1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
#include "DD4hep/VolumeProcessor.h"
#include "DD4hep/detail/DetectorInterna.h"
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/DetectorHelper.h"
#include "DD4hep/Printout.h"
#include "DetectorDescription/DDCMS/interface/DDAlgoArguments.h"
#include <sstream>
using namespace std;
using namespace cms;
using namespace dd4hep;
namespace cms {
// Heuristically assign DetElement structures
// to the sensitive volume pathes
//
class DDCMSDetElementCreator : public dd4hep::PlacedVolumeProcessor {
public:
DDCMSDetElementCreator(dd4hep::Detector&);
~DDCMSDetElementCreator() override;
/// Callback to output PlacedVolume information of an single Placement
int operator()(dd4hep::PlacedVolume volume, int level) override;
/// Callback to output PlacedVolume information of an entire Placement
int process(dd4hep::PlacedVolume volume, int level, bool recursive) override;
private:
dd4hep::DetElement addSubdetector(const std::string& nam, dd4hep::PlacedVolume volume, bool valid);
dd4hep::DetElement createElement(const char* debugTag, dd4hep::PlacedVolume volume, int id);
void createTopLevelDetectors(dd4hep::PlacedVolume volume);
struct Data {
Data() = default;
Data(dd4hep::PlacedVolume v) : volume(v) {}
Data(const Data& d) = default;
Data& operator=(const Data& d) = default;
dd4hep::PlacedVolume volume{nullptr};
dd4hep::DetElement element{};
bool sensitive = false;
bool hasSensitive = false;
int volumeCount = 0;
int daughterCount = 0;
int sensitiveCount = 0;
};
struct Count {
Count() = default;
Count(const Count&) = default;
Count& operator=(const Count&) = default;
int elements = 0;
int volumes = 0;
int sensitives = 0;
};
using Detectors = std::map<std::string, dd4hep::DetElement>;
using Counters = std::map<dd4hep::DetElement, Count>;
using LeafCount = std::map<std::pair<dd4hep::DetElement, int>, std::pair<int, int> >;
using VolumeStack = std::vector<Data>;
std::map<dd4hep::PlacedVolume, std::pair<int, int> > m_allPlacements;
Counters m_counters;
LeafCount m_leafCount;
VolumeStack m_stack;
Detectors m_subdetectors;
dd4hep::DetElement m_tracker, m_currentDetector;
dd4hep::SensitiveDetector m_currentSensitive;
dd4hep::Detector& m_description;
dd4hep::Atom m_silicon;
};
std::string detElementName(dd4hep::PlacedVolume volume);
} // namespace cms
std::string cms::detElementName(dd4hep::PlacedVolume volume) {
if (volume.isValid()) {
std::string name = volume.name();
std::string nnam = name.substr(name.find(NAMESPACE_SEP) + 1);
return nnam;
}
except("DD4CMS", "++ Cannot deduce name from invalid PlacedVolume handle!");
return std::string();
}
DDCMSDetElementCreator::DDCMSDetElementCreator(dd4hep::Detector& desc) : m_description(desc) {
dd4hep::DetectorHelper helper(m_description);
m_silicon = helper.element("SI");
if (!m_silicon.isValid()) {
except("DDCMSDetElementCreator", "++ Failed to extract SILICON from the element table.");
}
m_stack.reserve(32);
}
DDCMSDetElementCreator::~DDCMSDetElementCreator() {
Count total;
stringstream str, id_str;
printout(INFO, "DDCMSDetElementCreator", "+++++++++++++++ Summary of sensitve elements ++++++++++++++++++++++++");
for (const auto& c : m_counters) {
printout(INFO,
"DDCMSDetElementCreator",
"++ Summary: SD: %-24s %7d DetElements %7d sensitives out of %7d volumes",
(c.first.name() + string(":")).c_str(),
c.second.elements,
c.second.sensitives,
c.second.volumes);
total.elements += c.second.elements;
total.sensitives += c.second.sensitives;
total.volumes += c.second.volumes;
}
printout(INFO,
"DDCMSDetElementCreator",
"++ Summary: %-24s %7d DetElements %7d sensitives out of %7d volumes",
"Grand Total:",
total.elements,
total.sensitives,
total.volumes);
