1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
#ifndef EventFilter_SiStripRawToDigi_SiStripFEDBuffer_H
#define EventFilter_SiStripRawToDigi_SiStripFEDBuffer_H
#include <string>
#include <vector>
#include <memory>
#include <ostream>
#include <cstring>
#include <cmath>
#include "EventFilter/SiStripRawToDigi/interface/SiStripFEDBufferComponents.h"
#include "DataFormats/SiStripDigi/interface/SiStripRawDigi.h"
#include "DataFormats/SiStripDigi/interface/SiStripDigi.h"
#include <cstdint>
namespace sistrip {
constexpr uint16_t BITS_PER_BYTE = 8;
//
// Class definitions
//
//class representing standard (non-spy channel) FED buffers
class FEDBuffer final : public FEDBufferBase {
public:
/**
* constructor from a FEDRawData buffer
*
* The sistrip::preconstructCheckFEDBuffer() method should be used
* (with the same value of allowBadBuffer) to check the validity of
* fedBuffer before constructing a sistrip::FEDBuffer.
* If allowBadBuffer is set to true, the initialization proceeds
* even if the event format is not recognized.
* To initialize also the channel information, the FEDBuffer::findChannels()
* method should be called as well, and its return status checked
* (unless bad buffers, with an unrecognized event format or channel lengths
* that do not make sense, should also be included).
*
* @see sistrip::preconstructCheckFEDBuffer() sistrip::FEDBuffer::findChannels()
*/
explicit FEDBuffer(const FEDRawData& fedBuffer, const bool allowBadBuffer = false);
~FEDBuffer() override {}
/**
* Read the channel lengths from the payload
*
* This method should be called to after the constructor
* (and should not be called more than once for the same sistrip::FEDBuffer).
* In case any check fails, a value different from sistrip::FEDBufferStatusCode::SUCCESS
* is returned, and detailed information printed to LogDebug("FEDBuffer"), if relevant.
*
* @see sistrip::FEDBuffer::FEDBuffer()
*/
FEDBufferStatusCode findChannels();
void print(std::ostream& os) const override;
const FEDFEHeader* feHeader() const;
//check that a FE unit is enabled, has a good majority address and, if in full debug mode, that it is present
bool feGood(const uint8_t internalFEUnitNum) const;
bool feGoodWithoutAPVEmulatorCheck(const uint8_t internalFEUnitNum) const;
//check that a FE unit is present in the data.
//The high order byte of the FEDStatus register in the tracker special header is used in APV error mode.
//The FE length from the full debug header is used in full debug mode.
bool fePresent(uint8_t internalFEUnitNum) const;
//check that a channel is present in data, found, on a good FE unit and has no errors flagged in status bits
using sistrip::FEDBufferBase::channelGood;
bool channelGood(const uint8_t internalFEDannelNum, const bool doAPVeCheck) const;
void setLegacyMode(bool legacy) { legacyUnpacker_ = legacy; }
//functions to check buffer. All return true if there is no problem.
//minimum checks to do before using buffer
using sistrip::FEDBufferBase::doChecks;
bool doChecks(bool doCRC) const;
//additional checks to check for corrupt buffers
//check channel lengths fit inside to buffer length
bool checkChannelLengths() const;
//check that channel lengths add up to buffer length (this does the previous check as well)
bool checkChannelLengthsMatchBufferLength() const;
//check channel packet codes match readout mode
bool checkChannelPacketCodes() const;
//check FE unit lengths in FULL DEBUG header match the lengths of their channels
bool checkFEUnitLengths() const;
//check FE unit APV addresses in FULL DEBUG header are equal to the APVe address if the majority was good
bool checkFEUnitAPVAddresses() const;
//do all corrupt buffer checks
virtual bool doCorruptBufferChecks() const;
//check that there are no errors in channel, APV or FEUnit status bits
//these are done by channelGood(). Channels with bad status bits may be disabled so bad status bits do not usually indicate an error
bool checkStatusBits(const uint8_t internalFEDChannelNum) const;
bool checkStatusBits(const uint8_t internalFEUnitNum, const uint8_t internalChannelNum) const;
//same but for all channels on enabled FE units
bool checkAllChannelStatusBits() const;
//check that all FE unit payloads are present
bool checkFEPayloadsPresent() const;
//print a summary of all checks
std::string checkSummary() const override;
private:
uint8_t nFEUnitsPresent() const;
inline uint8_t getCorrectPacketCode() const { return packetCode(legacyUnpacker_); }
uint16_t calculateFEUnitLength(const uint8_t internalFEUnitNumber) const;
std::unique_ptr<FEDFEHeader> feHeader_;
const uint8_t* payloadPointer_;
uint16_t payloadLength_;
uint8_t validChannels_;
bool fePresent_[FEUNITS_PER_FED];
bool legacyUnpacker_ = false;
};
//
// Inline function definitions
//
/**
* Check if a FEDRawData object satisfies the requirements for constructing a sistrip::FEDBuffer
*
* These are:
* - those from sistrip::preconstructCheckFEDBufferBase()
* - the readout mode should not be sistrip::READOUT_MODE_SPY
* - (unless allowBadBuffers is true) the header type should not be sistrip::HEADER_TYPE_INVALID or HEADER_TYPE_NONE
*
* In case any check fails, a value different from sistrip::FEDBufferStatusCode::SUCCESS
* is returned, and detailed information printed to LogDebug("FEDBuffer"), if relevant.
