1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
#include <memory>
#include "DataFormats/Common/interface/RefToPtr.h"
#include "DataFormats/TauReco/interface/PFTau.h"
//using namespace std;
namespace reco {
PFTau::PFTau() {
leadPFChargedHadrCandsignedSipt_ = NAN;
isolationPFChargedHadrCandsPtSum_ = NAN;
isolationPFGammaCandsEtSum_ = NAN;
maximumHCALPFClusterEt_ = NAN;
emFraction_ = NAN;
hcalTotOverPLead_ = NAN;
hcalMaxOverPLead_ = NAN;
hcal3x3OverPLead_ = NAN;
ecalStripSumEOverPLead_ = NAN;
bremsRecoveryEOverPLead_ = NAN;
electronPreIDOutput_ = NAN;
electronPreIDDecision_ = NAN;
caloComp_ = NAN;
segComp_ = NAN;
muonDecision_ = NAN;
decayMode_ = kNull;
bendCorrMass_ = 0.;
signalConeSize_ = 0.;
}
PFTau::PFTau(Charge q, const LorentzVector& p4, const Point& vtx) : BaseTau(q, p4, vtx) {
leadPFChargedHadrCandsignedSipt_ = NAN;
isolationPFChargedHadrCandsPtSum_ = NAN;
isolationPFGammaCandsEtSum_ = NAN;
maximumHCALPFClusterEt_ = NAN;
emFraction_ = NAN;
hcalTotOverPLead_ = NAN;
hcalMaxOverPLead_ = NAN;
hcal3x3OverPLead_ = NAN;
ecalStripSumEOverPLead_ = NAN;
bremsRecoveryEOverPLead_ = NAN;
electronPreIDOutput_ = NAN;
electronPreIDDecision_ = NAN;
caloComp_ = NAN;
segComp_ = NAN;
muonDecision_ = NAN;
decayMode_ = kNull;
bendCorrMass_ = 0.;
signalConeSize_ = 0.;
}
PFTau* PFTau::clone() const { return new PFTau(*this); }
// Constituent getters and setters
const JetBaseRef& PFTau::jetRef() const { return jetRef_; }
void PFTau::setjetRef(const JetBaseRef& x) { jetRef_ = x; }
const PFTauTagInfoRef& PFTau::pfTauTagInfoRef() const { return PFTauTagInfoRef_; }
void PFTau::setpfTauTagInfoRef(const PFTauTagInfoRef x) { PFTauTagInfoRef_ = x; }
const CandidatePtr& PFTau::leadChargedHadrCand() const { return leadChargedHadrCand_; }
const CandidatePtr& PFTau::leadNeutralCand() const { return leadNeutralCand_; }
const CandidatePtr& PFTau::leadCand() const { return leadCand_; }
void PFTau::setleadChargedHadrCand(const CandidatePtr& myLead) { leadChargedHadrCand_ = myLead; }
void PFTau::setleadNeutralCand(const CandidatePtr& myLead) { leadNeutralCand_ = myLead; }
void PFTau::setleadCand(const CandidatePtr& myLead) { leadCand_ = myLead; }
float PFTau::leadPFChargedHadrCandsignedSipt() const { return leadPFChargedHadrCandsignedSipt_; }
void PFTau::setleadPFChargedHadrCandsignedSipt(const float& x) { leadPFChargedHadrCandsignedSipt_ = x; }
const std::vector<CandidatePtr>& PFTau::signalCands() const { return selectedSignalCands_; }
void PFTau::setsignalCands(const std::vector<CandidatePtr>& myParts) { selectedSignalCands_ = myParts; }
const std::vector<CandidatePtr>& PFTau::signalChargedHadrCands() const { return selectedSignalChargedHadrCands_; }
void PFTau::setsignalChargedHadrCands(const std::vector<CandidatePtr>& myParts) {
selectedSignalChargedHadrCands_ = myParts;
}
const std::vector<CandidatePtr>& PFTau::signalNeutrHadrCands() const { return selectedSignalNeutrHadrCands_; }
void PFTau::setsignalNeutrHadrCands(const std::vector<CandidatePtr>& myParts) {
selectedSignalNeutrHadrCands_ = myParts;
}
const std::vector<CandidatePtr>& PFTau::signalGammaCands() const { return selectedSignalGammaCands_; }
void PFTau::setsignalGammaCands(const std::vector<CandidatePtr>& myParts) { selectedSignalGammaCands_ = myParts; }
const std::vector<CandidatePtr>& PFTau::isolationCands() const { return selectedIsolationCands_; }
void PFTau::setisolationCands(const std::vector<CandidatePtr>& myParts) { selectedIsolationCands_ = myParts; }
const std::vector<CandidatePtr>& PFTau::isolationChargedHadrCands() const {
return selectedIsolationChargedHadrCands_;
}
