Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
#include <memory>

#include "DataFormats/Common/interface/RefToPtr.h"
#include "DataFormats/TauReco/interface/PFTau.h"

//using namespace std;
namespace reco {

  PFTau::PFTau() {
    leadPFChargedHadrCandsignedSipt_ = NAN;
    isolationPFChargedHadrCandsPtSum_ = NAN;
    isolationPFGammaCandsEtSum_ = NAN;
    maximumHCALPFClusterEt_ = NAN;
    emFraction_ = NAN;
    hcalTotOverPLead_ = NAN;
    hcalMaxOverPLead_ = NAN;
    hcal3x3OverPLead_ = NAN;
    ecalStripSumEOverPLead_ = NAN;
    bremsRecoveryEOverPLead_ = NAN;
    electronPreIDOutput_ = NAN;
    electronPreIDDecision_ = NAN;
    caloComp_ = NAN;
    segComp_ = NAN;
    muonDecision_ = NAN;
    decayMode_ = kNull;
    bendCorrMass_ = 0.;
    signalConeSize_ = 0.;
  }

  PFTau::PFTau(Charge q, const LorentzVector& p4, const Point& vtx) : BaseTau(q, p4, vtx) {
    leadPFChargedHadrCandsignedSipt_ = NAN;
    isolationPFChargedHadrCandsPtSum_ = NAN;
    isolationPFGammaCandsEtSum_ = NAN;
    maximumHCALPFClusterEt_ = NAN;

    emFraction_ = NAN;
    hcalTotOverPLead_ = NAN;
    hcalMaxOverPLead_ = NAN;
    hcal3x3OverPLead_ = NAN;
    ecalStripSumEOverPLead_ = NAN;
    bremsRecoveryEOverPLead_ = NAN;
    electronPreIDOutput_ = NAN;
    electronPreIDDecision_ = NAN;

    caloComp_ = NAN;
    segComp_ = NAN;
    muonDecision_ = NAN;
    decayMode_ = kNull;
    bendCorrMass_ = 0.;
    signalConeSize_ = 0.;
  }

  PFTau* PFTau::clone() const { return new PFTau(*this); }

  // Constituent getters and setters
  const JetBaseRef& PFTau::jetRef() const { return jetRef_; }
  void PFTau::setjetRef(const JetBaseRef& x) { jetRef_ = x; }

  const PFTauTagInfoRef& PFTau::pfTauTagInfoRef() const { return PFTauTagInfoRef_; }

  void PFTau::setpfTauTagInfoRef(const PFTauTagInfoRef x) { PFTauTagInfoRef_ = x; }

  const CandidatePtr& PFTau::leadChargedHadrCand() const { return leadChargedHadrCand_; }
  const CandidatePtr& PFTau::leadNeutralCand() const { return leadNeutralCand_; }
  const CandidatePtr& PFTau::leadCand() const { return leadCand_; }

  void PFTau::setleadChargedHadrCand(const CandidatePtr& myLead) { leadChargedHadrCand_ = myLead; }
  void PFTau::setleadNeutralCand(const CandidatePtr& myLead) { leadNeutralCand_ = myLead; }
  void PFTau::setleadCand(const CandidatePtr& myLead) { leadCand_ = myLead; }

  float PFTau::leadPFChargedHadrCandsignedSipt() const { return leadPFChargedHadrCandsignedSipt_; }
  void PFTau::setleadPFChargedHadrCandsignedSipt(const float& x) { leadPFChargedHadrCandsignedSipt_ = x; }

  const std::vector<CandidatePtr>& PFTau::signalCands() const { return selectedSignalCands_; }
  void PFTau::setsignalCands(const std::vector<CandidatePtr>& myParts) { selectedSignalCands_ = myParts; }
  const std::vector<CandidatePtr>& PFTau::signalChargedHadrCands() const { return selectedSignalChargedHadrCands_; }
  void PFTau::setsignalChargedHadrCands(const std::vector<CandidatePtr>& myParts) {
    selectedSignalChargedHadrCands_ = myParts;
  }
  const std::vector<CandidatePtr>& PFTau::signalNeutrHadrCands() const { return selectedSignalNeutrHadrCands_; }
  void PFTau::setsignalNeutrHadrCands(const std::vector<CandidatePtr>& myParts) {
    selectedSignalNeutrHadrCands_ = myParts;
  }
  const std::vector<CandidatePtr>& PFTau::signalGammaCands() const { return selectedSignalGammaCands_; }
  void PFTau::setsignalGammaCands(const std::vector<CandidatePtr>& myParts) { selectedSignalGammaCands_ = myParts; }