*
* @see sistrip::preconstructCheckFEDBufferBase()
*/
inline FEDBufferStatusCode preconstructCheckFEDBuffer(const FEDRawData& fedBuffer, bool allowBadBuffer = false) {
const auto st_base = preconstructCheckFEDBufferBase(fedBuffer, !allowBadBuffer);
if (FEDBufferStatusCode::SUCCESS != st_base)
return st_base;
const TrackerSpecialHeader hdr{fedBuffer.data() + 8};
const auto hdr_type = hdr.headerType();
if ((!allowBadBuffer) && ((hdr_type == sistrip::HEADER_TYPE_INVALID) || (hdr_type == sistrip::HEADER_TYPE_NONE))) {
#ifdef EDM_ML_DEBUG
std::ostringstream msg;
msg << "Header type is invalid. Header type nibble is ";
const auto headerTypeNibble = hdr.headerTypeNibble();
printHex(&headerTypeNibble, 1, msg);
LogDebug("FEDBuffer") << msg.str();
#endif
return FEDBufferStatusCode::WRONG_HEADERTYPE;
}
if (READOUT_MODE_SPY == hdr.readoutMode())
return FEDBufferStatusCode::EXPECT_NOT_SPY;
return FEDBufferStatusCode::SUCCESS;
}
//FEDBuffer
inline const FEDFEHeader* FEDBuffer::feHeader() const { return feHeader_.get(); }
inline bool FEDBuffer::channelGood(const uint8_t internalFEDChannelNum, const bool doAPVeCheck) const {
return ((internalFEDChannelNum < validChannels_) &&
((doAPVeCheck && feGood(internalFEDChannelNum / FEDCH_PER_FEUNIT)) ||
(!doAPVeCheck && feGoodWithoutAPVEmulatorCheck(internalFEDChannelNum / FEDCH_PER_FEUNIT))) &&
(this->readoutMode() == sistrip::READOUT_MODE_SCOPE || checkStatusBits(internalFEDChannelNum)));
}
inline bool FEDBuffer::feGood(const uint8_t internalFEUnitNum) const {
return (!majorityAddressErrorForFEUnit(internalFEUnitNum) && !feOverflow(internalFEUnitNum) &&
fePresent(internalFEUnitNum));
}
inline bool FEDBuffer::feGoodWithoutAPVEmulatorCheck(const uint8_t internalFEUnitNum) const {
return (!feOverflow(internalFEUnitNum) && fePresent(internalFEUnitNum));
}
inline bool FEDBuffer::fePresent(uint8_t internalFEUnitNum) const { return fePresent_[internalFEUnitNum]; }
inline bool FEDBuffer::checkStatusBits(const uint8_t internalFEDChannelNum) const {
return feHeader_->checkChannelStatusBits(internalFEDChannelNum);
}
inline bool FEDBuffer::checkStatusBits(const uint8_t internalFEUnitNum, const uint8_t internalChannelNum) const {
return checkStatusBits(internalFEDChannelNum(internalFEUnitNum, internalChannelNum));
}
inline bool FEDBuffer::doChecks(bool doCRC) const {
//check that all channels were unpacked properly
return (validChannels_ == FEDCH_PER_FED) &&
//do checks from base class
(FEDBufferBase::doChecks()) &&
// check crc if required
(!doCRC || checkCRC());
}
namespace fedchannelunpacker {
enum class StatusCode { SUCCESS = 0, BAD_CHANNEL_LENGTH, UNORDERED_DATA, BAD_PACKET_CODE, ZERO_PACKET_CODE };
namespace detail {
template <uint8_t num_words>
uint16_t getADC_W(const uint8_t* data, uint_fast16_t offset, uint8_t bits_shift) {
// get ADC from one or two bytes (at most 10 bits), and shift if needed
return (data[offset ^ 7] + (num_words == 2 ? ((data[(offset + 1) ^ 7] & 0x03) << 8) : 0)) << bits_shift;
}
template <uint16_t mask>
uint16_t getADC_B2(const uint8_t* data, uint_fast16_t wOffset, uint_fast8_t bOffset) {
// get ADC from two bytes, from wOffset until bOffset bits from the next byte (maximum decided by mask)
return (((data[wOffset ^ 7]) << bOffset) + (data[(wOffset + 1) ^ 7] >> (BITS_PER_BYTE - bOffset))) & mask;
}
template <uint16_t mask>
uint16_t getADC_B1(const uint8_t* data, uint_fast16_t wOffset, uint_fast8_t bOffset) {
// get ADC from one byte, until bOffset into the byte at wOffset (maximum decided by mask)