void PFTau::setisolationChargedHadrCands(const std::vector<CandidatePtr>& myParts) {
selectedIsolationChargedHadrCands_ = myParts;
}
const std::vector<CandidatePtr>& PFTau::isolationNeutrHadrCands() const { return selectedIsolationNeutrHadrCands_; }
void PFTau::setisolationNeutrHadrCands(const std::vector<CandidatePtr>& myParts) {
selectedIsolationNeutrHadrCands_ = myParts;
}
const std::vector<CandidatePtr>& PFTau::isolationGammaCands() const { return selectedIsolationGammaCands_; }
void PFTau::setisolationGammaCands(const std::vector<CandidatePtr>& myParts) {
selectedIsolationGammaCands_ = myParts;
}
namespace {
template <typename T, typename U>
void setCache(const T& iFrom, const edm::AtomicPtrCache<U>& oCache) {
if (not oCache.isSet()) {
// Fill them from the refs
auto temp = std::make_unique<U>();
temp->reserve(iFrom.size());
for (auto const& ref : iFrom) {
temp->push_back(*ref);
}
oCache.set(std::move(temp));
}
}
template <typename T>
T& makeCacheIfNeeded(edm::AtomicPtrCache<T>& oCache) {
if (not oCache.isSet()) {
oCache.set(std::make_unique<T>());
}
return *oCache;
}
template <typename T>
void copyToCache(T&& iFrom, edm::AtomicPtrCache<T>& oCache) {
oCache.reset();
oCache.set(std::make_unique<T>(std::move(iFrom)));
}
std::unique_ptr<reco::PFCandidatePtr> convertToPFPtr(const reco::CandidatePtr& ptr) {
if (ptr.isNonnull()) {
const reco::PFCandidate* pf_cand = dynamic_cast<const reco::PFCandidate*>(&*ptr);
if (pf_cand != nullptr) {
return std::make_unique<reco::PFCandidatePtr>(ptr);
} else
throw cms::Exception("Type Mismatch")
<< "This PFTau was not made from PFCandidates, but it is being tried to access a PFCandidate.\n";
}
return std::make_unique<reco::PFCandidatePtr>();
}
std::unique_ptr<std::vector<reco::PFCandidatePtr> > convertToPFPtrs(const std::vector<reco::CandidatePtr>& cands) {
std::unique_ptr<std::vector<reco::PFCandidatePtr> > newSignalPFCands{new std::vector<reco::PFCandidatePtr>{}};
bool isPF = false;
for (auto& cand : cands) {
// Check for first Candidate if it is a PFCandidate; if yes, skip for the rest
if (!isPF) {
const reco::PFCandidate* pf_cand = dynamic_cast<const reco::PFCandidate*>(&*cand);
if (pf_cand != nullptr) {
isPF = true;
newSignalPFCands->reserve(cands.size());
} else
throw cms::Exception("Type Mismatch")
<< "This PFTau was not made from PFCandidates, but it is being tried to access PFCandidates.\n";
}
const auto& newPtr = edm::Ptr<reco::PFCandidate>(cand);
newSignalPFCands->push_back(newPtr);
}
return newSignalPFCands;
}
} // namespace
const PFCandidatePtr PFTau::leadPFChargedHadrCand() const {
if (!leadPFChargedHadrCand_.isSet())
leadPFChargedHadrCand_.set(convertToPFPtr(leadChargedHadrCand_));
return *leadPFChargedHadrCand_;
}
const PFCandidatePtr PFTau::leadPFNeutralCand() const {
if (!leadPFNeutralCand_.isSet())
leadPFNeutralCand_.set(convertToPFPtr(leadNeutralCand_));
return *leadPFNeutralCand_;
}
const PFCandidatePtr PFTau::leadPFCand() const {
if (!leadPFCand_.isSet())
leadPFCand_.set(convertToPFPtr(leadCand_));
return *leadPFCand_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::signalPFCands() const {
if (!selectedTransientSignalPFCands_.isSet()) {
selectedTransientSignalPFCands_.set(convertToPFPtrs(selectedSignalCands_));
}
return *selectedTransientSignalPFCands_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::signalPFChargedHadrCands() const {
if (!selectedTransientSignalPFChargedHadrCands_.isSet()) {
selectedTransientSignalPFChargedHadrCands_.set(convertToPFPtrs(selectedSignalChargedHadrCands_));
}
return *selectedTransientSignalPFChargedHadrCands_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::signalPFNeutrHadrCands() const {
