testKinResolutions

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
#include <cppunit/extensions/HelperMacros.h>
#include <algorithm>
#include <iterator>
#include <iostream>
#include <iomanip>
#include <TMath.h>

#include "DataFormats/PatCandidates/interface/ParametrizationHelper.h"
#include "DataFormats/PatCandidates/interface/ResolutionHelper.h"

class testKinResolutions : public CppUnit::TestFixture {
  CPPUNIT_TEST_SUITE(testKinResolutions);

  CPPUNIT_TEST(testTrivialMatrix_Cart);
  CPPUNIT_TEST(testTrivialMatrix_ECart);
  CPPUNIT_TEST(testTrivialMatrix_Spher);
  CPPUNIT_TEST(testTrivialMatrix_ESpher);
  CPPUNIT_TEST(testTrivialMatrix_MomDev);
  CPPUNIT_TEST(testTrivialMatrix_EMomDev);
  CPPUNIT_TEST(testTrivialMatrix_MCCart);
  CPPUNIT_TEST(testTrivialMatrix_MCSpher);
  CPPUNIT_TEST(testTrivialMatrix_MCPInvSpher);
  CPPUNIT_TEST(testTrivialMatrix_EtEtaPhi);
  CPPUNIT_TEST(testTrivialMatrix_EtThetaPhi);
  CPPUNIT_TEST(testTrivialMatrix_MCMomDev);
  CPPUNIT_TEST(testTrivialMatrix_EScaledMomDev);

  CPPUNIT_TEST(testIndependentVars_Cart);
  CPPUNIT_TEST(testIndependentVars_ECart);
  CPPUNIT_TEST(testIndependentVars_Spher);
  CPPUNIT_TEST(testIndependentVars_ESpher);
  CPPUNIT_TEST(testIndependentVars_MomDev);
  CPPUNIT_TEST(testIndependentVars_EMomDev);
  CPPUNIT_TEST(testIndependentVars_MCCart);
  CPPUNIT_TEST(testIndependentVars_MCSpher);
  CPPUNIT_TEST(testIndependentVars_MCPInvSpher);
  CPPUNIT_TEST(testIndependentVars_EtEtaPhi);
  CPPUNIT_TEST(testIndependentVars_EtThetaPhi);
  CPPUNIT_TEST(testIndependentVars_MCMomDev);
  CPPUNIT_TEST(testIndependentVars_EScaledMomDev);

  CPPUNIT_TEST(testDependentVars_Cart);
  CPPUNIT_TEST(testDependentVars_ECart);
  CPPUNIT_TEST(testDependentVars_Spher);
  CPPUNIT_TEST(testDependentVars_ESpher);
  CPPUNIT_TEST(testDependentVars_MomDev);
  CPPUNIT_TEST(testDependentVars_EMomDev);
  CPPUNIT_TEST(testDependentVars_MCCart);
  CPPUNIT_TEST(testDependentVars_MCSpher);
  CPPUNIT_TEST(testDependentVars_MCPInvSpher);
  CPPUNIT_TEST(testDependentVars_EtEtaPhi);
  CPPUNIT_TEST(testDependentVars_EtThetaPhi);
  CPPUNIT_TEST(testDependentVars_MCMomDev);
  CPPUNIT_TEST(testDependentVars_EScaledMomDev);

  CPPUNIT_TEST_SUITE_END();

public:
  void setUp() {}
  void tearDown() {}

  void testTrivialMatrix_Cart();
  void testTrivialMatrix_ECart();
  void testTrivialMatrix_Spher();
  void testTrivialMatrix_ESpher();
  void testTrivialMatrix_MomDev();
  void testTrivialMatrix_EMomDev();
  void testTrivialMatrix_MCCart();
  void testTrivialMatrix_MCSpher();
  void testTrivialMatrix_MCPInvSpher();
  void testTrivialMatrix_EtEtaPhi();
  void testTrivialMatrix_EtThetaPhi();
  void testTrivialMatrix_MCMomDev();
  void testTrivialMatrix_EScaledMomDev();

  void testIndependentVars_Cart();
  void testIndependentVars_ECart();
  void testIndependentVars_Spher();
  void testIndependentVars_ESpher();
  void testIndependentVars_MomDev();
  void testIndependentVars_EMomDev();
  void testIndependentVars_MCCart();
  void testIndependentVars_MCSpher();
  void testIndependentVars_MCPInvSpher();
  void testIndependentVars_EtEtaPhi();
  void testIndependentVars_EtThetaPhi();
  void testIndependentVars_MCMomDev();
  void testIndependentVars_EScaledMomDev();

  void testDependentVars_Cart();
  void testDependentVars_ECart();
  void testDependentVars_Spher();
  void testDependentVars_ESpher();
  void testDependentVars_MomDev();
  void testDependentVars_EMomDev();
  void testDependentVars_MCCart();
  void testDependentVars_MCSpher();
  void testDependentVars_MCPInvSpher();
  void testDependentVars_EtEtaPhi();
  void testDependentVars_EtThetaPhi();
  void testDependentVars_MCMomDev();
  void testDependentVars_EScaledMomDev();

  typedef math::XYZTLorentzVector P4C;
  typedef math::PtEtaPhiMLorentzVector P4P;
  typedef AlgebraicVector4 V4;
  typedef AlgebraicSymMatrix44 M4;

private:
  typedef pat::CandKinResolution::Parametrization Parametrization;

