TrackAlgorithm

TrackBase

TrackQuality

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
#ifndef TrackReco_TrackBase_h
#define TrackReco_TrackBase_h
/** \class reco::TrackBase TrackBase.h DataFormats/TrackReco/interface/TrackBase.h
 *
 * Common base class to all track types, including Muon fits.
 * Internally, the following information is stored: <BR>
 *   <DT> A reference position on the track: (vx,vy,vz) </DT>
 *   <DT> Momentum at this given reference point on track: (px,py,pz) </DT>
 *   <DT> 5D curvilinear covariance matrix from the track fit </DT>
 *   <DT> Charge </DT>
 *   <DT> Chi-square and number of degrees of freedom </DT>
 *   <DT> Summary information of the hit pattern </DT>
 *
 * For tracks reconstructed in the CMS Tracker, the reference position is the point of
 * closest approach to the centre of CMS. For muons, this is not necessarily true.
 *
 * Parameters associated to the 5D curvilinear covariance matrix: <BR>
 * <B> (qoverp, lambda, phi, dxy, dsz) </B><BR>
 * defined as:  <BR>
 *   <DT> qoverp = q / abs(p) = signed inverse of momentum [1/GeV] </DT>
 *   <DT> lambda = pi/2 - polar angle at the given point </DT>
 *   <DT> phi = azimuth angle at the given point </DT>
 *   <DT> dxy = -vx*sin(phi) + vy*cos(phi) [cm] </DT>
 *   <DT> dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm] </DT>
 *
 * Geometrically, dxy is the signed distance in the XY plane between the
 * the straight line passing through (vx,vy) with azimuthal angle phi and
 * the point (0,0).<BR>
 * The dsz parameter is the signed distance in the SZ plane between the
 * the straight line passing through (vx,vy,vz) with angles (phi, lambda) and
 * the point (s=0,z=0). The S axis is defined by the projection of the
 * straight line onto the XY plane. The convention is to assign the S
 * coordinate for (vx,vy) as the value vx*cos(phi)+vy*sin(phi). This value is
 * zero when (vx,vy) is the point of minimum transverse distance to (0,0).
 *
 * Note that dxy and dsz provide sensible estimates of the distance from
 * the true particle trajectory to (0,0,0) ONLY in two cases:<BR>
 *   <DT> When (vx,vy,vz) already correspond to the point of minimum transverse
 *   distance to (0,0,0) or is close to it (so that the differences
 *   between considering the exact trajectory or a straight line in this range
 *   are negligible). This is usually true for Tracker tracks. </DT>
 *   <DT> When the track has infinite or extremely high momentum </DT>
 *
 * More details about this parametrization are provided in the following document: <BR>
 * <a href="http://cms.cern.ch/iCMS/jsp/openfile.jsp?type=NOTE&year=2006&files=NOTE2006_001.pdf">A. Strandlie, W. Wittek, "Propagation of Covariance Matrices...", CMS Note 2006/001</a> <BR>
 *
 * \author Thomas Speer, Luca Lista, Pascal Vanlaer, Juan Alcaraz
 *
 */

#include "DataFormats/TrackReco/interface/HitPattern.h"
#include "DataFormats/BeamSpot/interface/BeamSpot.h"
#include "DataFormats/Math/interface/Vector.h"
#include "DataFormats/Math/interface/Error.h"
#include "DataFormats/Math/interface/Vector3D.h"
#include "DataFormats/Math/interface/Point3D.h"
#include "DataFormats/Math/interface/Error.h"
#include <bitset>

namespace reco {

  class TrackBase {
  public:
    /// parameter dimension
    enum { dimension = 5 };

    /// error matrix size
    enum { covarianceSize = dimension * (dimension + 1) / 2 };

    /// parameter vector
    typedef math::Vector<dimension>::type ParameterVector;

    /// 5 parameter covariance matrix
    typedef math::Error<dimension>::type CovarianceMatrix;

    /// spatial vector
    typedef math::XYZVector Vector;

    /// point in the space
    typedef math::XYZPoint Point;

    /// enumerator provided indices to the five parameters
    enum { i_qoverp = 0, i_lambda, i_phi, i_dxy, i_dsz };

    /// index type
    typedef unsigned int index;