if (!selectedTransientSignalPFNeutrHadrCands_.isSet()) {
selectedTransientSignalPFNeutrHadrCands_.set(convertToPFPtrs(selectedSignalNeutrHadrCands_));
}
return *selectedTransientSignalPFNeutrHadrCands_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::signalPFGammaCands() const {
if (!selectedTransientSignalPFGammaCands_.isSet()) {
selectedTransientSignalPFGammaCands_.set(convertToPFPtrs(selectedSignalGammaCands_));
}
return *selectedTransientSignalPFGammaCands_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFCands() const {
if (!selectedTransientIsolationPFCands_.isSet()) {
selectedTransientIsolationPFCands_.set(convertToPFPtrs(selectedIsolationCands_));
}
return *selectedTransientIsolationPFCands_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFChargedHadrCands() const {
if (!selectedTransientIsolationPFChargedHadrCands_.isSet()) {
selectedTransientIsolationPFChargedHadrCands_.set(convertToPFPtrs(selectedIsolationChargedHadrCands_));
}
return *selectedTransientIsolationPFChargedHadrCands_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFNeutrHadrCands() const {
if (!selectedTransientIsolationPFNeutrHadrCands_.isSet()) {
selectedTransientIsolationPFNeutrHadrCands_.set(convertToPFPtrs(selectedIsolationNeutrHadrCands_));
}
return *selectedTransientIsolationPFNeutrHadrCands_;
}
const std::vector<reco::PFCandidatePtr>& PFTau::isolationPFGammaCands() const {
if (!selectedTransientIsolationPFGammaCands_.isSet()) {
selectedTransientIsolationPFGammaCands_.set(convertToPFPtrs(selectedIsolationGammaCands_));
}
return *selectedTransientIsolationPFGammaCands_;
}
// PiZero and decay mode information
const std::vector<RecoTauPiZero>& PFTau::signalPiZeroCandidates() const {
// Check if the signal pi zeros are already filled
setCache(signalPiZeroCandidatesRefs_, signalPiZeroCandidates_);
return *signalPiZeroCandidates_;
}
std::vector<RecoTauPiZero>& PFTau::signalPiZeroCandidatesRestricted() {
// Check if the signal pi zeros are already filled
return makeCacheIfNeeded(signalPiZeroCandidates_);
}
void PFTau::setsignalPiZeroCandidates(std::vector<RecoTauPiZero> cands) {
copyToCache(std::move(cands), signalPiZeroCandidates_);
}
void PFTau::setSignalPiZeroCandidatesRefs(RecoTauPiZeroRefVector cands) {
signalPiZeroCandidatesRefs_ = std::move(cands);
}
const std::vector<RecoTauPiZero>& PFTau::isolationPiZeroCandidates() const {
// Check if the signal pi zeros are already filled
setCache(isolationPiZeroCandidatesRefs_, isolationPiZeroCandidates_);
return *isolationPiZeroCandidates_;
}
std::vector<RecoTauPiZero>& PFTau::isolationPiZeroCandidatesRestricted() {
// Check if the signal pi zeros are already filled
return makeCacheIfNeeded(isolationPiZeroCandidates_);
}
void PFTau::setIsolationPiZeroCandidatesRefs(RecoTauPiZeroRefVector cands) {
isolationPiZeroCandidatesRefs_ = std::move(cands);
}
void PFTau::setisolationPiZeroCandidates(std::vector<RecoTauPiZero> cands) {
copyToCache(std::move(cands), signalPiZeroCandidates_);
}
// Tau Charged Hadron information
PFRecoTauChargedHadronRef PFTau::leadTauChargedHadronCandidate() const {
if (!signalTauChargedHadronCandidatesRefs_.empty()) {
return signalTauChargedHadronCandidatesRefs_[0];
} else {
return PFRecoTauChargedHadronRef();
}
}
const std::vector<PFRecoTauChargedHadron>& PFTau::signalTauChargedHadronCandidates() const {
// Check if the signal tau charged hadrons are already filled
setCache(signalTauChargedHadronCandidatesRefs_, signalTauChargedHadronCandidates_);
return *signalTauChargedHadronCandidates_;
}
std::vector<PFRecoTauChargedHadron>& PFTau::signalTauChargedHadronCandidatesRestricted() {