  /// check if resol 'f' for param 'p' throws an exception or not
  /// it won't even look at the value
  template <typename Func>
  bool testIfThrows(Parametrization p, Func f);

  /// check that resol 'f' for param 'p' is the square root of covariance(index,index)
  template <typename Func>
  bool testTrivialMatrix(Parametrization p, Func f, int index, int tries = 10);

  /// check that resol 'f' for param p is independent from the coordinate 'index'
  /// that is, if covariance(i,j) is null except for (index,index), resol 'f' must be zero
  template <typename Func>
  bool testIsIndependent(Parametrization p, Func f, int index, int tries = 10);

  /// check that resol 'f' for param p is independent from any coordinate index except 'self'
  template <typename Func>
  bool testFullyIndependent(Parametrization p, Func f, int self, int tries = 10);

  /// check the correctness of the derivative of some var the parameter, with respect to the numerical derivative
  /// computed symmetrically with step 'eps'.
  bool testDiagonalDerivativeM(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativeEta(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativeTheta(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativePhi(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativeEt(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativeE(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativeP(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativePt(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativePx(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativePy(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativePz(Parametrization p, int index, double eps = 1e-5, int tries = 200);
  bool testDiagonalDerivativePInv(Parametrization p, int index, double eps = 1e-5, int tries = 200);

  /// check the correctness of the relative signs of two derivative of some var the parameter
  bool testOffDiagonalDerivativeM(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativeEta(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativeTheta(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativePhi(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativeEt(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativeE(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativeP(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativePt(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativePx(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativePy(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativePz(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);
  bool testOffDiagonalDerivativePInv(Parametrization p, int i, int j, double eps = 1e-5, int tries = 200);

  double getVarEta(P4P &p4) const { return p4.Eta(); }
  double getVarTheta(P4P &p4) const { return p4.Theta(); }
  double getVarPhi(P4P &p4) const { return p4.Phi(); }
  double getVarEt(P4P &p4) const { return p4.Et(); }
  double getVarE(P4P &p4) const { return p4.E(); }
  double getVarP(P4P &p4) const { return p4.P(); }
  double getVarPt(P4P &p4) const { return p4.Pt(); }
  double getVarPx(P4P &p4) const { return p4.Px(); }
  double getVarPy(P4P &p4) const { return p4.Py(); }
  double getVarPz(P4P &p4) const { return p4.Pz(); }
  double getVarM(P4P &p4) const { return p4.M(); }
  double getVarPInv(P4P &p4) const { return 1.0 / p4.P(); }

  // Utilities
  static double r(double val = 1.0) { return rand() * val / double(RAND_MAX); }
  static double r(double from, double to) { return rand() * (to - from) / double(RAND_MAX) + from; }
  static P4P r4(double m = -1) {
    double mass = (m != -1 ? m : (r() > .3 ? r(.1, 30) : 0));
    return P4P(r(5, 25), r(-2.5, 5), r(-M_PI, M_PI), mass);
  }
  static M4 diag(size_t dim) {
    M4 ret;
    for (size_t i = 0; i < dim; ++i)
      ret(i, i) = r(.1, 10);
    return ret;
  }
};

CPPUNIT_TEST_SUITE_REGISTRATION(testKinResolutions);

template <typename Func>
bool testKinResolutions::testIfThrows(Parametrization p, Func f) {
  srand(37);
  P4C p4;
  M4 mat = diag(pat::helper::ParametrizationHelper::dimension(p));
  double y = f(p, mat, p4);
  return (y != 1e37);  // so that it doesn't count as unused
}

using pat::helper::ParametrizationHelper::name;

template <typename Func>
bool testKinResolutions::testTrivialMatrix(Parametrization p, Func f, int index, int tries) {
  srand(37);
  using namespace pat::helper::ParametrizationHelper;
  for (int i = 0; i < tries; ++i) {
    P4C p4;
    M4 mat = diag(dimension(p));
    double x = sqrt(mat(index, index));
    double y = f(p, mat, p4);
    if (std::abs(x - y) > (std::abs(x) + std::abs(y) + 1) * 1e-6) {
      std::cerr << "Error for parametrization " << name(p) << ", index = " << index << "\n x = " << x << ", y = " << y
                << std::endl;
      return false;
    }
  }
  return true;
}

template <typename Func>
bool testKinResolutions::testIsIndependent(Parametrization par, Func f, int index, int tries) {
  double delta = 0.001;
  using namespace pat::helper::ParametrizationHelper;
  srand(37);
  for (int i = 0; i < tries; ++i) {
    P4P p1 = r4(isAlwaysMassless(par) ? 0 : (isAlwaysMassive(par) ? r(.1, 30) : (r() > .3 ? r(.1, 30) : 0)));
    //         V4  v1  = parametersFromP4(par, p1), v2; // warning from gcc461: variable 'v1' set but not used [-Wunused-but-set-variable]
    M4 mat;
    mat(index, index) = delta * delta;
    double exp = f(par, mat, P4C(p1));
    if (exp != 0)
      return false;
  }
  return true;
}
template <typename Func>
bool testKinResolutions::testFullyIndependent(Parametrization par, Func f, int self, int tries) {
  for (int i = 0; i <= 3; ++i) {
    if (i == self)
      continue;
    if (!testIsIndependent(par, f, i, tries))
      return false;
  }
  return true;
}