    /// track algorithm
    enum TrackAlgorithm {
      undefAlgorithm = 0,
      ctf = 1,
      duplicateMerge = 2,
      cosmics = 3,
      initialStep = 4,
      lowPtTripletStep = 5,
      pixelPairStep = 6,
      detachedTripletStep = 7,
      mixedTripletStep = 8,
      pixelLessStep = 9,
      tobTecStep = 10,
      jetCoreRegionalStep = 11,
      conversionStep = 12,
      muonSeededStepInOut = 13,
      muonSeededStepOutIn = 14,
      outInEcalSeededConv = 15,
      inOutEcalSeededConv = 16,
      nuclInter = 17,
      standAloneMuon = 18,
      globalMuon = 19,
      cosmicStandAloneMuon = 20,
      cosmicGlobalMuon = 21,
      // Phase1
      highPtTripletStep = 22,
      lowPtQuadStep = 23,
      detachedQuadStep = 24,
      displacedGeneralStep = 25,
      displacedRegionalStep = 26,
      bTagGhostTracks = 27,
      beamhalo = 28,
      gsf = 29,
      // HLT algo name
      hltPixel = 30,
      // steps used by PF
      hltIter0 = 31,
      hltIter1 = 32,
      hltIter2 = 33,
      hltIter3 = 34,
      hltIter4 = 35,
      // steps used by all other objects @HLT
      hltIterX = 36,
      // steps used by HI muon regional iterative tracking
      hiRegitMuInitialStep = 37,
      hiRegitMuLowPtTripletStep = 38,
      hiRegitMuPixelPairStep = 39,
      hiRegitMuDetachedTripletStep = 40,
      hiRegitMuMixedTripletStep = 41,
      hiRegitMuPixelLessStep = 42,
      hiRegitMuTobTecStep = 43,
      hiRegitMuMuonSeededStepInOut = 44,
      hiRegitMuMuonSeededStepOutIn = 45,
      algoSize = 46
    };

    /// algo mask
    typedef std::bitset<algoSize> AlgoMask;

    static const std::string algoNames[];

    /// track quality
    enum TrackQuality {
      undefQuality = -1,
      loose = 0,
      tight = 1,
      highPurity = 2,
      confirmed = 3,      // means found by more than one iteration
      goodIterative = 4,  // meaningless
      looseSetWithPV = 5,
      highPuritySetWithPV = 6,
      discarded = 7,  // because a better track found. kept in the collection for reference....
      qualitySize = 8
    };

    static const std::string qualityNames[];

    /// default constructor
    TrackBase();

    /// constructor from fit parameters and error matrix
    TrackBase(double chi2,
              double ndof,
              const Point &vertex,
              const Vector &momentum,
              int charge,
              const CovarianceMatrix &cov,
              TrackAlgorithm = undefAlgorithm,
              TrackQuality quality = undefQuality,
              signed char nloops = 0,
              uint8_t stopReason = 0,
              float t0 = 0.f,
              float beta = 0.f,
              float covt0t0 = -1.f,
              float covbetabeta = -1.f);

    /// virtual destructor
    virtual ~TrackBase();

    /// return true if timing measurement is usable
    bool isTimeOk() const { return covt0t0_ > 0.f; }

    /// chi-squared of the fit
    double chi2() const;

    /// number of degrees of freedom of the fit
    double ndof() const;

    /// chi-squared divided by n.d.o.f. (or chi-squared * 1e6 if n.d.o.f. is zero)
    double normalizedChi2() const;

    /// track electric charge
    int charge() const;

    /// q / p
    double qoverp() const;

    /// polar angle
    double theta() const;

    /// Lambda angle
    double lambda() const;

    /// dxy parameter. (This is the transverse impact parameter w.r.t. to (0,0,0) ONLY if refPoint is close to (0,0,0): see parametrization definition above for details). See also function dxy(myBeamSpot).
    double dxy() const;

    /// dxy parameter in perigee convention (d0 = -dxy)
    double d0() const;

    /// dsz parameter (THIS IS NOT the SZ impact parameter to (0,0,0) if refPoint is far from  (0,0,0): see parametrization definition above for details)
    double dsz() const;

    /// dz parameter (= dsz/cos(lambda)). This is the track z0 w.r.t (0,0,0) only if the refPoint is close to (0,0,0). See also function dz(myBeamSpot)
    double dz() const;

    /// momentum vector magnitude square
    double p2() const;

    /// momentum vector magnitude
    double p() const;

    /// track transverse momentum square
    double pt2() const;

    /// track transverse momentum
    double pt() const;