printout(INFO, "DDCMSDetElementCreator", "+++++++++++++++ Summary of geometry depth analysis ++++++++++++++++++");
int totalCount = 0;
map<dd4hep::DetElement, vector<pair<int, int> > > fields;
for (const auto& l : m_leafCount) {
dd4hep::DetElement de = l.first.first;
printout(INFO,
"DDCMSDetElementCreator",
"++ Summary: SD: %-24s system:%04X Lvl:%3d Sensitives: %6d [Max: %6d].",
(de.name() + string(":")).c_str(),
de.id(),
l.first.second,
l.second.second,
l.second.first);
fields[de].push_back(make_pair(l.first.second, l.second.first));
++totalCount;
}
printout(INFO, "DDCMSDetElementCreator", "++ Summary: %-24s %d.", "Total DetElements:", totalCount);
printout(INFO, "DDCMSDetElementCreator", "+++++++++++++++ Readout structure generation ++++++++++++++++++++++++");
str << endl;
for (const auto& f : fields) {
string roName = f.first.name() + string("Hits");
int num_bits = 8;
id_str.str("");
id_str << "system:" << num_bits;
for (const auto& q : f.second) {
int bits = 0;
if (q.second < 1 << 0)
bits = 1;
else if (q.second < 1 << 1)
bits = 1;
else if (q.second < 1 << 2)
bits = 2;
else if (q.second < 1 << 3)
bits = 3;
else if (q.second < 1 << 4)
bits = 4;
else if (q.second < 1 << 5)
bits = 5;
else if (q.second < 1 << 6)
bits = 6;
else if (q.second < 1 << 7)
bits = 7;
else if (q.second < 1 << 8)
bits = 8;
else if (q.second < 1 << 9)
bits = 9;
else if (q.second < 1 << 10)
bits = 10;
else if (q.second < 1 << 11)
bits = 11;
else if (q.second < 1 << 12)
bits = 12;
else if (q.second < 1 << 13)
bits = 13;
else if (q.second < 1 << 14)
bits = 14;
else if (q.second < 1 << 15)
bits = 15;
bits += 1;
id_str << ",Lv" << q.first << ":" << bits;
num_bits += bits;
}
string idspec = id_str.str();
str << "<readout name=\"" << roName << "\">" << endl
<< "\t<id>" << idspec << "</id> <!-- Number of bits: " << num_bits << " -->" << endl
<< "</readout>" << endl;
/// Create ID Descriptors and readout configurations
IDDescriptor dsc(roName, idspec);
m_description.addIDSpecification(dsc);
Readout ro(roName);
ro.setIDDescriptor(dsc);
m_description.addReadout(ro);
dd4hep::SensitiveDetector sd = m_description.sensitiveDetector(f.first.name());
sd.setHitsCollection(ro.name());
sd.setReadout(ro);
printout(INFO,
"DDCMSDetElementCreator",
"++ Setting up readout for subdetector:%-24s id:%04X",
f.first.name(),
f.first.id());
}
printout(INFO, "DDCMSDetElementCreator", "+++++++++++++++ ID Descriptor generation ++++++++++++++++++++++++++++");
printout(INFO, "", str.str().c_str());
char volId[32];
for (auto& p : m_allPlacements) {
dd4hep::PlacedVolume place = p.first;
dd4hep::Volume volume = place.volume();
::snprintf(volId, sizeof(volId), "Lv%d", p.second.first);
printout(DEBUG,
"DDCMSDetElementCreator",
"++ Set volid (%-24s): %-6s = %3d -> %s (%p)",
volume.isSensitive() ? volume.sensitiveDetector().name() : "Not Sensitive",
volId,
p.second.second,
place.name(),
place.ptr());
place.addPhysVolID(volId, p.second.second);
}
printout(ALWAYS,
"DDCMSDetElementCreator",
"++ Instrumented %ld subdetectors with %d DetElements %d sensitives out of %d volumes and %ld sensitive "
"placements.",
fields.size(),
total.elements,
total.sensitives,
total.volumes,
m_allPlacements.size());
}
dd4hep::DetElement DDCMSDetElementCreator::createElement(const char*, PlacedVolume volume, int id) {
string name = detElementName(volume);
dd4hep::DetElement det(name, id);
det.setPlacement(volume);
return det;
}
void DDCMSDetElementCreator::createTopLevelDetectors(PlacedVolume volume) {
auto& data = m_stack.back();
if (m_stack.size() == 2) { // Main subssystem: tracker:Tracker
data.element = m_tracker = addSubdetector(cms::detElementName(volume), volume, false);
m_tracker->SetTitle("compound");
} else if (m_stack.size() == 3) { // Main subsystem detector: TIB, TEC, ....