  const std::vector<CandidatePtr>& PFTau::isolationCands() const { return selectedIsolationCands_; }
  void PFTau::setisolationCands(const std::vector<CandidatePtr>& myParts) { selectedIsolationCands_ = myParts; }
  const std::vector<CandidatePtr>& PFTau::isolationChargedHadrCands() const {
    return selectedIsolationChargedHadrCands_;
  }
  void PFTau::setisolationChargedHadrCands(const std::vector<CandidatePtr>& myParts) {
    selectedIsolationChargedHadrCands_ = myParts;
  }
  const std::vector<CandidatePtr>& PFTau::isolationNeutrHadrCands() const { return selectedIsolationNeutrHadrCands_; }
  void PFTau::setisolationNeutrHadrCands(const std::vector<CandidatePtr>& myParts) {
    selectedIsolationNeutrHadrCands_ = myParts;
  }
  const std::vector<CandidatePtr>& PFTau::isolationGammaCands() const { return selectedIsolationGammaCands_; }
  void PFTau::setisolationGammaCands(const std::vector<CandidatePtr>& myParts) {
    selectedIsolationGammaCands_ = myParts;
  }

  namespace {
    template <typename T, typename U>
    void setCache(const T& iFrom, const edm::AtomicPtrCache<U>& oCache) {
      if (not oCache.isSet()) {
        // Fill them from the refs
        auto temp = std::make_unique<U>();
        temp->reserve(iFrom.size());
        for (auto const& ref : iFrom) {
          temp->push_back(*ref);
        }
        oCache.set(std::move(temp));
      }
    }

    template <typename T>
    T& makeCacheIfNeeded(edm::AtomicPtrCache<T>& oCache) {
      if (not oCache.isSet()) {
        oCache.set(std::make_unique<T>());
      }
      return *oCache;
    }

    template <typename T>
    void copyToCache(T&& iFrom, edm::AtomicPtrCache<T>& oCache) {
      oCache.reset();
      oCache.set(std::make_unique<T>(std::move(iFrom)));
    }

    std::unique_ptr<reco::PFCandidatePtr> convertToPFPtr(const reco::CandidatePtr& ptr) {
      if (ptr.isNonnull()) {
        const reco::PFCandidate* pf_cand = dynamic_cast<const reco::PFCandidate*>(&*ptr);
        if (pf_cand != nullptr) {
          return std::make_unique<reco::PFCandidatePtr>(ptr);
        } else
          throw cms::Exception("Type Mismatch")
              << "This PFTau was not made from PFCandidates, but it is being tried to access a PFCandidate.\n";
      }
      return std::make_unique<reco::PFCandidatePtr>();
    }

    std::unique_ptr<std::vector<reco::PFCandidatePtr> > convertToPFPtrs(const std::vector<reco::CandidatePtr>& cands) {
      std::unique_ptr<std::vector<reco::PFCandidatePtr> > newSignalPFCands{new std::vector<reco::PFCandidatePtr>{}};
      bool isPF = false;
      for (auto& cand : cands) {
        // Check for first Candidate if it is a PFCandidate; if yes, skip for the rest
        if (!isPF) {
          const reco::PFCandidate* pf_cand = dynamic_cast<const reco::PFCandidate*>(&*cand);
          if (pf_cand != nullptr) {
            isPF = true;
            newSignalPFCands->reserve(cands.size());
          } else
            throw cms::Exception("Type Mismatch")
                << "This PFTau was not made from PFCandidates, but it is being tried to access PFCandidates.\n";
        }
        const auto& newPtr = edm::Ptr<reco::PFCandidate>(cand);
        newSignalPFCands->push_back(newPtr);
      }
      return newSignalPFCands;
    }
  }  // namespace

  const PFCandidatePtr PFTau::leadPFChargedHadrCand() const {
    if (!leadPFChargedHadrCand_.isSet())
      leadPFChargedHadrCand_.set(convertToPFPtr(leadChargedHadrCand_));
    return *leadPFChargedHadrCand_;
  }

  const PFCandidatePtr PFTau::leadPFNeutralCand() const {
    if (!leadPFNeutralCand_.isSet())
      leadPFNeutralCand_.set(convertToPFPtr(leadNeutralCand_));
    return *leadPFNeutralCand_;
  }

