Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#include <cassert>
#include <cstdlib>
#include <memory>

#include <Eigen/Core>
#include <Eigen/Dense>

#include "DataFormats/SoATemplate/interface/SoALayout.h"
#include "DataFormats/SoATemplate/interface/SoAView.h"
#include "HeterogeneousCore/CUDAUtilities/interface/cudaCheck.h"
#include "HeterogeneousCore/CUDAUtilities/interface/requireDevices.h"

// Test SoA stores and view.
// Use cases
// Multiple stores in a buffer
// Scalars, Columns of scalars and of Eigen vectors
// View to each of them, from one and multiple stores.

GENERATE_SOA_LAYOUT(SoAHostDeviceLayoutTemplate,
                    /*SoAHostDeviceViewTemplate,*/
                    // predefined static scalars
                    // size_t size;
                    // size_t alignment;

                    // columns: one value per element
                    SOA_COLUMN(double, x),
                    SOA_COLUMN(double, y),
                    SOA_COLUMN(double, z),
                    SOA_EIGEN_COLUMN(Eigen::Vector3d, a),
                    SOA_EIGEN_COLUMN(Eigen::Vector3d, b),
                    SOA_EIGEN_COLUMN(Eigen::Vector3d, r),
                    // scalars: one value for the whole structure
                    SOA_SCALAR(const char*, description),
                    SOA_SCALAR(uint32_t, someNumber))

using SoAHostDeviceLayout = SoAHostDeviceLayoutTemplate<>;
using SoAHostDeviceView = SoAHostDeviceLayout::View;
using SoAHostDeviceRangeCheckingView =
    SoAHostDeviceLayout::ViewTemplate<cms::soa::RestrictQualify::enabled, cms::soa::RangeChecking::enabled>;
using SoAHostDeviceConstView = SoAHostDeviceLayout::ConstView;

GENERATE_SOA_LAYOUT(SoADeviceOnlyLayoutTemplate,
                    /*SoADeviceOnlyViewTemplate,*/
                    SOA_COLUMN(uint16_t, color),
                    SOA_COLUMN(double, value),
                    SOA_COLUMN(double*, py),
                    SOA_COLUMN(uint32_t, count),
                    SOA_COLUMN(uint32_t, anotherCount))

using SoADeviceOnlyLayout = SoADeviceOnlyLayoutTemplate<>;
using SoADeviceOnlyView = SoADeviceOnlyLayout::View;

// A 1 to 1 view of the store (except for unsupported types).
GENERATE_SOA_VIEW(SoAFullDeviceConstViewTemplate,
                  SoAFullDeviceViewTemplate,
                  SOA_VIEW_LAYOUT_LIST(SOA_VIEW_LAYOUT(SoAHostDeviceLayout, soaHD),
                                       SOA_VIEW_LAYOUT(SoADeviceOnlyLayout, soaDO)),
                  SOA_VIEW_VALUE_LIST(SOA_VIEW_VALUE(soaHD, x),
                                      SOA_VIEW_VALUE(soaHD, y),
                                      SOA_VIEW_VALUE(soaHD, z),
                                      SOA_VIEW_VALUE(soaDO, color),
                                      SOA_VIEW_VALUE(soaDO, value),
                                      SOA_VIEW_VALUE(soaDO, py),
                                      SOA_VIEW_VALUE(soaDO, count),
                                      SOA_VIEW_VALUE(soaDO, anotherCount),
                                      SOA_VIEW_VALUE(soaHD, description),
                                      SOA_VIEW_VALUE(soaHD, someNumber)))

using SoAFullDeviceView =
    SoAFullDeviceViewTemplate<cms::soa::CacheLineSize::NvidiaGPU, cms::soa::AlignmentEnforcement::enforced>;

// These SoAs validate that the generating macros do not get confused in the special case where there are
// no columns and only scalar elements in the SoA.
GENERATE_SOA_LAYOUT(TestSoALayoutNoColumn, SOA_SCALAR(double, r))
GENERATE_SOA_LAYOUT(TestSoALayoutNoColumn2, SOA_SCALAR(double, r), SOA_SCALAR(double, r2))

// Eigen cross product kernel (on store)
__global__ void crossProduct(SoAHostDeviceView soa, const unsigned int numElements) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i >= numElements)
    return;
  auto si = soa[i];
  si.r() = si.a().cross(si.b());
}

// Device-only producer kernel
__global__ void producerKernel(SoAFullDeviceView soa, const unsigned int numElements) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i >= numElements)
    return;
  auto si = soa[i];
  si.color() &= 0x55 << i % (sizeof(si.color()) - sizeof(char));
  si.value() = sqrt(si.x() * si.x() + si.y() * si.y() + si.z() * si.z());
}

// Device-only consumer with result in host-device area
__global__ void consumerKernel(SoAFullDeviceView soa, const unsigned int numElements) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i >= numElements)
    return;
  auto si = soa[i];
  si.x() = si.color() * si.value();
}

// Get a view like the default, except for range checking
using RangeCheckingHostDeviceView =
    SoAHostDeviceLayout::ViewTemplate<SoAHostDeviceView::restrictQualify, cms::soa::RangeChecking::enabled>;

