto v = findMETTotalShift(cor, shift);
double x = px() + v.dpx(), y = py() + v.dpy();
//return LorentzVector(x, y, 0, std::hypot(x,y));
LorentzVector tmp(x, y, 0, std::hypot(x, y));
vo = tmp;
}
return vo;
}
double MET::shiftedSumEt(MET::METUncertainty shift, MET::METCorrectionLevel cor) const {
double sumEto;
//backward compatibility with 74X samples -> the only one
// with uncertaintiesType1_/uncertaintiesRaw_ not empty
//will be removed once 74X is not used anymore
if (!uncertaintiesType1_.empty() || !uncertaintiesRaw_.empty()) {
if (cor != MET::METCorrectionLevel::RawCalo) {
sumEto = shiftedSumEt_74x(shift, cor);
} else {
sumEto = caloPackedMet_.unpackDSumEt();
}
} else {
const auto v = findMETTotalShift(cor, shift);
//return sumEt() + v.dsumEt();
sumEto = sumEt() + v.dsumEt();
}
return sumEto;
}
MET::Vector2 MET::corP2(MET::METCorrectionLevel cor) const { return shiftedP2(MET::NoShift, cor); }
MET::Vector MET::corP3(MET::METCorrectionLevel cor) const { return shiftedP3(MET::NoShift, cor); }
MET::LorentzVector MET::corP4(MET::METCorrectionLevel cor) const { return shiftedP4(MET::NoShift, cor); }
double MET::corSumEt(MET::METCorrectionLevel cor) const { return shiftedSumEt(MET::NoShift, cor); }
MET::Vector2 MET::uncorP2() const { return shiftedP2(MET::NoShift, MET::Raw); }
MET::Vector MET::uncorP3() const { return shiftedP3(MET::NoShift, MET::Raw); }
MET::LorentzVector MET::uncorP4() const { return shiftedP4(MET::NoShift, MET::Raw); }
double MET::uncorSumEt() const { return shiftedSumEt(MET::NoShift, MET::Raw); }
void MET::setUncShift(double px, double py, double sumEt, METUncertainty shift, bool isSmeared) {
if (uncertainties_.empty()) {
uncertainties_.resize(METUncertainty::METFullUncertaintySize);
}
if (isSmeared && shift <= MET::JetResDown) {
//changing reference to only get the uncertainty shift and not the smeared one
// which is performed independently
shift = (MET::METUncertainty)(METUncertainty::METUncertaintySize + shift + 1);
const PackedMETUncertainty &ref = corrections_[METCorrectionType::Smear];
uncertainties_[shift].set(px - ref.unpackDpx() - this->px(),
py - ref.unpackDpy() - this->py(),
sumEt - ref.unpackDSumEt() - this->sumEt());
} else
uncertainties_[shift].set(px - this->px(), py - this->py(), sumEt - this->sumEt());
}
void MET::setCorShift(double px, double py, double sumEt, MET::METCorrectionType level) {
if (corrections_.empty()) {
corrections_.resize(MET::METCorrectionType::METCorrectionTypeSize);
}
corrections_[level].set(px - this->px(), py - this->py(), sumEt - this->sumEt());
}
MET::Vector2 MET::caloMETP2() const {
return shiftedP2(MET::METUncertainty::NoShift, MET::METCorrectionLevel::RawCalo);
}
double MET::caloMETPt() const { return caloMETP2().pt(); }
double MET::caloMETPhi() const { return caloMETP2().phi(); }
double MET::caloMETSumEt() const { return shiftedSumEt(MET::NoShift, MET::RawCalo); }
// functions to access to 74X samples ========================================================
MET::Vector2 MET::shiftedP2_74x(MET::METUncertainty shift, MET::METCorrectionLevel level) const {
if (level != Type1 && level != Raw)
throw cms::Exception("Unsupported", "MET uncertainties only supported for Raw and Type1 in 74X samples \n");
const std::vector<PackedMETUncertainty> &v = (level == Type1 ? uncertaintiesType1_ : uncertaintiesRaw_);
if (v.empty())
throw cms::Exception("Unsupported", "MET uncertainties not available for the specified correction type\n");
if (v.size() == 1) {
if (shift != MET::METUncertainty::NoShift)
throw cms::Exception(
"Unsupported",
"MET uncertainties not available for the specified correction type (only central value available)\n");