  const PFCandidatePtr PFTau::leadPFCand() const {
    if (!leadPFCand_.isSet())
      leadPFCand_.set(convertToPFPtr(leadCand_));
    return *leadPFCand_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::signalPFCands() const {
    if (!selectedTransientSignalPFCands_.isSet()) {
      selectedTransientSignalPFCands_.set(convertToPFPtrs(selectedSignalCands_));
    }
    return *selectedTransientSignalPFCands_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::signalPFChargedHadrCands() const {
    if (!selectedTransientSignalPFChargedHadrCands_.isSet()) {
      selectedTransientSignalPFChargedHadrCands_.set(convertToPFPtrs(selectedSignalChargedHadrCands_));
    }
    return *selectedTransientSignalPFChargedHadrCands_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::signalPFNeutrHadrCands() const {
    if (!selectedTransientSignalPFNeutrHadrCands_.isSet()) {
      selectedTransientSignalPFNeutrHadrCands_.set(convertToPFPtrs(selectedSignalNeutrHadrCands_));
    }
    return *selectedTransientSignalPFNeutrHadrCands_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::signalPFGammaCands() const {
    if (!selectedTransientSignalPFGammaCands_.isSet()) {
      selectedTransientSignalPFGammaCands_.set(convertToPFPtrs(selectedSignalGammaCands_));
    }
    return *selectedTransientSignalPFGammaCands_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFCands() const {
    if (!selectedTransientIsolationPFCands_.isSet()) {
      selectedTransientIsolationPFCands_.set(convertToPFPtrs(selectedIsolationCands_));
    }
    return *selectedTransientIsolationPFCands_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFChargedHadrCands() const {
    if (!selectedTransientIsolationPFChargedHadrCands_.isSet()) {
      selectedTransientIsolationPFChargedHadrCands_.set(convertToPFPtrs(selectedIsolationChargedHadrCands_));
    }
    return *selectedTransientIsolationPFChargedHadrCands_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFNeutrHadrCands() const {
    if (!selectedTransientIsolationPFNeutrHadrCands_.isSet()) {
      selectedTransientIsolationPFNeutrHadrCands_.set(convertToPFPtrs(selectedIsolationNeutrHadrCands_));
    }
    return *selectedTransientIsolationPFNeutrHadrCands_;
  }

  const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFGammaCands() const {
    if (!selectedTransientIsolationPFGammaCands_.isSet()) {
      selectedTransientIsolationPFGammaCands_.set(convertToPFPtrs(selectedIsolationGammaCands_));
    }
    return *selectedTransientIsolationPFGammaCands_;
  }

  // PiZero and decay mode information
  const std::vector<RecoTauPiZero>& PFTau::signalPiZeroCandidates() const {
    // Check if the signal pi zeros are already filled
    setCache(signalPiZeroCandidatesRefs_, signalPiZeroCandidates_);
    return *signalPiZeroCandidates_;
  }

  std::vector<RecoTauPiZero>& PFTau::signalPiZeroCandidatesRestricted() {
    // Check if the signal pi zeros are already filled
    return makeCacheIfNeeded(signalPiZeroCandidates_);
  }

  void PFTau::setsignalPiZeroCandidates(std::vector<RecoTauPiZero> cands) {
    copyToCache(std::move(cands), signalPiZeroCandidates_);
  }

  void PFTau::setSignalPiZeroCandidatesRefs(RecoTauPiZeroRefVector cands) {
    signalPiZeroCandidatesRefs_ = std::move(cands);
  }

  const std::vector<RecoTauPiZero>& PFTau::isolationPiZeroCandidates() const {
    // Check if the signal pi zeros are already filled
    setCache(isolationPiZeroCandidatesRefs_, isolationPiZeroCandidates_);
    return *isolationPiZeroCandidates_;
  }

  std::vector<RecoTauPiZero>& PFTau::isolationPiZeroCandidatesRestricted() {
    // Check if the signal pi zeros are already filled
    return makeCacheIfNeeded(isolationPiZeroCandidates_);
  }

  void PFTau::setIsolationPiZeroCandidatesRefs(RecoTauPiZeroRefVector cands) {
    isolationPiZeroCandidatesRefs_ = std::move(cands);
  }

  void PFTau::setisolationPiZeroCandidates(std::vector<RecoTauPiZero> cands) {
    copyToCache(std::move(cands), signalPiZeroCandidates_);
  }