return (data[wOffset ^ 7] >> (BITS_PER_BYTE - bOffset)) & mask;
}
// Unpack Raw with ADCs in whole 8-bit words (8bit and 10-in-16bit)
template <uint8_t num_bits, typename OUT>
StatusCode unpackRawW(const FEDChannel& channel, OUT&& out, uint8_t bits_shift = 0) {
constexpr auto num_words = num_bits / 8;
static_assert(((num_bits % 8) == 0) && (num_words > 0) && (num_words < 3));
if ((num_words > 1) && ((channel.length() - 3) % num_words)) {
LogDebug("FEDBuffer") << "Channel length is invalid. Raw channels have 3 header bytes and " << num_words
<< " bytes per sample. "
<< "Channel length is " << uint16_t(channel.length()) << ".";
return StatusCode::BAD_CHANNEL_LENGTH;
}
const uint8_t* const data = channel.data();
const uint_fast16_t end = channel.offset() + channel.length();
for (uint_fast16_t offset = channel.offset() + 3; offset != end; offset += num_words) {
*out++ = SiStripRawDigi(getADC_W<num_words>(data, offset, bits_shift));
}
return StatusCode::SUCCESS;
}
// Generic implementation for non-whole words (10bit, essentially)
template <uint_fast8_t num_bits, typename OUT>
StatusCode unpackRawB(const FEDChannel& channel, OUT&& out) {
static_assert(num_bits <= 16, "Word length must be between 0 and 16.");
if (channel.length() & 0xF000) {
LogDebug("FEDBuffer") << "Channel length is invalid. Channel length is " << uint16_t(channel.length()) << ".";
return StatusCode::BAD_CHANNEL_LENGTH;
}
constexpr uint16_t mask = (1 << num_bits) - 1;
const uint8_t* const data = channel.data();
const uint_fast16_t chEnd = channel.offset() + channel.length();
uint_fast16_t wOffset = channel.offset() + 3;
uint_fast8_t bOffset = 0;
while (((wOffset + 1) < chEnd) || ((chEnd - wOffset) * BITS_PER_BYTE - bOffset >= num_bits)) {
bOffset += num_bits;
if ((num_bits > BITS_PER_BYTE) || (bOffset > BITS_PER_BYTE)) {
bOffset -= BITS_PER_BYTE;
**out++ = SiStripRawDigi(getADC_B2<mask>(data, wOffset, bOffset));
++wOffset;
} else {
**out++ = SiStripRawDigi(getADC_B1<mask>(data, wOffset, bOffset));
}
if (bOffset == BITS_PER_BYTE) {
bOffset = 0;
++wOffset;
}
}
return StatusCode::SUCCESS;
}
template <uint8_t num_bits, typename OUT>
StatusCode unpackZSW(
const FEDChannel& channel, OUT&& out, uint8_t headerLength, uint16_t stripStart, uint8_t bits_shift = 0) {
constexpr auto num_words = num_bits / 8;
static_assert(((num_bits % 8) == 0) && (num_words > 0) && (num_words < 3));
if (channel.length() & 0xF000) {
LogDebug("FEDBuffer") << "Channel length is invalid. Channel length is " << uint16_t(channel.length()) << ".";
return StatusCode::BAD_CHANNEL_LENGTH;
}
const uint8_t* const data = channel.data();
uint_fast16_t offset = channel.offset() + headerLength; // header is 2 (lite) or 7
uint_fast8_t firstStrip{0}, nInCluster{0}, inCluster{0};
const uint_fast16_t end = channel.offset() + channel.length();
while (offset != end) {
if (inCluster == nInCluster) {
if (offset + 2 >= end) {
// offset should already be at end then (empty cluster)
break;
}
const uint_fast8_t newFirstStrip = data[(offset++) ^ 7];
if (newFirstStrip < (firstStrip + inCluster)) {
LogDebug("FEDBuffer") << "First strip of new cluster is not greater than last strip of previous cluster. "
<< "Last strip of previous cluster is " << uint16_t(firstStrip + inCluster) << ". "
<< "First strip of new cluster is " << uint16_t(newFirstStrip) << ".";
return StatusCode::UNORDERED_DATA;
}
firstStrip = newFirstStrip;
nInCluster = data[(offset++) ^ 7];
inCluster = 0;
}
*out++ = SiStripDigi(stripStart + firstStrip + inCluster, getADC_W<num_words>(data, offset, bits_shift));