#define IMPL_testDiagonalDerivative(VAR)                                                                            \
  bool testKinResolutions::testDiagonalDerivative##VAR(Parametrization par, int index, double delta, int tries) {   \
    using namespace pat::helper::ParametrizationHelper;                                                             \
    using namespace pat::helper::ResolutionHelper;                                                                  \
    srand(37);                                                                                                      \
    int skips = 0, glitches = 0;                                                                                    \
    for (int i = 0; i < tries; ++i) {                                                                               \
      P4P p1 = r4(isAlwaysMassless(par) ? 0 : r(.1, 30));                                                           \
      M4 mat;                                                                                                       \
      mat(index, index) = 1;                                                                                        \
      double exp = getResol##VAR(                                                                                   \
          par, mat, P4C(p1)); /* should be |dV/dX_i|, where V is the variable on which 'f' gets the resolution */   \
      /* now let's compute the derivative numerically */                                                            \
      V4 v = parametersFromP4(par, p1), vplus = v, vminus = v;                                                      \
      vplus[index] += delta;                                                                                        \
      vminus[index] -= delta;                                                                                       \
      if (isPhysical(par, vplus, p1) && (isPhysical(par, vminus, p1))) {                                            \
        P4P pplus = polarP4fromParameters(par, vplus, p1);                                                          \
        P4P pminus = polarP4fromParameters(par, vminus, p1);                                                        \
        double yplus = getVar##VAR(pplus), yminus = getVar##VAR(pminus);                                            \
        double num = (yplus - yminus) / (2 * delta);                                                                \
        double diff = std::abs(std::abs(num) - exp) / (std::abs(num) + std::abs(exp) + 1);                          \
        if (diff > 2e-4) {                                                                                          \
          std::cout << "\nError for  " #VAR "\n"                                                                    \
                    << "  par = " << name(par) << ", index = " << index << "\n"                                     \
                    << "  p4 = " << p1 << ",\n  expected = " << exp << ", numeric = " << num << ", diff = " << diff \
                    << std::endl;                                                                                   \
          glitches++;                                                                                               \
          if ((diff > 3e-2) || (glitches > std::max(tries / 10, 10)))                                               \
            return false;                                                                                           \
        }                                                                                                           \
      } else                                                                                                        \
        skips++;                                                                                                    \
    }                                                                                                               \
    if (double(skips) / tries >= 0.1) {                                                                             \
      std::cout << "Error for  " #VAR "\n"                                                                          \
                << "  par = " << name(par) << ", index = " << index                                                 \
                << "\n"                                                                                             \
                   "Unphysical momenta "                                                                            \
                << skips << " over " << tries << std::endl;                                                         \
    }                                                                                                               \
    return (double(skips) / tries < 0.1);                                                                           \
  }
IMPL_testDiagonalDerivative(M) IMPL_testDiagonalDerivative(Eta) IMPL_testDiagonalDerivative(Theta)
    IMPL_testDiagonalDerivative(Phi) IMPL_testDiagonalDerivative(Et) IMPL_testDiagonalDerivative(E)
        IMPL_testDiagonalDerivative(P) IMPL_testDiagonalDerivative(Pt) IMPL_testDiagonalDerivative(Px)
            IMPL_testDiagonalDerivative(Py) IMPL_testDiagonalDerivative(Pz) IMPL_testDiagonalDerivative(PInv)