data.element = m_currentDetector = addSubdetector(cms::detElementName(volume), volume, true);
}
}
dd4hep::DetElement DDCMSDetElementCreator::addSubdetector(const std::string& nam,
dd4hep::PlacedVolume volume,
bool valid) {
auto idet = m_subdetectors.find(nam);
if (idet == m_subdetectors.end()) {
dd4hep::DetElement det(nam, m_subdetectors.size() + 1);
det.setPlacement(volume);
if (valid) {
det.placement().addPhysVolID("system", det.id());
}
idet = m_subdetectors.insert(make_pair(nam, det)).first;
m_description.add(det);
}
return idet->second;
}
int DDCMSDetElementCreator::operator()(dd4hep::PlacedVolume volume, int volumeLevel) {
double fracSi = volume.volume().material().fraction(m_silicon);
if (fracSi > 90e-2) {
Data& data = m_stack.back();
data.sensitive = true;
data.hasSensitive = true;
++data.volumeCount;
int idx = volume->GetMotherVolume()->GetIndex(volume.ptr()) + 1;
auto& cnt = m_leafCount[make_pair(m_currentDetector, volumeLevel)];
cnt.first = std::max(cnt.first, idx);
++cnt.second;
m_allPlacements[volume] = make_pair(volumeLevel, idx);
return 1;
}
return 0;
}
int DDCMSDetElementCreator::process(dd4hep::PlacedVolume volume, int level, bool recursive) {
m_stack.push_back(Data(volume));
if (m_stack.size() <= 3) {
createTopLevelDetectors(volume);
}
int ret = dd4hep::PlacedVolumeProcessor::process(volume, level, recursive);
/// Complete structures if the m_stack size is > 3!
if (m_stack.size() > 3) {
// Note: short-cuts to entries in the m_stack MUST be local and
// initialized AFTER the call to "process"! The vector may be resized!
auto& data = m_stack.back();
auto& parent = m_stack[m_stack.size() - 2];
auto& counts = m_counters[m_currentDetector];
if (data.sensitive) {
/// If this volume is sensitve, we must attach a sensitive detector handle
if (!m_currentSensitive.isValid()) {
dd4hep::SensitiveDetector sd = m_description.sensitiveDetector(m_currentDetector.name());
if (!sd.isValid()) {
sd = dd4hep::SensitiveDetector(m_currentDetector.name(), "tracker");
m_currentDetector->flag |= DetElement::Object::HAVE_SENSITIVE_DETECTOR;
m_description.add(sd);
}
m_currentSensitive = sd;
}
volume.volume().setSensitiveDetector(m_currentSensitive);
++counts.sensitives;
}
++counts.volumes;
bool added = false;
if (data.volumeCount > 0) {
parent.daughterCount += data.volumeCount;
parent.daughterCount += data.daughterCount;
data.hasSensitive = true;
} else {
parent.daughterCount += data.daughterCount;
data.hasSensitive = (data.daughterCount > 0);
}
if (data.hasSensitive) {
// If we have sensitive elements at this level or below,
// we must complete the DetElement hierarchy
if (!data.element.isValid()) {
data.element = createElement("Element", data.volume, m_currentDetector.id());
++counts.elements;
}
if (!parent.element.isValid()) {
parent.element = createElement("Parent ", parent.volume, m_currentDetector.id());
++counts.elements;
}
printout(DEBUG,
"DDCMSDetElementCreator",
"++ Assign detector element: %s (%p, %ld children) to %s (%p) with %ld vols",
data.element.name(),
data.element.ptr(),
data.element.children().size(),
parent.element.name(),
parent.element.ptr(),
data.volumeCount);
// Trickle up the tree only for sensitive pathes. Forget the passive rest
// This should automatically omit non-sensitive pathes
parent.hasSensitive = true;
parent.element.add(data.element);
added = true;
// It is simpler to collect the volumes and later assign the volids
// rather than checking if the volid already exists.
int volumeLevel = level;
int idx = data.volume->GetMotherVolume()->GetIndex(data.volume.ptr()) + 1;
m_allPlacements[data.volume] = make_pair(volumeLevel, idx); // 1...n
// Update counters
auto& cnt_det = m_leafCount[make_pair(m_currentDetector, volumeLevel)];
cnt_det.first = std::max(cnt_det.first, idx);
cnt_det.second += 1;
}
if (!added && data.element.isValid()) {
printout(WARNING,
"MEMORY-LEAK",
"Level:%3d Orpahaned DetElement:%s Daugthers:%d Parent:%s",
int(m_stack.size()),
data.element.name(),
data.volumeCount,
parent.volume.name());
}
}
/// Now the cleanup kicks in....
if (m_stack.size() == 3) {
m_currentSensitive = SensitiveDetector();
m_currentDetector = DetElement();
ret = 0;
}
m_stack.pop_back();
return ret;
}
static void* createObject(dd4hep::Detector& description, int /* argc */, char** /* argv */) {
dd4hep::PlacedVolumeProcessor* proc = new DDCMSDetElementCreator(description);
return (void*)proc;
}
// first argument is the type from the xml file
DECLARE_DD4HEP_CONSTRUCTOR(DDCMS_DetElementCreator, createObject);
|