auto const &p = v.front();
return Vector2{(px() + p.unpackDpx()), (py() + p.unpackDpy())};
}
auto const &p = v[shift];
Vector2 ret{(px() + p.unpackDpx()), (py() + p.unpackDpy())};
return ret;
}
MET::Vector MET::shiftedP3_74x(MET::METUncertainty shift, MET::METCorrectionLevel level) const {
if (level != Type1 && level != Raw)
throw cms::Exception("Unsupported", "MET uncertainties only supported for Raw and Type1 in 74X samples \n");
const std::vector<PackedMETUncertainty> &v = (level == Type1 ? uncertaintiesType1_ : uncertaintiesRaw_);
if (v.empty())
throw cms::Exception("Unsupported", "MET uncertainties not available for the specified correction type\n");
if (v.size() == 1) {
if (shift != MET::METUncertainty::NoShift)
throw cms::Exception(
"Unsupported",
"MET uncertainties not available for the specified correction type (only central value available)\n");
auto const &p = v.front();
return Vector(px() + p.unpackDpx(), py() + p.unpackDpy(), 0);
}
auto const &p = v[shift];
return Vector(px() + p.unpackDpx(), py() + p.unpackDpy(), 0);
}
MET::LorentzVector MET::shiftedP4_74x(METUncertainty shift, MET::METCorrectionLevel level) const {
if (level != Type1 && level != Raw)
throw cms::Exception("Unsupported", "MET uncertainties only supported for Raw and Type1 in 74X samples\n");
const std::vector<PackedMETUncertainty> &v = (level == Type1 ? uncertaintiesType1_ : uncertaintiesRaw_);
if (v.empty())
throw cms::Exception("Unsupported", "MET uncertainties not available for the specified correction type\n");
if (v.size() == 1) {
if (shift != MET::METUncertainty::NoShift)
throw cms::Exception(
"Unsupported",
"MET uncertainties not available for the specified correction type (only central value available)\n");
auto const &p = v.front();
double x = px() + p.unpackDpx(), y = py() + p.unpackDpy();
return LorentzVector(x, y, 0, std::hypot(x, y));
}
auto const &p = v[shift];
double x = px() + p.unpackDpx(), y = py() + p.unpackDpy();
return LorentzVector(x, y, 0, std::hypot(x, y));
}
double MET::shiftedSumEt_74x(MET::METUncertainty shift, MET::METCorrectionLevel level) const {
if (level != Type1 && level != Raw)
throw cms::Exception("Unsupported", "MET uncertainties only supported for Raw and Type1 in 74X samples\n");
const std::vector<PackedMETUncertainty> &v = (level == Type1 ? uncertaintiesType1_ : uncertaintiesRaw_);
if (v.empty())
throw cms::Exception("Unsupported", "MET uncertainties not available for the specified correction type\n");
if (v.size() == 1) {
if (shift != MET::METUncertainty::NoShift)
throw cms::Exception(
"Unsupported",
"MET uncertainties not available for the specified correction type (only central value available)\n");
return sumEt() + v.front().unpackDSumEt();
}
return sumEt() + v[shift].unpackDSumEt();
}
#include "DataFormats/Math/interface/libminifloat.h"
MET::UnpackedMETUncertainty MET::PackedMETUncertainty::unpack() const {
auto dpx = MiniFloatConverter::float16to32(packedDpx_);
auto dpy = MiniFloatConverter::float16to32(packedDpy_);
auto dsumEt = MiniFloatConverter::float16to32(packedDSumEt_);
return UnpackedMETUncertainty(dpx, dpy, dsumEt);
}
float MET::PackedMETUncertainty::unpackDpx() const { return MiniFloatConverter::float16to32(packedDpx_); }
float MET::PackedMETUncertainty::unpackDpy() const { return MiniFloatConverter::float16to32(packedDpy_); }
float MET::PackedMETUncertainty::unpackDSumEt() const { return MiniFloatConverter::float16to32(packedDSumEt_); }
void MET::PackedMETUncertainty::pack(float dpx, float dpy, float dsumEt) {
packedDpx_ = MiniFloatConverter::float32to16(dpx);
packedDpy_ = MiniFloatConverter::float32to16(dpy);
packedDSumEt_ = MiniFloatConverter::float32to16(dsumEt);
}
|