offset += num_words;
++inCluster;
}
return StatusCode::SUCCESS;
}
// Generic implementation (for 10bit, essentially)
template <uint_fast8_t num_bits, typename OUT>
StatusCode unpackZSB(const FEDChannel& channel, OUT&& out, uint8_t headerLength, uint16_t stripStart) {
constexpr uint16_t mask = (1 << num_bits) - 1;
if (channel.length() & 0xF000) {
LogDebug("FEDBuffer") << "Channel length is invalid. Channel length is " << uint16_t(channel.length()) << ".";
return StatusCode::BAD_CHANNEL_LENGTH;
}
const uint8_t* const data = channel.data();
uint_fast16_t wOffset = channel.offset() + headerLength; // header is 2 (lite) or 7
uint_fast8_t bOffset{0}, firstStrip{0}, nInCluster{0}, inCluster{0};
const uint_fast16_t chEnd = channel.offset() + channel.length();
while (((wOffset + 1) < chEnd) ||
((inCluster != nInCluster) && ((chEnd - wOffset) * BITS_PER_BYTE - bOffset >= num_bits))) {
if (inCluster == nInCluster) {
if (wOffset + 2 >= chEnd) {
// offset should already be at end then (empty cluster)
break;
}
if (bOffset) {
++wOffset;
bOffset = 0;
}
const uint_fast8_t newFirstStrip = data[(wOffset++) ^ 7];
if (newFirstStrip < (firstStrip + inCluster)) {
LogDebug("FEDBuffer") << "First strip of new cluster is not greater than last strip of previous cluster. "
<< "Last strip of previous cluster is " << uint16_t(firstStrip + inCluster) << ". "
<< "First strip of new cluster is " << uint16_t(newFirstStrip) << ".";
return StatusCode::UNORDERED_DATA;
}
firstStrip = newFirstStrip;
nInCluster = data[(wOffset++) ^ 7];
inCluster = 0;
bOffset = 0;
}
bOffset += num_bits;
if ((num_bits > BITS_PER_BYTE) || (bOffset > BITS_PER_BYTE)) {
bOffset -= BITS_PER_BYTE;
*out++ = SiStripDigi(stripStart + firstStrip + inCluster, getADC_B2<mask>(data, wOffset, bOffset));
++wOffset;
} else {
*out++ = SiStripDigi(stripStart + firstStrip + inCluster, getADC_B1<mask>(data, wOffset, bOffset));
}
++inCluster;
if (bOffset == BITS_PER_BYTE) {
bOffset = 0;
++wOffset;
}
}
return StatusCode::SUCCESS;
}
inline uint16_t readoutOrder(uint16_t physical_order) {
return (4 * ((static_cast<uint16_t>((static_cast<float>(physical_order) / 8.0))) % 4) +
static_cast<uint16_t>(static_cast<float>(physical_order) / 32.0) + 16 * (physical_order % 8));
}
}; // namespace detail
inline bool isZeroSuppressed(FEDReadoutMode mode,
bool legacy = false,
FEDLegacyReadoutMode lmode = READOUT_MODE_LEGACY_INVALID) {
if (!legacy) {
switch (mode) {
case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
case READOUT_MODE_PREMIX_RAW:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
case READOUT_MODE_ZERO_SUPPRESSED:
case READOUT_MODE_ZERO_SUPPRESSED_FAKE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
return true;
break;
default:
return false;
}
} else {
switch (lmode) {
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_REAL:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_FAKE:
case READOUT_MODE_LEGACY_PREMIX_RAW:
return true;
default:
return false;
}
}
}
inline bool isNonLiteZS(FEDReadoutMode mode,
bool legacy = false,
FEDLegacyReadoutMode lmode = READOUT_MODE_LEGACY_INVALID) {
return (!legacy) ? (mode == READOUT_MODE_ZERO_SUPPRESSED || mode == READOUT_MODE_ZERO_SUPPRESSED_FAKE)
: (lmode == READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL ||
lmode == READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE);
}
inline bool isVirginRaw(FEDReadoutMode mode,
bool legacy = false,
FEDLegacyReadoutMode lmode = READOUT_MODE_LEGACY_INVALID) {