  // Tau Charged Hadron information
  PFRecoTauChargedHadronRef PFTau::leadTauChargedHadronCandidate() const {
    if (!signalTauChargedHadronCandidatesRefs_.empty()) {
      return signalTauChargedHadronCandidatesRefs_[0];
    } else {
      return PFRecoTauChargedHadronRef();
    }
  }

  const std::vector<PFRecoTauChargedHadron>& PFTau::signalTauChargedHadronCandidates() const {
    // Check if the signal tau charged hadrons are already filled
    setCache(signalTauChargedHadronCandidatesRefs_, signalTauChargedHadronCandidates_);
    return *signalTauChargedHadronCandidates_;
  }

  std::vector<PFRecoTauChargedHadron>& PFTau::signalTauChargedHadronCandidatesRestricted() {
    // Check if the signal tau charged hadrons are already filled
    return makeCacheIfNeeded(signalTauChargedHadronCandidates_);
  }

  void PFTau::setSignalTauChargedHadronCandidates(std::vector<PFRecoTauChargedHadron> cands) {
    copyToCache(std::move(cands), signalTauChargedHadronCandidates_);
  }

  void PFTau::setSignalTauChargedHadronCandidatesRefs(PFRecoTauChargedHadronRefVector cands) {
    signalTauChargedHadronCandidatesRefs_ = std::move(cands);
  }

  const std::vector<PFRecoTauChargedHadron>& PFTau::isolationTauChargedHadronCandidates() const {
    // Check if the isolation tau charged hadrons are already filled
    setCache(isolationTauChargedHadronCandidatesRefs_, isolationTauChargedHadronCandidates_);
    return *isolationTauChargedHadronCandidates_;
  }

  std::vector<PFRecoTauChargedHadron>& PFTau::isolationTauChargedHadronCandidatesRestricted() {
    // Check if the isolation tau charged hadrons are already filled
    return makeCacheIfNeeded(isolationTauChargedHadronCandidates_);
  }

  void PFTau::setIsolationTauChargedHadronCandidates(std::vector<PFRecoTauChargedHadron> cands) {
    copyToCache(std::move(cands), isolationTauChargedHadronCandidates_);
  }

  void PFTau::setIsolationTauChargedHadronCandidatesRefs(PFRecoTauChargedHadronRefVector cands) {
    isolationTauChargedHadronCandidatesRefs_ = std::move(cands);
  }

  PFTau::hadronicDecayMode PFTau::decayMode() const { return decayMode_; }

  void PFTau::setDecayMode(const PFTau::hadronicDecayMode& dm) { decayMode_ = dm; }

  // Setting information about the isolation region
  float PFTau::isolationPFChargedHadrCandsPtSum() const { return isolationPFChargedHadrCandsPtSum_; }
  void PFTau::setisolationPFChargedHadrCandsPtSum(const float& x) { isolationPFChargedHadrCandsPtSum_ = x; }

  float PFTau::isolationPFGammaCandsEtSum() const { return isolationPFGammaCandsEtSum_; }
  void PFTau::setisolationPFGammaCandsEtSum(const float& x) { isolationPFGammaCandsEtSum_ = x; }

  float PFTau::maximumHCALPFClusterEt() const { return maximumHCALPFClusterEt_; }
  void PFTau::setmaximumHCALPFClusterEt(const float& x) { maximumHCALPFClusterEt_ = x; }

  // Electron variables
  float PFTau::emFraction() const { return emFraction_; }
  float PFTau::hcalTotOverPLead() const { return hcalTotOverPLead_; }
  float PFTau::hcalMaxOverPLead() const { return hcalMaxOverPLead_; }
  float PFTau::hcal3x3OverPLead() const { return hcal3x3OverPLead_; }
  float PFTau::ecalStripSumEOverPLead() const { return ecalStripSumEOverPLead_; }
  float PFTau::bremsRecoveryEOverPLead() const { return bremsRecoveryEOverPLead_; }
  reco::TrackRef PFTau::electronPreIDTrack() const { return electronPreIDTrack_; }
  float PFTau::electronPreIDOutput() const { return electronPreIDOutput_; }
  bool PFTau::electronPreIDDecision() const { return electronPreIDDecision_; }

  void PFTau::setemFraction(const float& x) { emFraction_ = x; }
  void PFTau::sethcalTotOverPLead(const float& x) { hcalTotOverPLead_ = x; }
  void PFTau::sethcalMaxOverPLead(const float& x) { hcalMaxOverPLead_ = x; }
  void PFTau::sethcal3x3OverPLead(const float& x) { hcal3x3OverPLead_ = x; }
  void PFTau::setecalStripSumEOverPLead(const float& x) { ecalStripSumEOverPLead_ = x; }
  void PFTau::setbremsRecoveryEOverPLead(const float& x) { bremsRecoveryEOverPLead_ = x; }
  void PFTau::setelectronPreIDTrack(const reco::TrackRef& x) { electronPreIDTrack_ = x; }
  void PFTau::setelectronPreIDOutput(const float& x) { electronPreIDOutput_ = x; }
  void PFTau::setelectronPreIDDecision(const bool& x) { electronPreIDDecision_ = x; }