    /// x coordinate of momentum vector
    double px() const;

    /// y coordinate of momentum vector
    double py() const;

    /// z coordinate of momentum vector
    double pz() const;

    /// azimuthal angle of momentum vector
    double phi() const;

    /// pseudorapidity of momentum vector
    double eta() const;

    /// x coordinate of the reference point on track
    double vx() const;

    /// y coordinate of the reference point on track
    double vy() const;

    /// z coordinate of the reference point on track
    double vz() const;

    /// track momentum vector
    const Vector &momentum() const;

    /// Reference point on the track
    const Point &referencePoint() const;

    /// time at the reference point
    double t0() const;

    /// velocity at the reference point in natural units
    double beta() const;

    /// reference point on the track. This method is DEPRECATED, please use referencePoint() instead
    const Point &vertex() const;
    //__attribute__((deprecated("This method is DEPRECATED, please use referencePoint() instead.")));

    /// dxy parameter with respect to a user-given beamSpot  (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
    double dxy(const Point &myBeamSpot) const;

    /// dxy parameter with respect to the beamSpot taking into account the beamspot slopes (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
    double dxy(const BeamSpot &theBeamSpot) const;

    /// dsz parameter with respect to a user-given beamSpot (WARNING: this quantity can only be interpreted as the distance in the S-Z plane to the beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
    double dsz(const Point &myBeamSpot) const;

    /// dz parameter with respect to a user-given beamSpot (WARNING: this quantity can only be interpreted as the track z0, if the beamSpot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
    double dz(const Point &myBeamSpot) const;

    /// Track parameters with one-to-one correspondence to the covariance matrix
    ParameterVector parameters() const;

    /// return track covariance matrix
    CovarianceMatrix covariance() const;

    /// i-th parameter ( i = 0, ... 4 )
    double parameter(int i) const;

    /// (i,j)-th element of covariance matrix (i, j = 0, ... 4)
    double covariance(int i, int j) const;

    /// error on t0
    double covt0t0() const;

    /// error on beta
    double covBetaBeta() const;

    /// error on specified element
    double error(int i) const;

    /// error on signed transverse curvature
    double qoverpError() const;

    /// error on Pt (set to 1000**2 TeV**2 if charge==0 for safety)
    double ptError2() const;

    /// error on Pt (set to 1000 TeV if charge==0 for safety)
    double ptError() const;

    /// error on theta
    double thetaError() const;

    /// error on lambda
    double lambdaError() const;

    /// error on eta
    double etaError() const;

    /// error on phi
    double phiError() const;

    /// error on dxy
    double dxyError() const;

    /// error on d0
    double d0Error() const;

    /// error on dsz
    double dszError() const;

    /// error on dz
    double dzError() const;

    /// error on t0
    double t0Error() const;

    /// error on beta
    double betaError() const;

    /// error on dxy with respect to a user-given reference point + uncertainty (i.e. reco::Vertex position)
    double dxyError(Point const &vtx, math::Error<3>::type const &vertexCov) const;

    /// error on dxy with respect to a user-given beamspot
    double dxyError(const BeamSpot &theBeamSpot) const;

    /// fill SMatrix
    CovarianceMatrix &fill(CovarianceMatrix &v) const;

    /// covariance matrix index in array
    static index covIndex(index i, index j);

    /// Access the hit pattern, indicating in which Tracker layers the track has hits.
    const HitPattern &hitPattern() const;

    /// number of valid hits found
    unsigned short numberOfValidHits() const;

    /// number of cases where track crossed a layer without getting a hit.
    unsigned short numberOfLostHits() const;

    /// number of hits expected from inner track extrapolation but missing
    int missingInnerHits() const;

    /// number of hits expected from outer track extrapolation but missing
    int missingOuterHits() const;

    /// fraction of valid hits on the track
    double validFraction() const;

    /// append hit patterns from vector of hit references
    template <typename C>
    bool appendHits(const C &c, const TrackerTopology &ttopo);

    template <typename I>
    bool appendHits(const I &begin, const I &end, const TrackerTopology &ttopo);

    /// append a single hit to the HitPattern
    bool appendHitPattern(const TrackingRecHit &hit, const TrackerTopology &ttopo);
    bool appendHitPattern(const DetId &id, TrackingRecHit::Type hitType, const TrackerTopology &ttopo);