// Check if the signal tau charged hadrons are already filled
return makeCacheIfNeeded(signalTauChargedHadronCandidates_);
}
void PFTau::setSignalTauChargedHadronCandidates(std::vector<PFRecoTauChargedHadron> cands) {
copyToCache(std::move(cands), signalTauChargedHadronCandidates_);
}
void PFTau::setSignalTauChargedHadronCandidatesRefs(PFRecoTauChargedHadronRefVector cands) {
signalTauChargedHadronCandidatesRefs_ = std::move(cands);
}
const std::vector<PFRecoTauChargedHadron>& PFTau::isolationTauChargedHadronCandidates() const {
// Check if the isolation tau charged hadrons are already filled
setCache(isolationTauChargedHadronCandidatesRefs_, isolationTauChargedHadronCandidates_);
return *isolationTauChargedHadronCandidates_;
}
std::vector<PFRecoTauChargedHadron>& PFTau::isolationTauChargedHadronCandidatesRestricted() {
// Check if the isolation tau charged hadrons are already filled
return makeCacheIfNeeded(isolationTauChargedHadronCandidates_);
}
void PFTau::setIsolationTauChargedHadronCandidates(std::vector<PFRecoTauChargedHadron> cands) {
copyToCache(std::move(cands), isolationTauChargedHadronCandidates_);
}
void PFTau::setIsolationTauChargedHadronCandidatesRefs(PFRecoTauChargedHadronRefVector cands) {
isolationTauChargedHadronCandidatesRefs_ = std::move(cands);
}
PFTau::hadronicDecayMode PFTau::decayMode() const { return decayMode_; }
void PFTau::setDecayMode(const PFTau::hadronicDecayMode& dm) { decayMode_ = dm; }
// Setting information about the isolation region
float PFTau::isolationPFChargedHadrCandsPtSum() const { return isolationPFChargedHadrCandsPtSum_; }
void PFTau::setisolationPFChargedHadrCandsPtSum(const float& x) { isolationPFChargedHadrCandsPtSum_ = x; }
float PFTau::isolationPFGammaCandsEtSum() const { return isolationPFGammaCandsEtSum_; }
void PFTau::setisolationPFGammaCandsEtSum(const float& x) { isolationPFGammaCandsEtSum_ = x; }
float PFTau::maximumHCALPFClusterEt() const { return maximumHCALPFClusterEt_; }
void PFTau::setmaximumHCALPFClusterEt(const float& x) { maximumHCALPFClusterEt_ = x; }
// Electron variables
float PFTau::emFraction() const { return emFraction_; }
float PFTau::hcalTotOverPLead() const { return hcalTotOverPLead_; }
float PFTau::hcalMaxOverPLead() const { return hcalMaxOverPLead_; }
float PFTau::hcal3x3OverPLead() const { return hcal3x3OverPLead_; }
float PFTau::ecalStripSumEOverPLead() const { return ecalStripSumEOverPLead_; }
float PFTau::bremsRecoveryEOverPLead() const { return bremsRecoveryEOverPLead_; }
reco::TrackRef PFTau::electronPreIDTrack() const { return electronPreIDTrack_; }
float PFTau::electronPreIDOutput() const { return electronPreIDOutput_; }
bool PFTau::electronPreIDDecision() const { return electronPreIDDecision_; }
void PFTau::setemFraction(const float& x) { emFraction_ = x; }
void PFTau::sethcalTotOverPLead(const float& x) { hcalTotOverPLead_ = x; }
void PFTau::sethcalMaxOverPLead(const float& x) { hcalMaxOverPLead_ = x; }
void PFTau::sethcal3x3OverPLead(const float& x) { hcal3x3OverPLead_ = x; }
void PFTau::setecalStripSumEOverPLead(const float& x) { ecalStripSumEOverPLead_ = x; }
void PFTau::setbremsRecoveryEOverPLead(const float& x) { bremsRecoveryEOverPLead_ = x; }
void PFTau::setelectronPreIDTrack(const reco::TrackRef& x) { electronPreIDTrack_ = x; }
void PFTau::setelectronPreIDOutput(const float& x) { electronPreIDOutput_ = x; }
void PFTau::setelectronPreIDDecision(const bool& x) { electronPreIDDecision_ = x; }
// Muon variables
bool PFTau::hasMuonReference() const { // check if muon ref exists
if (leadChargedHadrCand_.isNull())
return false;