// We expect to just run one thread.
__global__ void rangeCheckKernel(RangeCheckingHostDeviceView soa) {
  printf("About to fail range-check (operator[]) in CUDA thread: %d\n", threadIdx.x);
  [[maybe_unused]] auto si = soa[soa.metadata().size()];
  printf("Fail: range-check failure should have stopped the kernel.\n");
}

int main(void) {
  cms::cudatest::requireDevices();

  cudaStream_t stream;
  cudaCheck(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));

  // Non-aligned number of elements to check alignment features.
  constexpr unsigned int numElements = 65537;

  // Allocate buffer and store on host
  size_t hostDeviceSize = SoAHostDeviceLayout::computeDataSize(numElements);
  std::byte* h_buf = nullptr;
  cudaCheck(cudaMallocHost(&h_buf, hostDeviceSize));
  SoAHostDeviceLayout h_soahdLayout(h_buf, numElements);
  SoAHostDeviceView h_soahd(h_soahdLayout);

  // Validation of range checking variants initialization
  SoAHostDeviceRangeCheckingView h_soahdrc(h_soahdLayout);
  [[maybe_unused]] SoAHostDeviceRangeCheckingView h_soahdrc2 = h_soahdLayout;
  SoAHostDeviceRangeCheckingView h_soahdrc3{h_soahd};
  [[maybe_unused]] SoAHostDeviceRangeCheckingView h_soahdrc4 = h_soahd;
  SoAHostDeviceConstView h_soahd_c(h_soahdLayout);

  // Alocate buffer, stores and views on the device (single, shared buffer).
  size_t deviceOnlySize = SoADeviceOnlyLayout::computeDataSize(numElements);
  std::byte* d_buf = nullptr;
  cudaCheck(cudaMallocHost(&d_buf, hostDeviceSize + deviceOnlySize));
  SoAHostDeviceLayout d_soahdLayout(d_buf, numElements);
  SoADeviceOnlyLayout d_soadoLayout(d_soahdLayout.metadata().nextByte(), numElements);
  SoAHostDeviceView d_soahdView(d_soahdLayout);
  SoAFullDeviceView d_soaFullView(d_soahdLayout, d_soadoLayout);

  // Assert column alignments
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_x()) % decltype(h_soahd)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_y()) % decltype(h_soahd)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_z()) % decltype(h_soahd)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_a()) % decltype(h_soahd)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_b()) % decltype(h_soahd)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_r()) % decltype(h_soahd)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_description()) % decltype(h_soahd)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(h_soahd.metadata().addressOf_someNumber()) % decltype(h_soahd)::alignment);

  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_x()) % decltype(d_soahdLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_y()) % decltype(d_soahdLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_z()) % decltype(d_soahdLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_a()) % decltype(d_soahdLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_b()) % decltype(d_soahdLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_r()) % decltype(d_soahdLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_description()) %
                  decltype(d_soahdLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soahdLayout.metadata().addressOf_someNumber()) %
                  decltype(d_soahdLayout)::alignment);

  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soadoLayout.metadata().addressOf_color()) % decltype(d_soadoLayout)::alignment);
  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soadoLayout.metadata().addressOf_value()) % decltype(d_soadoLayout)::alignment);
  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soadoLayout.metadata().addressOf_py()) % decltype(d_soadoLayout)::alignment);
  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soadoLayout.metadata().addressOf_count()) % decltype(d_soadoLayout)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soadoLayout.metadata().addressOf_anotherCount()) %
                  decltype(d_soadoLayout)::alignment);

  // Views should get the same alignment as the stores they refer to
  assert(0 == reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_x()) % decltype(d_soaFullView)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_y()) % decltype(d_soaFullView)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_z()) % decltype(d_soaFullView)::alignment);
  // Limitation of views: we have to get scalar member addresses via metadata.
  assert(0 == reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_description()) %
                  decltype(d_soaFullView)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_someNumber()) %
                  decltype(d_soaFullView)::alignment);
  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_color()) % decltype(d_soaFullView)::alignment);
  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_value()) % decltype(d_soaFullView)::alignment);
  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_py()) % decltype(d_soaFullView)::alignment);
  assert(0 ==
         reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_count()) % decltype(d_soaFullView)::alignment);
  assert(0 == reinterpret_cast<uintptr_t>(d_soaFullView.metadata().addressOf_anotherCount()) %
                  decltype(d_soaFullView)::alignment);

  // Initialize and fill the host buffer
  std::memset(h_soahdLayout.metadata().data(), 0, hostDeviceSize);
  for (size_t i = 0; i < numElements; ++i) {
    auto si = h_soahd[i];
    // Tuple assignment...
    // elements are: x, y, z, a, b, r
    auto v1 = 1.0 * i + 1.0;
    auto v2 = 2.0 * i;
    auto v3 = 3.0 * i - 1.0;
    if (i % 2) {
      si = {v1, v2, v3, {v1, v2, v3}, {v3, v2, v1}, {0, 0, 0}};
    } else {
      si.x() = si.a()(0) = si.b()(2) = v1;
      si.y() = si.a()(1) = si.b()(1) = v2;
      si.z() = si.a()(2) = si.b()(0) = v3;
    }
  }
  auto& sn = h_soahd.someNumber();
  sn = numElements + 2;