#define IMPL_testOffDiagonalDerivative(VAR)                                                                         \
  bool testKinResolutions::testOffDiagonalDerivative##VAR(                                                          \
      Parametrization par, int i, int j, double delta, int tries) {                                                 \
    using namespace pat::helper::ParametrizationHelper;                                                             \
    using namespace pat::helper::ResolutionHelper;                                                                  \
    srand(37);                                                                                                      \
    int skips = 0, glitches = 0;                                                                                    \
    for (int it = 0; it < tries; ++it) {                                                                            \
      P4P p1 = r4(isAlwaysMassless(par) ? 0 : r(.1, 30));                                                           \
      M4 mat;                                                                                                       \
      mat(i, i) = 1;                                                                                                \
      double vi = getResol##VAR(                                                                                    \
          par, mat, P4C(p1)); /* should be |dV/dX_i|, where V is the variable on which 'f' gets the resolution */   \
      mat(i, i) = 0;                                                                                                \
      mat(j, j) = 1;                                                                                                \
      double vj = getResol##VAR(                                                                                    \
          par, mat, P4C(p1)); /* should be |dV/dX_j|, where V is the variable on which 'f' gets the resolution */   \
      mat(i, i) = 2;                                                                                                \
      mat(j, j) = 2;                                                                                                \
      mat(i, j) = 1;                                                                                                \
      double vij =                                                                                                  \
          getResol##VAR(par, mat, P4C(p1)); /* should be sqrt(2)*(|dV/dX_i|^2+|dV/dx_j|^2 + 2 dV/dX_i dV_dX_j ) */  \
      /* now let's compute the derivative numerically */                                                            \
      V4 v = parametersFromP4(par, p1), vplus_i = v, vminus_i = v, vplus_j = v, vminus_j = v;                       \
      vplus_i[i] += delta;                                                                                          \
      vminus_i[i] -= delta;                                                                                         \
      vplus_j[j] += delta;                                                                                          \
      vminus_j[j] -= delta;                                                                                         \
      if (isPhysical(par, vplus_i, p1) && (isPhysical(par, vminus_i, p1)) && isPhysical(par, vplus_j, p1) &&        \
          (isPhysical(par, vminus_j, p1))) {                                                                        \
        P4P pplus_i = polarP4fromParameters(par, vplus_i, p1);                                                      \
        P4P pplus_j = polarP4fromParameters(par, vplus_j, p1);                                                      \
        P4P pminus_i = polarP4fromParameters(par, vminus_i, p1);                                                    \
        P4P pminus_j = polarP4fromParameters(par, vminus_j, p1);                                                    \
        double yplus_i = getVar##VAR(pplus_i), yminus_i = getVar##VAR(pminus_i);                                    \
        double yplus_j = getVar##VAR(pplus_j), yminus_j = getVar##VAR(pminus_j);                                    \
        double num_i = (yplus_i - yminus_i) / (2 * delta);                                                          \
        double num_j = (yplus_j - yminus_j) / (2 * delta);                                                          \
        if (num_i < 0)                                                                                              \
          vi = -vi;                                                                                                 \
        if (num_j < 0)                                                                                              \
          vj = -vj;                                                                                                 \
        double num = std::sqrt(2 * (vi * vi + vj * vj + vi * vj));                                                  \
        double diff = std::abs(std::abs(num) - vij) / (std::abs(num) + std::abs(vij) + 1);                          \
        if (diff > 1e-4) {                                                                                          \
          std::cout << "\nError for  " #VAR "\n"                                                                    \
                    << "  par = " << name(par) << ", i = " << i << ", j= " << j << "\n"                             \
                    << "  p4 = " << p1 << ",\n  expected = " << vij << ", numeric = " << num << ", diff = " << diff \
                    << std::endl;                                                                                   \
          glitches++;                                                                                               \
          if ((diff > 3e-2) || (glitches > std::max(tries / 10, 10)))                                               \
            return false;                                                                                           \
        }                                                                                                           \
      } else                                                                                                        \
        skips++;                                                                                                    \
    }                                                                                                               \
    if (double(skips) / tries >= 0.1) {                                                                             \
      std::cout << "Error for  " #VAR "\n"                                                                          \
                << "  par = " << name(par) << ", i = " << i << ", j= " << j                                         \
                << "\n"                                                                                             \
                   "Unphysical momenta "                                                                            \
                << skips << " over " << tries << std::endl;                                                         \
    }                                                                                                               \
    return (double(skips) / tries < 0.1);                                                                           \
  }
                IMPL_testOffDiagonalDerivative(M) IMPL_testOffDiagonalDerivative(Eta)
                    IMPL_testOffDiagonalDerivative(Theta) IMPL_testOffDiagonalDerivative(Phi)
                        IMPL_testOffDiagonalDerivative(Et) IMPL_testOffDiagonalDerivative(E)
                            IMPL_testOffDiagonalDerivative(P) IMPL_testOffDiagonalDerivative(Pt)
                                IMPL_testOffDiagonalDerivative(Px) IMPL_testOffDiagonalDerivative(Py)
                                    IMPL_testOffDiagonalDerivative(Pz) IMPL_testOffDiagonalDerivative(PInv)

#define ASSERT_DIAGONAL(PARAM, RESOL, INDEX)                                                                    \
  if (!testTrivialMatrix(pat::CandKinResolution::PARAM, RESOL, INDEX)) {                                        \
    CPPUNIT_NS::Asserter::fail("Resolution " #RESOL " for Parametrization " #PARAM " is not covariance(" #INDEX \
                               "," #INDEX ")",                                                                  \
                               CPPUNIT_SOURCELINE());                                                           \
  }

#define ASSERT_FULLY_INDEPENDENT(PARAM, RESOL, INDEX)                                                                  \
  if (!testFullyIndependent(pat::CandKinResolution::PARAM, RESOL, INDEX)) {                                            \
    CPPUNIT_NS::Asserter::fail("Resolution " #RESOL " for Parametrization " #PARAM " is not only function of " #INDEX, \
                               CPPUNIT_SOURCELINE());                                                                  \
  }