    /**
     * These are meant to be used only in cases where the an
     * already-packed hit information is re-interpreted in terms of
     * HitPattern (i.e. MiniAOD PackedCandidate, and the IO rule for
     * reading old versions of HitPattern)
     */
    bool appendTrackerHitPattern(uint16_t subdet, uint16_t layer, uint16_t stereo, TrackingRecHit::Type hitType);
    bool appendHitPattern(const uint16_t pattern, TrackingRecHit::Type hitType);

    /**
     * This is meant to be used only in cases where the an
     * already-packed hit information is re-interpreted in terms of
     * HitPattern (i.e. the IO rule for reading old versions of
     * HitPattern)
     */
    bool appendMuonHitPattern(const DetId &id, TrackingRecHit::Type hitType);

    /// Sets HitPattern as empty
    void resetHitPattern();

    ///Track algorithm
    void setAlgorithm(const TrackAlgorithm a);

    void setOriginalAlgorithm(const TrackAlgorithm a);

    void setAlgoMask(AlgoMask a) { algoMask_ = a; }

    AlgoMask algoMask() const { return algoMask_; }
    unsigned long long algoMaskUL() const { return algoMask().to_ullong(); }
    bool isAlgoInMask(TrackAlgorithm a) const { return algoMask()[a]; }

    TrackAlgorithm algo() const;
    TrackAlgorithm originalAlgo() const;

    std::string algoName() const;

    static std::string algoName(TrackAlgorithm);

    static TrackAlgorithm algoByName(const std::string &name);

    ///Track quality
    bool quality(const TrackQuality) const;

    void setQuality(const TrackQuality);

    static std::string qualityName(TrackQuality);

    static TrackQuality qualityByName(const std::string &name);

    int qualityMask() const;

    void setQualityMask(int qualMask);

    void setNLoops(signed char value);

    bool isLooper() const;

    signed char nLoops() const;

    void setStopReason(uint8_t value) { stopReason_ = value; }

    uint8_t stopReason() const { return stopReason_; }

  private:
    /// hit pattern
    HitPattern hitPattern_;

    /// perigee 5x5 covariance matrix
    float covariance_[covarianceSize];

    /// errors for time and velocity (separate from cov for now)
    float covt0t0_, covbetabeta_;

    /// chi-squared
    float chi2_;

    /// innermost (reference) point on track
    Point vertex_;

    /// time at the reference point on track
    float t0_;

    /// momentum vector at innermost point
    Vector momentum_;

    /// norm of the particle velocity at innermost point on track
    /// can multiply by momentum_.Unit() to get velocity vector
    float beta_;

    /// algo mask, bit set for the algo where it was reconstructed + each algo a track was found overlapping by the listmerger
    std::bitset<algoSize> algoMask_;

    /// number of degrees of freedom
    float ndof_;

    /// electric charge
    char charge_;

    /// track algorithm
    uint8_t algorithm_;

    /// track algorithm
    uint8_t originalAlgorithm_;

    /// track quality
    uint8_t quality_;

    /// number of loops made during the building of the trajectory of a looper particle
    // I use signed char because I don't expect more than 128 loops and I could use a negative value for a special purpose.
    signed char nLoops_;

    /// Stop Reason
    uint8_t stopReason_;
  };

  //  Access the hit pattern, indicating in which Tracker layers the track has hits.
  inline const HitPattern &TrackBase::hitPattern() const { return hitPattern_; }

  inline bool TrackBase::appendHitPattern(const DetId &id, TrackingRecHit::Type hitType, const TrackerTopology &ttopo) {
    return hitPattern_.appendHit(id, hitType, ttopo);
  }

  inline bool TrackBase::appendHitPattern(const TrackingRecHit &hit, const TrackerTopology &ttopo) {
    return hitPattern_.appendHit(hit, ttopo);
  }

  inline bool TrackBase::appendTrackerHitPattern(uint16_t subdet,
                                                 uint16_t layer,
                                                 uint16_t stereo,
                                                 TrackingRecHit::Type hitType) {
    return hitPattern_.appendTrackerHit(subdet, layer, stereo, hitType);
  }

  inline bool TrackBase::appendHitPattern(uint16_t pattern, TrackingRecHit::Type hitType) {
    return hitPattern_.appendHit(pattern, hitType);
  }

  inline bool TrackBase::appendMuonHitPattern(const DetId &id, TrackingRecHit::Type hitType) {
    return hitPattern_.appendMuonHit(id, hitType);
  }