else if (leadChargedHadrCand_.isNonnull()) {
const reco::PFCandidate* pf_cand = dynamic_cast<const reco::PFCandidate*>(&*leadChargedHadrCand_);
if (pf_cand) {
reco::MuonRef muonRef = pf_cand->muonRef();
if (muonRef.isNull())
return false;
else if (muonRef.isNonnull())
return true;
}
}
return false;
}
float PFTau::caloComp() const { return caloComp_; }
float PFTau::segComp() const { return segComp_; }
bool PFTau::muonDecision() const { return muonDecision_; }
void PFTau::setCaloComp(const float& x) { caloComp_ = x; }
void PFTau::setSegComp(const float& x) { segComp_ = x; }
void PFTau::setMuonDecision(const bool& x) { muonDecision_ = x; }
CandidatePtr PFTau::sourceCandidatePtr(size_type i) const {
if (i != 0)
return CandidatePtr();
return jetRef().castTo<CandidatePtr>();
}
bool PFTau::overlap(const Candidate& theCand) const {
const RecoCandidate* theRecoCand = dynamic_cast<const RecoCandidate*>(&theCand);
return (theRecoCand != nullptr && (checkOverlap(track(), theRecoCand->track())));
}
void PFTau::dump(std::ostream& out) const {
if (!out)
return;
if (pfTauTagInfoRef().isNonnull()) {
out << "Its TauTagInfo constituents :" << std::endl;
out << "# Tracks " << pfTauTagInfoRef()->Tracks().size() << std::endl;
out << "# PF charged hadr. cand's " << pfTauTagInfoRef()->PFChargedHadrCands().size() << std::endl;
out << "# PF neutral hadr. cand's " << pfTauTagInfoRef()->PFNeutrHadrCands().size() << std::endl;
out << "# PF gamma cand's " << pfTauTagInfoRef()->PFGammaCands().size() << std::endl;
}
out << "in detail :" << std::endl;
out << "Pt of the PFTau " << pt() << std::endl;
const CandidatePtr& theLeadCand = leadChargedHadrCand();
if (!theLeadCand) {
out << "No Lead Cand " << std::endl;
} else {
out << "Lead Cand PDG Id " << (*theLeadCand).pdgId() << std::endl;
out << "Lead Cand Pt " << (*theLeadCand).pt() << std::endl;
out << "Lead Cand Charge " << (*theLeadCand).charge() << std::endl;
out << "Inner point position (x,y,z) of the PFTau (" << vx() << "," << vy() << "," << vz() << ")" << std::endl;
out << "Charge of the PFTau " << charge() << std::endl;
out << "Et of the highest Et HCAL PFCluster " << maximumHCALPFClusterEt() << std::endl;
out << "Number of SignalChargedHadrCands = " << signalChargedHadrCands().size() << std::endl;
out << "Number of SignalGammaCands = " << signalGammaCands().size() << std::endl;
out << "Number of IsolationChargedHadrCands = " << isolationChargedHadrCands().size() << std::endl;
out << "Number of IsolationGammaCands = " << isolationGammaCands().size() << std::endl;
out << "Sum of Pt of charged hadr. PFCandidates in isolation annulus around Lead PF = "
<< isolationPFChargedHadrCandsPtSum() << std::endl;
out << "Sum of Et of gamma PFCandidates in other isolation annulus around Lead PF = "
<< isolationPFGammaCandsEtSum() << std::endl;
}
// return out;
}
std::ostream& operator<<(std::ostream& out, const reco::PFTau& tau) {
if (!out)
return out;
out << std::setprecision(3) << "PFTau "
<< " charge: " << tau.charge() << " "
<< " pt:" << tau.pt() << " "
<< " eta:" << tau.eta() << " "
<< " phi:" << tau.phi() << " "
<< " mass:" << tau.mass() << " "
<< " dm: " << tau.decayMode() << " " << tau.signalCands().size() << "," << tau.signalChargedHadrCands().size()
<< "," << tau.signalGammaCands().size() << "," << tau.signalPiZeroCandidates().size() << ","
<< tau.signalNeutrHadrCands().size() << " "
<< tau.isolationCands().size() << "," << tau.isolationChargedHadrCands().size() << ","
<< tau.isolationGammaCands().size() << "," << tau.isolationPiZeroCandidates().size() << ","
<< tau.isolationNeutrHadrCands().size();
return out;
}
} // namespace reco
|