// Derivatives must not throw exceptions
#define ASSERT_HAS_DERIVATIVE(PARAM, RESOL) CPPUNIT_ASSERT_NO_THROW(testIfThrows(pat::CandKinResolution::PARAM, RESOL));
// And we can check their independence from some coordinate
#define ASSERT_HAS_INDEP_DERIVATIVE(PARAM, RESOL, INDEX)                                                        \
  if (!testIsIndependent(pat::CandKinResolution::PARAM, RESOL, INDEX)) {                                        \
    CPPUNIT_NS::Asserter::fail("Resolution " #RESOL " for Parametrization " #PARAM " is correlated to " #INDEX, \
                               CPPUNIT_SOURCELINE());                                                           \
  }
#define ASSERT_CHECK_DERIVATIVE(PARAM, VAR, INDEX)                                  \
  if (!testDiagonalDerivative##VAR(pat::CandKinResolution::PARAM, INDEX)) {         \
    CPPUNIT_NS::Asserter::fail("Resolution on " #VAR " for Parametrization " #PARAM \
                               " has wrong derivative w.r.t. " #INDEX,              \
                               CPPUNIT_SOURCELINE());                               \
  }
#define ASSERT_CHECK_DERIVATIVE2(PARAM, VAR, I, J)                                                                     \
  if (!testOffDiagonalDerivative##VAR(pat::CandKinResolution::PARAM, I, J)) {                                          \
    CPPUNIT_NS::Asserter::fail("Resolution on " #VAR " for Parametrization " #PARAM " has wrong derivative w.r.t. " #I \
                               "," #J,                                                                                 \
                               CPPUNIT_SOURCELINE());                                                                  \
  }

#define ASSERT_CHECK_DERIVATIVES(PARAM, VAR)           \
  ASSERT_CHECK_DERIVATIVE(PARAM, VAR, 0)               \
  ASSERT_CHECK_DERIVATIVE(PARAM, VAR, 1)               \
  ASSERT_CHECK_DERIVATIVE(PARAM, VAR, 2)               \
  ASSERT_CHECK_DERIVATIVE2(PARAM, VAR, 0, 1)           \
  ASSERT_CHECK_DERIVATIVE2(PARAM, VAR, 0, 2)           \
  ASSERT_CHECK_DERIVATIVE2(PARAM, VAR, 1, 2)           \
  if (dimension(pat::CandKinResolution::PARAM) == 4) { \
    ASSERT_CHECK_DERIVATIVE(PARAM, VAR, 3)             \
    ASSERT_CHECK_DERIVATIVE2(PARAM, VAR, 0, 3)         \
    ASSERT_CHECK_DERIVATIVE2(PARAM, VAR, 1, 3)         \
    ASSERT_CHECK_DERIVATIVE2(PARAM, VAR, 2, 3)         \
  }

#define ASSERT_NOT_IMPLEMENTED(PARAM, RESOL)                                       \
  do {                                                                             \
    bool cpputExceptionThrown_ = false;                                            \
    try {                                                                          \
      testTrivialMatrix(pat::CandKinResolution::PARAM, RESOL, 0, 1);               \
    } catch (const cms::Exception &e) {                                            \
      if (e.category() == "Not Implemented")                                       \
        cpputExceptionThrown_ = true;                                              \
    }                                                                              \
                                                                                   \
    if (cpputExceptionThrown_)                                                     \
      break;                                                                       \
                                                                                   \
    CPPUNIT_NS::Asserter::fail("Resolution " #RESOL " for Parametrization " #PARAM \
                               " Not implemented but not throwing",                \
                               CPPUNIT_SOURCELINE());                              \
  } while (false)

                                        using namespace pat::helper::ResolutionHelper;
using pat::helper::ParametrizationHelper::dimension;

void testKinResolutions::testTrivialMatrix_Cart() {
  ASSERT_DIAGONAL(Cart, getResolPx, 0);
  ASSERT_DIAGONAL(Cart, getResolPy, 1);
  ASSERT_DIAGONAL(Cart, getResolPz, 2);
  ASSERT_DIAGONAL(Cart, getResolM, 3);
  ASSERT_HAS_DERIVATIVE(Cart, getResolEta);
  ASSERT_HAS_DERIVATIVE(Cart, getResolTheta);
  ASSERT_HAS_DERIVATIVE(Cart, getResolPhi);
  ASSERT_HAS_DERIVATIVE(Cart, getResolEt);
  ASSERT_HAS_DERIVATIVE(Cart, getResolE);
  ASSERT_HAS_DERIVATIVE(Cart, getResolP);
  ASSERT_HAS_DERIVATIVE(Cart, getResolPt);
  ASSERT_HAS_DERIVATIVE(Cart, getResolPInv);
}
void testKinResolutions::testTrivialMatrix_ECart() {
  ASSERT_DIAGONAL(ECart, getResolPx, 0);
  ASSERT_DIAGONAL(ECart, getResolPy, 1);
  ASSERT_DIAGONAL(ECart, getResolPz, 2);
  ASSERT_DIAGONAL(ECart, getResolE, 3);
  ASSERT_HAS_DERIVATIVE(ECart, getResolEta);
  ASSERT_HAS_DERIVATIVE(ECart, getResolTheta);
  ASSERT_HAS_DERIVATIVE(ECart, getResolPhi);
  ASSERT_HAS_DERIVATIVE(ECart, getResolEt);
  ASSERT_HAS_DERIVATIVE(ECart, getResolM);
  ASSERT_HAS_DERIVATIVE(ECart, getResolP);
  ASSERT_HAS_DERIVATIVE(ECart, getResolPt);
  ASSERT_HAS_DERIVATIVE(ECart, getResolPInv);
}