  // Muon variables
  bool PFTau::hasMuonReference() const {  // check if muon ref exists
    if (leadChargedHadrCand_.isNull())
      return false;
    else if (leadChargedHadrCand_.isNonnull()) {
      const reco::PFCandidate* pf_cand = dynamic_cast<const reco::PFCandidate*>(&*leadChargedHadrCand_);
      if (pf_cand) {
        reco::MuonRef muonRef = pf_cand->muonRef();
        if (muonRef.isNull())
          return false;
        else if (muonRef.isNonnull())
          return true;
      }
    }
    return false;
  }

  float PFTau::caloComp() const { return caloComp_; }
  float PFTau::segComp() const { return segComp_; }
  bool PFTau::muonDecision() const { return muonDecision_; }
  void PFTau::setCaloComp(const float& x) { caloComp_ = x; }
  void PFTau::setSegComp(const float& x) { segComp_ = x; }
  void PFTau::setMuonDecision(const bool& x) { muonDecision_ = x; }

  CandidatePtr PFTau::sourceCandidatePtr(size_type i) const {
    if (i != 0)
      return CandidatePtr();
    return jetRef().castTo<CandidatePtr>();
  }

  bool PFTau::overlap(const Candidate& theCand) const {
    const RecoCandidate* theRecoCand = dynamic_cast<const RecoCandidate*>(&theCand);
    return (theRecoCand != nullptr && (checkOverlap(track(), theRecoCand->track())));
  }

  void PFTau::dump(std::ostream& out) const {
    if (!out)
      return;

    if (pfTauTagInfoRef().isNonnull()) {
      out << "Its TauTagInfo constituents :" << std::endl;
      out << "# Tracks " << pfTauTagInfoRef()->Tracks().size() << std::endl;
      out << "# PF charged hadr. cand's " << pfTauTagInfoRef()->PFChargedHadrCands().size() << std::endl;
      out << "# PF neutral hadr. cand's " << pfTauTagInfoRef()->PFNeutrHadrCands().size() << std::endl;
      out << "# PF gamma cand's " << pfTauTagInfoRef()->PFGammaCands().size() << std::endl;
    }
    out << "in detail :" << std::endl;

    out << "Pt of the PFTau " << pt() << std::endl;
    const CandidatePtr& theLeadCand = leadChargedHadrCand();
    if (!theLeadCand) {
      out << "No Lead Cand " << std::endl;
    } else {
      out << "Lead Cand PDG Id " << (*theLeadCand).pdgId() << std::endl;
      out << "Lead Cand Pt " << (*theLeadCand).pt() << std::endl;
      out << "Lead Cand Charge " << (*theLeadCand).charge() << std::endl;
      out << "Inner point position (x,y,z) of the PFTau (" << vx() << "," << vy() << "," << vz() << ")" << std::endl;
      out << "Charge of the PFTau " << charge() << std::endl;
      out << "Et of the highest Et HCAL PFCluster " << maximumHCALPFClusterEt() << std::endl;
      out << "Number of SignalChargedHadrCands = " << signalChargedHadrCands().size() << std::endl;
      out << "Number of SignalGammaCands = " << signalGammaCands().size() << std::endl;
      out << "Number of IsolationChargedHadrCands = " << isolationChargedHadrCands().size() << std::endl;
      out << "Number of IsolationGammaCands = " << isolationGammaCands().size() << std::endl;
      out << "Sum of Pt of charged hadr. PFCandidates in isolation annulus around Lead PF = "
          << isolationPFChargedHadrCandsPtSum() << std::endl;
      out << "Sum of Et of gamma PFCandidates in other isolation annulus around Lead PF = "
          << isolationPFGammaCandsEtSum() << std::endl;
    }
    // return out;
  }

  std::ostream& operator<<(std::ostream& out, const reco::PFTau& tau) {
    if (!out)
      return out;

    out << std::setprecision(3) << "PFTau "
        << " charge: " << tau.charge() << " "
        << " pt:" << tau.pt() << " "
        << " eta:" << tau.eta() << " "
        << " phi:" << tau.phi() << " "
        << " mass:" << tau.mass() << " "
        << " dm: " << tau.decayMode() << " " << tau.signalCands().size() << "," << tau.signalChargedHadrCands().size()
        << "," << tau.signalGammaCands().size() << "," << tau.signalPiZeroCandidates().size() << ","
        << tau.signalNeutrHadrCands().size() << "  "

        << tau.isolationCands().size() << "," << tau.isolationChargedHadrCands().size() << ","
        << tau.isolationGammaCands().size() << "," << tau.isolationPiZeroCandidates().size() << ","
        << tau.isolationNeutrHadrCands().size();

    return out;
  }

}  // namespace reco