  inline void TrackBase::resetHitPattern() { hitPattern_.clear(); }

  template <typename I>
  bool TrackBase::appendHits(const I &begin, const I &end, const TrackerTopology &ttopo) {
    return hitPattern_.appendHits(begin, end, ttopo);
  }

  template <typename C>
  bool TrackBase::appendHits(const C &c, const TrackerTopology &ttopo) {
    return hitPattern_.appendHits(c.begin(), c.end(), ttopo);
  }

  inline TrackBase::index TrackBase::covIndex(index i, index j) {
    int a = (i <= j ? i : j);
    int b = (i <= j ? j : i);
    return b * (b + 1) / 2 + a;
  }

  inline TrackBase::TrackAlgorithm TrackBase::algo() const { return (TrackAlgorithm)(algorithm_); }
  inline TrackBase::TrackAlgorithm TrackBase::originalAlgo() const { return (TrackAlgorithm)(originalAlgorithm_); }

  inline std::string TrackBase::algoName() const { return TrackBase::algoName(algo()); }

  inline bool TrackBase::quality(const TrackBase::TrackQuality q) const {
    switch (q) {
      case undefQuality:
        return quality_ == 0;
      case goodIterative:
        return (quality_ & (1 << TrackBase::highPurity)) >> TrackBase::highPurity;
      default:
        return (quality_ & (1 << q)) >> q;
    }
    return false;
  }

  inline void TrackBase::setQuality(const TrackBase::TrackQuality q) {
    if (q == undefQuality) {
      quality_ = 0;
    } else {
      quality_ |= (1 << q);
    }
  }

  inline std::string TrackBase::qualityName(TrackQuality q) {
    if (int(q) < int(qualitySize) && int(q) >= 0) {
      return qualityNames[int(q)];
    }
    return "undefQuality";
  }

  inline std::string TrackBase::algoName(TrackAlgorithm a) {
    if (int(a) < int(algoSize) && int(a) > 0) {
      return algoNames[int(a)];
    }
    return "undefAlgorithm";
  }

  // chi-squared of the fit
  inline double TrackBase::chi2() const { return chi2_; }

  // number of degrees of freedom of the fit
  inline double TrackBase::ndof() const { return ndof_; }

  // chi-squared divided by n.d.o.f. (or chi-squared * 1e6 if n.d.o.f. is zero)
  inline double TrackBase::normalizedChi2() const { return ndof_ != 0 ? chi2_ / ndof_ : chi2_ * 1e6; }

  // track electric charge
  inline int TrackBase::charge() const { return charge_; }

  // q / p
  inline double TrackBase::qoverp() const { return charge() / p(); }

  // polar angle
  inline double TrackBase::theta() const { return momentum_.theta(); }

  // Lambda angle
  inline double TrackBase::lambda() const { return M_PI_2 - momentum_.theta(); }

  // dxy parameter. (This is the transverse impact parameter w.r.t. to (0,0,0) ONLY if refPoint is close to (0,0,0): see parametrization definition above for details). See also function dxy(myBeamSpot) below.
  inline double TrackBase::dxy() const { return (-vx() * py() + vy() * px()) / pt(); }

  // dxy parameter in perigee convention (d0 = -dxy)
  inline double TrackBase::d0() const { return -dxy(); }

  // dsz parameter (THIS IS NOT the SZ impact parameter to (0,0,0) if refPoint is far from (0,0,0): see parametrization definition above for details)
  inline double TrackBase::dsz() const {
    const auto thept = pt();
    const auto thepinv = 1 / p();
    const auto theptoverp = thept * thepinv;
    return vz() * theptoverp - (vx() * px() + vy() * py()) / thept * pz() * thepinv;
  }

  // dz parameter (= dsz/cos(lambda)). This is the track z0 w.r.t (0,0,0) only if the refPoint is close to (0,0,0). See also function dz(myBeamSpot) below.
  inline double TrackBase::dz() const {
    const auto thept2inv = 1 / pt2();
    return vz() - (vx() * px() + vy() * py()) * pz() * thept2inv;
  }

  // momentum vector magnitude square
  inline double TrackBase::p2() const { return momentum_.Mag2(); }

  // momentum vector magnitude
  inline double TrackBase::p() const { return sqrt(p2()); }

  // track transverse momentum square
  inline double TrackBase::pt2() const { return momentum_.Perp2(); }

