Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#include "EventFilter/HcalRawToDigi/interface/HcalUHTRData.h"
#include <cstring>

static const int HEADER_LENGTH_16BIT = 2 * sizeof(uint64_t) / sizeof(uint16_t);

HcalUHTRData::const_iterator::const_iterator(const uint16_t* ptr, const uint16_t* limit)
    : m_ptr(ptr), m_limit(limit), m_stepclass(0), m_technicalDataType(0) {
  if (isHeader())
    determineMode();
}

HcalUHTRData::const_iterator& HcalUHTRData::const_iterator::operator++() {
  if (m_ptr == m_limit)
    return *this;
  if (m_stepclass == 0)
    m_ptr++;
  else if (m_stepclass == 1) {
    if (m_microstep == 0) {
      m_ptr++;
      m_microstep++;
    } else {
      m_microstep--;
    }
  } else if (m_stepclass == 2) {
    if (isHeader()) {
      m_ptr++;
    } else {
      m_ptr += 2;
    }
  }

  if (isHeader()) {
    determineMode();
    m_header_ptr = m_ptr;
    m_0th_data_ptr = m_header_ptr + 1;
  }
  return *this;
}

void HcalUHTRData::const_iterator::determineMode() {
  if (!isHeader())
    return;
  m_flavor = flavor();
  m_stepclass = 0;
  if (m_flavor == 5) {
    m_stepclass = 1;
    m_microstep = 0;
  } else if (m_flavor == 2) {
    m_stepclass = 2;
  }
  if (m_flavor == 7) {
    m_technicalDataType = technicalDataType();
  }
}

int HcalUHTRData::const_iterator::errFlags() const {
  if ((m_flavor == 7 && m_technicalDataType == 15) && !isHeader())
    return ((*m_ptr) >> 11) & 0x1;
  else
    return ((*m_ptr) >> 10) & 0x3;
}

bool HcalUHTRData::const_iterator::dataValid() const {
  if ((m_flavor == 7 && m_technicalDataType == 15) && !isHeader())
    return ((*m_ptr) >> 10) & 0x1;
  else
    return !(errFlags() & 0x2);
}

int HcalUHTRData::const_iterator::technicalDataType() const {
  if (m_flavor == 7)
    return ((*m_ptr) >> 8) & 0xF;
  else
    return 0;
}

uint8_t HcalUHTRData::const_iterator::adc() const {
  if (m_flavor == 5 && m_microstep == 0)
    return ((*m_ptr) >> 8) & 0x7F;
  else if (m_flavor == 7 && m_technicalDataType == 15)
    return (*m_ptr) & 0x7F;
  else
    return (*m_ptr) & 0xFF;
}

uint8_t HcalUHTRData::const_iterator::le_tdc() const {
  if (m_flavor == 5 || (m_flavor == 7 && m_technicalDataType == 15))
    return 0x80;
  else if (m_flavor == 2)
    return (m_ptr[1] & 0x3F);
  else
    return (((*m_ptr) & 0x3F00) >> 8);
}

bool HcalUHTRData::const_iterator::soi() const {
  if (m_flavor == 5 || (m_flavor == 7 && m_technicalDataType == 15))
    return false;
  else if (m_flavor == 2)
    return (m_ptr[0] & 0x2000);
  else
    return (((*m_ptr) & 0x4000));
}

uint8_t HcalUHTRData::const_iterator::te_tdc() const {
  if (m_flavor == 2)
    return (m_ptr[1] >> 6) & 0x1F;
  else
    return 0x80;
}

uint8_t HcalUHTRData::const_iterator::capid() const {
  if (m_flavor == 2)
    return (m_ptr[1] >> 12) & 0x3;
  else if (m_flavor == 7 && m_technicalDataType == 15) {
    return ((*m_ptr) >> 8) & 0x3;
  } else if (m_flavor == 1 || m_flavor == 0) {
    // For flavor 0,1 we only get the first capid in the header, and so we need
    // to count the number of data rows and figure out which cap we want,
    // knowing that they go 0->1->2->3->0
    return 0;
  } else {
    return 0;
  }
}

bool HcalUHTRData::const_iterator::ok() const {
  if (m_flavor == 2) {
    return (m_ptr[0] >> 12) & 0x1;
  } else if (m_flavor == 4) {
    return (m_ptr[0] >> 13) & 0x1;
  } else {
    return false;
  }
}

HcalUHTRData::const_iterator HcalUHTRData::begin() const {
  return HcalUHTRData::const_iterator(m_raw16 + HEADER_LENGTH_16BIT,
                                      m_raw16 + (m_rawLength64 - 1) * sizeof(uint64_t) / sizeof(uint16_t));
}

HcalUHTRData::const_iterator HcalUHTRData::end() const {
  return HcalUHTRData::const_iterator(m_raw16 + (m_rawLength64 - 1) * sizeof(uint64_t) / sizeof(uint16_t),
                                      m_raw16 + (m_rawLength64 - 1) * sizeof(uint64_t) / sizeof(uint16_t));
}

HcalUHTRData::HcalUHTRData()
    : m_formatVersion(-2), m_rawLength64(0), m_raw64(nullptr), m_raw16(nullptr), m_ownData(nullptr) {}

HcalUHTRData::HcalUHTRData(const uint64_t* data, int length)
    : m_rawLength64(length), m_raw64(data), m_raw16((const uint16_t*)(data)), m_ownData(nullptr) {
  m_formatVersion = (m_raw16[6] >> 12) & 0xF;
}

HcalUHTRData::HcalUHTRData(const HcalUHTRData& hd)
    : m_formatVersion(hd.m_formatVersion),
      m_rawLength64(hd.m_rawLength64),
      m_raw64(hd.m_raw64),
      m_raw16(hd.m_raw16),
      m_ownData(nullptr) {}

HcalUHTRData::HcalUHTRData(int version_to_create) : m_formatVersion(version_to_create) {
  // the needed space is for the biggest possible event...
  // fibers*maxsamples/fiber
  const int needed = (0x20 + FIBERS_PER_UHTR * CHANNELS_PER_FIBER_MAX * (10 + 1)) * sizeof(uint16_t) / sizeof(uint64_t);

  m_ownData = new uint64_t[needed];
  memset(m_ownData, 0, sizeof(uint64_t) * needed);
  m_rawLength64 = 0;
  m_raw64 = m_ownData;
  m_raw16 = (const uint16_t*)m_raw64;
}

HcalUHTRData& HcalUHTRData::operator=(const HcalUHTRData& hd) {
  if (m_ownData == nullptr) {
    m_formatVersion = hd.m_formatVersion;
    m_rawLength64 = hd.m_rawLength64;
    m_raw64 = hd.m_raw64;
    m_raw16 = hd.m_raw16;
  }
  return (*this);
}