void testKinResolutions::testTrivialMatrix_Spher() {
  ASSERT_DIAGONAL(Spher, getResolP, 0);
  ASSERT_DIAGONAL(Spher, getResolTheta, 1);
  ASSERT_DIAGONAL(Spher, getResolPhi, 2);
  ASSERT_DIAGONAL(Spher, getResolM, 3);
  ASSERT_HAS_DERIVATIVE(Spher, getResolEta);
  ASSERT_HAS_DERIVATIVE(Spher, getResolEt);
  ASSERT_HAS_DERIVATIVE(Spher, getResolE);
  ASSERT_HAS_DERIVATIVE(Spher, getResolPt);
  ASSERT_HAS_DERIVATIVE(Spher, getResolPInv);
  ASSERT_HAS_DERIVATIVE(Spher, getResolPx);
  ASSERT_HAS_DERIVATIVE(Spher, getResolPy);
  ASSERT_HAS_DERIVATIVE(Spher, getResolPz);
}

void testKinResolutions::testTrivialMatrix_ESpher() {
  ASSERT_DIAGONAL(ESpher, getResolP, 0);
  ASSERT_DIAGONAL(ESpher, getResolTheta, 1);
  ASSERT_DIAGONAL(ESpher, getResolPhi, 2);
  ASSERT_DIAGONAL(ESpher, getResolE, 3);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolEta);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolEt);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolM);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolPt);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolPInv);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolPx);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolPy);
  ASSERT_HAS_DERIVATIVE(ESpher, getResolPz);
}

void testKinResolutions::testTrivialMatrix_MomDev() {
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPz);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolM);
}

void testKinResolutions::testTrivialMatrix_EMomDev() {
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPz);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolM);
}

void testKinResolutions::testTrivialMatrix_MCCart() {
  ASSERT_DIAGONAL(MCCart, getResolPx, 0);
  ASSERT_DIAGONAL(MCCart, getResolPy, 1);
  ASSERT_DIAGONAL(MCCart, getResolPz, 2);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolEta);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolTheta);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolPhi);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolEt);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolE);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolP);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolPt);
  ASSERT_HAS_DERIVATIVE(MCCart, getResolPInv);
}

void testKinResolutions::testTrivialMatrix_MCSpher() {
  ASSERT_DIAGONAL(MCSpher, getResolP, 0);
  ASSERT_DIAGONAL(MCSpher, getResolTheta, 1);
  ASSERT_DIAGONAL(MCSpher, getResolPhi, 2);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolEta);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolEt);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolE);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolPt);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolPInv);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolPx);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolPy);
  ASSERT_HAS_DERIVATIVE(MCSpher, getResolPz);
}

void testKinResolutions::testTrivialMatrix_MCPInvSpher() {
  ASSERT_DIAGONAL(MCPInvSpher, getResolPInv, 0);
  ASSERT_DIAGONAL(MCPInvSpher, getResolTheta, 1);
  ASSERT_DIAGONAL(MCPInvSpher, getResolPhi, 2);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolEta);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolEt);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolE);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolP);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolPt);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolPx);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolPy);
  ASSERT_HAS_DERIVATIVE(MCPInvSpher, getResolPz);
}

void testKinResolutions::testTrivialMatrix_EtEtaPhi() {
  ASSERT_DIAGONAL(EtEtaPhi, getResolEt, 0);
  ASSERT_DIAGONAL(EtEtaPhi, getResolPt, 0);  // Et == Pt
  ASSERT_DIAGONAL(EtEtaPhi, getResolEta, 1);
  ASSERT_DIAGONAL(EtEtaPhi, getResolPhi, 2);
  ASSERT_HAS_DERIVATIVE(EtEtaPhi, getResolTheta);
  ASSERT_HAS_DERIVATIVE(EtEtaPhi, getResolE);
  ASSERT_HAS_DERIVATIVE(EtEtaPhi, getResolP);
  ASSERT_HAS_DERIVATIVE(EtEtaPhi, getResolPInv);
  ASSERT_HAS_DERIVATIVE(EtEtaPhi, getResolPx);
  ASSERT_HAS_DERIVATIVE(EtEtaPhi, getResolPy);
  ASSERT_HAS_DERIVATIVE(EtEtaPhi, getResolPz);
}

void testKinResolutions::testTrivialMatrix_EtThetaPhi() {
  ASSERT_DIAGONAL(EtThetaPhi, getResolEt, 0);
  ASSERT_DIAGONAL(EtThetaPhi, getResolPt, 0);  // Et == Pt
  ASSERT_DIAGONAL(EtThetaPhi, getResolTheta, 1);
  ASSERT_DIAGONAL(EtThetaPhi, getResolPhi, 2);
  ASSERT_HAS_DERIVATIVE(EtThetaPhi, getResolEta);
  ASSERT_HAS_DERIVATIVE(EtThetaPhi, getResolE);
  ASSERT_HAS_DERIVATIVE(EtThetaPhi, getResolP);
  ASSERT_HAS_DERIVATIVE(EtThetaPhi, getResolPInv);
  ASSERT_HAS_DERIVATIVE(EtThetaPhi, getResolPx);
  ASSERT_HAS_DERIVATIVE(EtThetaPhi, getResolPy);
  ASSERT_HAS_DERIVATIVE(EtThetaPhi, getResolPz);
}

void testKinResolutions::testTrivialMatrix_MCMomDev() {
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPz);
}

void testKinResolutions::testTrivialMatrix_EScaledMomDev() {
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPz);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolM);
}