  // track transverse momentum
  inline double TrackBase::pt() const { return sqrt(pt2()); }

  // x coordinate of momentum vector
  inline double TrackBase::px() const { return momentum_.x(); }

  // y coordinate of momentum vector
  inline double TrackBase::py() const { return momentum_.y(); }

  // z coordinate of momentum vector
  inline double TrackBase::pz() const { return momentum_.z(); }

  // azimuthal angle of momentum vector
  inline double TrackBase::phi() const { return momentum_.Phi(); }

  // pseudorapidity of momentum vector
  inline double TrackBase::eta() const { return momentum_.Eta(); }

  // x coordinate of the reference point on track
  inline double TrackBase::vx() const { return vertex_.x(); }

  // y coordinate of the reference point on track
  inline double TrackBase::vy() const { return vertex_.y(); }

  // z coordinate of the reference point on track
  inline double TrackBase::vz() const { return vertex_.z(); }

  // track momentum vector
  inline const TrackBase::Vector &TrackBase::momentum() const { return momentum_; }

  // Reference point on the track
  inline const TrackBase::Point &TrackBase::referencePoint() const { return vertex_; }

  // Time at the reference point on the track
  inline double TrackBase::t0() const { return t0_; }

  // Velocity at the reference point on the track in natural units
  inline double TrackBase::beta() const { return beta_; }

  // reference point on the track. This method is DEPRECATED, please use referencePoint() instead
  inline const TrackBase::Point &TrackBase::vertex() const { return vertex_; }

  // dxy parameter with respect to a user-given beamSpot
  // (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved).
  // This is a good approximation for Tracker tracks.
  inline double TrackBase::dxy(const Point &myBeamSpot) const {
    return (-(vx() - myBeamSpot.x()) * py() + (vy() - myBeamSpot.y()) * px()) / pt();
  }

  // dxy parameter with respect to the beamSpot taking into account the beamspot slopes
  // (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved).
  // This is a good approximation for Tracker tracks.
  inline double TrackBase::dxy(const BeamSpot &theBeamSpot) const { return dxy(theBeamSpot.position(vz())); }

  // dsz parameter with respect to a user-given beamSpot
  // (WARNING: this quantity can only be interpreted as the distance in the S-Z plane to the beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved).
  // This is a good approximation for Tracker tracks.
  inline double TrackBase::dsz(const Point &myBeamSpot) const {
    const auto thept = pt();
    const auto thepinv = 1 / p();
    const auto theptoverp = thept * thepinv;
    return (vz() - myBeamSpot.z()) * theptoverp -
           ((vx() - myBeamSpot.x()) * px() + (vy() - myBeamSpot.y()) * py()) / thept * pz() * thepinv;
  }

  // dz parameter with respect to a user-given beamSpot
  // (WARNING: this quantity can only be interpreted as the track z0, if the beamSpot is reasonably close to the refPoint, since linear approximations are involved).
  // This is a good approximation for Tracker tracks.
  inline double TrackBase::dz(const Point &myBeamSpot) const {
    const auto theptinv2 = 1 / pt2();
    return (vz() - myBeamSpot.z()) -
           ((vx() - myBeamSpot.x()) * px() + (vy() - myBeamSpot.y()) * py()) * pz() * theptinv2;
  }

  // Track parameters with one-to-one correspondence to the covariance matrix
  inline TrackBase::ParameterVector TrackBase::parameters() const {
    return TrackBase::ParameterVector(qoverp(), lambda(), phi(), dxy(), dsz());
  }

  // return track covariance matrix
  inline TrackBase::CovarianceMatrix TrackBase::covariance() const {
    CovarianceMatrix m;
    fill(m);
    return m;
  }

  // i-th parameter ( i = 0, ... 4 )
  inline double TrackBase::parameter(int i) const { return parameters()[i]; }

  // (i,j)-th element of covariance matrix (i, j = 0, ... 4)
  inline double TrackBase::covariance(int i, int j) const { return covariance_[covIndex(i, j)]; }

  // error on specified element
  inline double TrackBase::error(int i) const { return sqrt(covariance_[covIndex(i, i)]); }

  // error on signed transverse curvature
  inline double TrackBase::qoverpError() const { return error(i_qoverp); }