  // Push to device
  cudaCheck(cudaMemcpyAsync(d_buf, h_buf, hostDeviceSize, cudaMemcpyDefault, stream));

  // Process on device
  crossProduct<<<(numElements + 255) / 256, 256, 0, stream>>>(d_soahdView, numElements);

  // Paint the device only with 0xFF initially
  cudaCheck(cudaMemsetAsync(d_soadoLayout.metadata().data(), 0xFF, d_soadoLayout.metadata().byteSize(), stream));

  // Produce to the device only area
  producerKernel<<<(numElements + 255) / 256, 256, 0, stream>>>(d_soaFullView, numElements);

  // Consume the device only area and generate a result on the host-device area
  consumerKernel<<<(numElements + 255) / 256, 256, 0, stream>>>(d_soaFullView, numElements);

  // Get result back
  cudaCheck(cudaMemcpyAsync(h_buf, d_buf, hostDeviceSize, cudaMemcpyDefault, stream));

  // Wait and validate.
  cudaCheck(cudaStreamSynchronize(stream));
  for (size_t i = 0; i < numElements; ++i) {
    auto si = h_soahd_c[i];
    assert(si.r() == si.a().cross(si.b()));
    double initialX = 1.0 * i + 1.0;
    double initialY = 2.0 * i;
    double initialZ = 3.0 * i - 1.0;
    uint16_t expectedColor = 0x55 << i % (sizeof(uint16_t) - sizeof(char));
    double expectedX = expectedColor * sqrt(initialX * initialX + initialY * initialY + initialZ * initialZ);
    if (abs(si.x() - expectedX) / expectedX >= 2 * std::numeric_limits<double>::epsilon()) {
      std::cout << "X failed: for i=" << i << std::endl
                << "initialX=" << initialX << " initialY=" << initialY << " initialZ=" << initialZ << std::endl
                << "expectedX=" << expectedX << std::endl
                << "resultX=" << si.x() << " resultY=" << si.y() << " resultZ=" << si.z() << std::endl
                << "relativeDiff=" << abs(si.x() - expectedX) / expectedX
                << " epsilon=" << std::numeric_limits<double>::epsilon() << std::endl;
      assert(false);
    }
  }

  {
    // Get a view like the default, except for range checking (direct initialization from layout)
    SoAHostDeviceRangeCheckingView soa1viewRangeChecking(h_soahdLayout);
    try {
      [[maybe_unused]] auto si = soa1viewRangeChecking[soa1viewRangeChecking.metadata().size()];
      std::cout << "Fail: expected range-check exception (view-level index access) not caught on the host (overflow)."
                << std::endl;
      assert(false);
    } catch (const std::out_of_range&) {
    }
    try {
      [[maybe_unused]] auto si = soa1viewRangeChecking[-1];
      std::cout << "Fail: expected range-check exception (view-level index access) not caught on the host (underflow)."
                << std::endl;
      assert(false);
    } catch (const std::out_of_range&) {
    }
    [[maybe_unused]] auto si = soa1viewRangeChecking[soa1viewRangeChecking.metadata().size() - 1];
    [[maybe_unused]] auto si2 = soa1viewRangeChecking[0];
    std::cout << "Pass: expected range-check exceptions (view-level index access) successfully caught on the host "
                 "(layout initialization)."
              << std::endl;
  }

  {
    // Validation of view initialized range checking view initialization
    try {
      [[maybe_unused]] auto si = h_soahdrc3[h_soahdrc3.metadata().size()];
      std::cout << "Fail: expected range-check exception (view-level index access) not caught on the host (overflow)."
                << std::endl;
      assert(false);
    } catch (const std::out_of_range&) {
    }
    try {
      [[maybe_unused]] auto si = h_soahdrc3[-1];
      std::cout << "Fail: expected range-check exception (view-level index access) not caught on the host (underflow)."
                << std::endl;
      assert(false);
    } catch (const std::out_of_range&) {
    }
    [[maybe_unused]] auto si = h_soahdrc3[h_soahdrc3.metadata().size() - 1];
    [[maybe_unused]] auto si2 = h_soahdrc3[0];
    std::cout << "Pass: expected range-check exceptions (view-level index access) successfully caught on the host "
                 "(view initialization)."
              << std::endl;
  }

  // Validation of range checking in a kernel
  // Get a view like the default one, except for range checking
  RangeCheckingHostDeviceView soa1viewRangeChecking(d_soahdLayout);

  // This should throw an exception in the kernel
  rangeCheckKernel<<<1, 1, 0, stream>>>(soa1viewRangeChecking);

  // Wait and confirm that the CUDA kernel failed
  try {
    cudaCheck(cudaStreamSynchronize(stream));
    std::cout << "Fail: expected range-check exception not caught while executing the kernel." << std::endl;
    assert(false);
  } catch (const std::runtime_error&) {
    std::cout << "Pass: expected range-check exception caught while executing the kernel." << std::endl;
  }

  std::cout << "OK" << std::endl;
}