void testKinResolutions::testIndependentVars_Cart() {
  ASSERT_FULLY_INDEPENDENT(Cart, getResolPx, 0);
  ASSERT_FULLY_INDEPENDENT(Cart, getResolPy, 1);
  ASSERT_FULLY_INDEPENDENT(Cart, getResolPz, 2);
  ASSERT_FULLY_INDEPENDENT(Cart, getResolM, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(Cart, getResolEta, 3);    // Angles Don't
  ASSERT_HAS_INDEP_DERIVATIVE(Cart, getResolTheta, 3);  // depend on
  ASSERT_HAS_INDEP_DERIVATIVE(Cart, getResolPhi, 3);    // the mass
}
void testKinResolutions::testIndependentVars_ECart() {
  ASSERT_FULLY_INDEPENDENT(ECart, getResolPx, 0);
  ASSERT_FULLY_INDEPENDENT(ECart, getResolPy, 1);
  ASSERT_FULLY_INDEPENDENT(ECart, getResolPz, 2);
  ASSERT_FULLY_INDEPENDENT(ECart, getResolE, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(ECart, getResolEta, 3);    // Angles
  ASSERT_HAS_INDEP_DERIVATIVE(ECart, getResolTheta, 3);  // Don't depend
  ASSERT_HAS_INDEP_DERIVATIVE(ECart, getResolPhi, 3);    // on the energy
}

void testKinResolutions::testIndependentVars_Spher() {
  ASSERT_FULLY_INDEPENDENT(Spher, getResolP, 0);
  ASSERT_FULLY_INDEPENDENT(Spher, getResolTheta, 1);
  ASSERT_FULLY_INDEPENDENT(Spher, getResolPhi, 2);
  ASSERT_FULLY_INDEPENDENT(Spher, getResolM, 3);

  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolEta, 0);  // Eta
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolEta, 2);  // Depends
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolEta, 3);  // Only On Theta

  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolEt, 2);  // E, Et
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolE, 2);   // Don't depend on Phi

  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPt, 2);  // Pt indep from
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPt, 3);  // Phi and M

  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPInv, 1);  // PInv dep
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPInv, 2);  // Only on
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPInv, 3);  // P

  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPx, 3);  // Px, Py, Pz
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPy, 3);  // Indep from
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPz, 3);  // Mass
  ASSERT_HAS_INDEP_DERIVATIVE(Spher, getResolPz, 3);  // Pz also on Phi
}

void testKinResolutions::testIndependentVars_ESpher() {
  ASSERT_FULLY_INDEPENDENT(ESpher, getResolP, 0);
  ASSERT_FULLY_INDEPENDENT(ESpher, getResolTheta, 1);
  ASSERT_FULLY_INDEPENDENT(ESpher, getResolPhi, 2);
  ASSERT_FULLY_INDEPENDENT(ESpher, getResolE, 3);

  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolEta, 0);  // Eta
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolEta, 2);  // Depends
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolEta, 3);  // Only On Theta

  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolEt, 2);  // Et indep from Phi
  //ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolEt,  2); // FIXME And from P??

  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolM, 2);  // Don't depend on Phi
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolM, 1);  // Nor on Theta

  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPt, 2);  // Pt indep from
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPt, 3);  // Phi and E

  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPInv, 1);  // PInv dep
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPInv, 2);  // Only on
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPInv, 3);  // P

  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPx, 3);  // Px, Py, Pz
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPy, 3);  // Indep from
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPz, 3);  // Energy
  ASSERT_HAS_INDEP_DERIVATIVE(ESpher, getResolPz, 3);  // Pz also on Phi
}

void testKinResolutions::testIndependentVars_MomDev() {
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolPz);
  ASSERT_NOT_IMPLEMENTED(MomDev, getResolM);
}

void testKinResolutions::testIndependentVars_EMomDev() {
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolPz);
  ASSERT_NOT_IMPLEMENTED(EMomDev, getResolM);
}

void testKinResolutions::testIndependentVars_MCCart() {
  ASSERT_FULLY_INDEPENDENT(MCCart, getResolPx, 0);
  ASSERT_FULLY_INDEPENDENT(MCCart, getResolPy, 1);
  ASSERT_FULLY_INDEPENDENT(MCCart, getResolPz, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolPhi, 2);  // Phi doesn't depend on Pz

  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolEta, 3);    // nothing
  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolTheta, 3);  // depends
  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolPhi, 3);    // on M
  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolEt, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolE, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolP, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolPt, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCCart, getResolPInv, 3);
}

void testKinResolutions::testIndependentVars_MCSpher() {
  ASSERT_FULLY_INDEPENDENT(MCSpher, getResolP, 0);
  ASSERT_FULLY_INDEPENDENT(MCSpher, getResolTheta, 1);
  ASSERT_FULLY_INDEPENDENT(MCSpher, getResolPhi, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEta, 3);  // everything
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEt, 3);   // indep from
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolE, 3);    // mass
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPt, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPInv, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPx, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPy, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPz, 3);