  // error on Pt (set to 1000**2 TeV**2 if charge==0 for safety)
  inline double TrackBase::ptError2() const {
    const auto thecharge = charge();

    if (thecharge != 0) {
      const auto thept2 = pt2();
      const auto thep2 = p2();
      const auto thepz = pz();
      const auto ptimespt = sqrt(thep2 * thept2);
      const auto oneovercharge = 1 / thecharge;

      return thept2 * thep2 * oneovercharge * oneovercharge * covariance(i_qoverp, i_qoverp) +
             2 * ptimespt * oneovercharge * thepz * covariance(i_qoverp, i_lambda) +
             thepz * thepz * covariance(i_lambda, i_lambda);
    }

    return 1.e12;
  }

  // error on Pt (set to 1000 TeV if charge==0 for safety)
  inline double TrackBase::ptError() const { return sqrt(ptError2()); }

  // error on theta
  inline double TrackBase::thetaError() const { return error(i_lambda); }

  // error on lambda
  inline double TrackBase::lambdaError() const { return error(i_lambda); }

  // error on eta
  inline double TrackBase::etaError() const { return error(i_lambda) * sqrt(p2() / pt2()); }

  // error on phi
  inline double TrackBase::phiError() const { return error(i_phi); }

  // error on dxy
  inline double TrackBase::dxyError() const { return error(i_dxy); }

  // error on d0
  inline double TrackBase::d0Error() const { return error(i_dxy); }

  // error on dsz
  inline double TrackBase::dszError() const { return error(i_dsz); }

  // error on dz
  inline double TrackBase::dzError() const { return error(i_dsz) * sqrt(p2() / pt2()); }

  // covariance of t0
  inline double TrackBase::covt0t0() const { return covt0t0_; }

  // covariance of beta
  inline double TrackBase::covBetaBeta() const { return covbetabeta_; }

  // error on t0
  inline double TrackBase::t0Error() const { return std::sqrt(covt0t0_); }

  // error on beta
  inline double TrackBase::betaError() const { return std::sqrt(covbetabeta_); }

  // error on dxy with respect to a given beamspot
  inline double TrackBase::dxyError(const BeamSpot &theBeamSpot) const {
    return dxyError(theBeamSpot.position(vz()), theBeamSpot.rotatedCovariance3D());
  }

  // number of valid hits found
  inline unsigned short TrackBase::numberOfValidHits() const { return hitPattern_.numberOfValidHits(); }

  // number of cases where track crossed a layer without getting a hit.
  inline unsigned short TrackBase::numberOfLostHits() const {
    return hitPattern_.numberOfLostHits(HitPattern::TRACK_HITS);
  }

  // number of hits expected from inner track extrapolation but missing
  inline int TrackBase::missingInnerHits() const {
    return hitPattern_.numberOfLostHits(HitPattern::MISSING_INNER_HITS);
  }

  // number of hits expected from outer track extrapolation but missing
  inline int TrackBase::missingOuterHits() const {
    return hitPattern_.numberOfLostHits(HitPattern::MISSING_OUTER_HITS);
  }

  // fraction of valid hits on the track
  inline double TrackBase::validFraction() const {
    int valid = hitPattern_.numberOfValidTrackerHits();
    int lost = hitPattern_.numberOfLostTrackerHits(HitPattern::TRACK_HITS);
    int lostIn = hitPattern_.numberOfLostTrackerHits(HitPattern::MISSING_INNER_HITS);
    int lostOut = hitPattern_.numberOfLostTrackerHits(HitPattern::MISSING_OUTER_HITS);

    const auto tot = valid + lost + lostIn + lostOut;

    if (tot == 0) {
      return -1;
    }

    return valid / (double)(tot);
  }

  //Track algorithm
  inline void TrackBase::setAlgorithm(const TrackBase::TrackAlgorithm a) {
    algorithm_ = a;
    algoMask_.reset();
    setOriginalAlgorithm(a);
  }

  inline void TrackBase::setOriginalAlgorithm(const TrackBase::TrackAlgorithm a) {
    originalAlgorithm_ = a;
    algoMask_.set(a);
  }

  inline int TrackBase::qualityMask() const { return quality_; }

  inline void TrackBase::setQualityMask(int qualMask) { quality_ = qualMask; }

  inline void TrackBase::setNLoops(signed char value) { nLoops_ = value; }

  inline bool TrackBase::isLooper() const { return (nLoops_ > 0); }

  inline signed char TrackBase::nLoops() const { return nLoops_; }

}  // namespace reco

#endif