  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEta, 2);  // Most things
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEt, 2);   // Indep from Phi
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolE, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPt, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPInv, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPz, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolE, 1);     // E, 1/P
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPInv, 1);  // dep only on P
}

void testKinResolutions::testIndependentVars_MCPInvSpher() {
  ASSERT_FULLY_INDEPENDENT(MCPInvSpher, getResolPInv, 0);
  ASSERT_FULLY_INDEPENDENT(MCPInvSpher, getResolTheta, 1);
  ASSERT_FULLY_INDEPENDENT(MCPInvSpher, getResolPhi, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEta, 3);  // everything
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEt, 3);   // indep from
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolE, 3);    // mass
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPt, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolP, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPx, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPy, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPz, 3);

  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEta, 2);  // Most things
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolEt, 2);   // Indep from Phi
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolE, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPt, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolP, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolPz, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolE, 1);  // E, P
  ASSERT_HAS_INDEP_DERIVATIVE(MCSpher, getResolP, 1);  // dep only on 1/P
}

void testKinResolutions::testIndependentVars_EtEtaPhi() {
  ASSERT_FULLY_INDEPENDENT(EtEtaPhi, getResolEt, 0);
  ASSERT_FULLY_INDEPENDENT(EtEtaPhi, getResolPt, 0);  // Et == Pt
  ASSERT_FULLY_INDEPENDENT(EtEtaPhi, getResolEta, 1);
  ASSERT_FULLY_INDEPENDENT(EtEtaPhi, getResolPhi, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolTheta, 3);  // All indep
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolE, 3);      // From the mass
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolP, 3);      // (which is also
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPInv, 3);   // always zero)
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPx, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPy, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPz, 3);

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolTheta, 2);  // Most things
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolE, 2);      // Indep from
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolP, 2);      // Phi
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPInv, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPz, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPx, 1);  // Px, Py
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPy, 1);  // Indep from Eta

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolTheta, 0);  // Theta indep from Et
}

void testKinResolutions::testIndependentVars_EtThetaPhi() {
  ASSERT_FULLY_INDEPENDENT(EtThetaPhi, getResolEt, 0);
  ASSERT_FULLY_INDEPENDENT(EtThetaPhi, getResolPt, 0);  // Et == Pt
  ASSERT_FULLY_INDEPENDENT(EtThetaPhi, getResolTheta, 1);
  ASSERT_FULLY_INDEPENDENT(EtThetaPhi, getResolPhi, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolEta, 3);   // All indep
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolE, 3);     // From the mass
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolP, 3);     // (which is also
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPInv, 3);  // always zero)
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPx, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPy, 3);
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPz, 3);

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolEta, 2);  // Most things
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolE, 2);    // Indep from
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolP, 2);    // Phi
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPInv, 2);
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPz, 2);

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPx, 1);  // Px, Py
  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolPy, 1);  // Indep from Theta

  ASSERT_HAS_INDEP_DERIVATIVE(EtEtaPhi, getResolEta, 0);  // Eta indep from Et
}

void testKinResolutions::testIndependentVars_MCMomDev() {
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(MCMomDev, getResolPz);
}

void testKinResolutions::testIndependentVars_EScaledMomDev() {
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolEta);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolTheta);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPhi);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolEt);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolE);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolP);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPt);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPInv);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPx);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPy);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolPz);
  ASSERT_NOT_IMPLEMENTED(EScaledMomDev, getResolM);
}

#define IMPL_testDependentVars(PAR)                    \
  void testKinResolutions::testDependentVars_##PAR() { \
    ASSERT_CHECK_DERIVATIVES(PAR, Eta)                 \
    ASSERT_CHECK_DERIVATIVES(PAR, Theta)               \
    ASSERT_CHECK_DERIVATIVES(PAR, Phi)                 \
    ASSERT_CHECK_DERIVATIVES(PAR, Et)                  \
    ASSERT_CHECK_DERIVATIVES(PAR, E)                   \
    ASSERT_CHECK_DERIVATIVES(PAR, P)                   \
    ASSERT_CHECK_DERIVATIVES(PAR, Pt)                  \
    ASSERT_CHECK_DERIVATIVES(PAR, PInv)                \
    ASSERT_CHECK_DERIVATIVES(PAR, Px)                  \
    ASSERT_CHECK_DERIVATIVES(PAR, Py)                  \
    ASSERT_CHECK_DERIVATIVES(PAR, Pz)                  \
    ASSERT_CHECK_DERIVATIVES(PAR, M)                   \
  }

IMPL_testDependentVars(Cart) IMPL_testDependentVars(ECart) IMPL_testDependentVars(Spher) IMPL_testDependentVars(ESpher)
    IMPL_testDependentVars(MCCart) IMPL_testDependentVars(MCSpher) IMPL_testDependentVars(MCPInvSpher)
        IMPL_testDependentVars(EtEtaPhi) IMPL_testDependentVars(EtThetaPhi)
    //IMPL_testDependentVars(MomDev)
    //IMPL_testDependentVars(EMomDev)
    //IMPL_testDependentVars(MCMomDev)
    //IMPL_testDependentVars(EScaledMomDev)
    void testKinResolutions::testDependentVars_MomDev() {}
void testKinResolutions::testDependentVars_EMomDev() {}
void testKinResolutions::testDependentVars_MCMomDev() {}
void testKinResolutions::testDependentVars_EScaledMomDev() {}