return (!legacy) ? mode == READOUT_MODE_VIRGIN_RAW
: (lmode == READOUT_MODE_LEGACY_VIRGIN_RAW_REAL || lmode == READOUT_MODE_LEGACY_VIRGIN_RAW_FAKE);
}
inline bool isProcessedRaw(FEDReadoutMode mode,
bool legacy = false,
FEDLegacyReadoutMode lmode = READOUT_MODE_LEGACY_INVALID) {
return (!legacy) ? mode == READOUT_MODE_PROC_RAW
: (lmode == READOUT_MODE_LEGACY_PROC_RAW_REAL || lmode == READOUT_MODE_LEGACY_PROC_RAW_FAKE);
}
inline bool isScopeMode(FEDReadoutMode mode,
bool legacy = false,
FEDLegacyReadoutMode lmode = READOUT_MODE_LEGACY_INVALID) {
return (!legacy) ? mode == READOUT_MODE_SCOPE : lmode == READOUT_MODE_LEGACY_SCOPE;
}
template <typename OUT>
StatusCode unpackScope(const FEDChannel& channel, OUT&& out) {
return detail::unpackRawW<16>(channel, out);
}
template <typename OUT>
StatusCode unpackProcessedRaw(const FEDChannel& channel, OUT&& out) {
return detail::unpackRawW<16>(channel, out);
}
template <typename OUT>
StatusCode unpackVirginRaw(const FEDChannel& channel, OUT&& out, uint8_t packetCode) {
std::vector<SiStripRawDigi> samples;
auto st = StatusCode::SUCCESS;
if (PACKET_CODE_VIRGIN_RAW == packetCode) {
samples.reserve((channel.length() - 3) / 2);
st = detail::unpackRawW<16>(channel, std::back_inserter(samples));
} else if (PACKET_CODE_VIRGIN_RAW10 == packetCode) {
samples.reserve((channel.length() - 3) * 10 / 8);
st = detail::unpackRawB<10>(channel, std::back_inserter(samples));
} else if (PACKET_CODE_VIRGIN_RAW8_BOTBOT == packetCode || PACKET_CODE_VIRGIN_RAW8_TOPBOT == packetCode) {
samples.reserve(channel.length() - 3);
st = detail::unpackRawW<8>(
channel, std::back_inserter(samples), (PACKET_CODE_VIRGIN_RAW8_BOTBOT == packetCode ? 2 : 1));
}
if (!samples.empty()) { // reorder
for (uint_fast16_t i{0}; i != samples.size(); ++i) {
const auto physical = i % 128;
const auto readout = (detail::readoutOrder(physical) * 2 // convert index from physical to readout order
+ (i >= 128 ? 1 : 0)); // un-multiplex data
*out++ = samples[readout];
}
}
return st;
}
template <typename OUT>
StatusCode unpackZeroSuppressed(const FEDChannel& channel,
OUT&& out,
uint16_t stripStart,
bool isNonLite,
FEDReadoutMode mode,
bool legacy = false,
FEDLegacyReadoutMode lmode = READOUT_MODE_LEGACY_INVALID,
uint8_t packetCode = 0) {
if ((isNonLite && packetCode == PACKET_CODE_ZERO_SUPPRESSED10) ||
((!legacy) &&
(mode == READOUT_MODE_ZERO_SUPPRESSED_LITE10 || mode == READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE))) {
return detail::unpackZSB<10>(channel, out, (isNonLite ? 7 : 2), stripStart);
} else if ((!legacy) ? mode == READOUT_MODE_PREMIX_RAW : lmode == READOUT_MODE_LEGACY_PREMIX_RAW) {
return detail::unpackZSW<16>(channel, out, 7, stripStart);
} else { // 8bit
uint8_t bits_shift = 0;
if (isNonLite) {
if (packetCode == PACKET_CODE_ZERO_SUPPRESSED8_TOPBOT)
bits_shift = 1;
else if (packetCode == PACKET_CODE_ZERO_SUPPRESSED8_BOTBOT)
bits_shift = 2;
} else { // lite
if (mode == READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT ||
mode == READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE)
bits_shift = 1;
else if (mode == READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT ||
mode == READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE)
bits_shift = 2;
}
auto st = detail::unpackZSW<8>(channel, out, (isNonLite ? 7 : 2), stripStart, bits_shift);
if (isNonLite && packetCode == 0 && StatusCode::SUCCESS == st) {
// workaround for a pre-2015 bug in the packer: assume default ZS packing
return StatusCode::ZERO_PACKET_CODE;
}
return st;
}
}
}; // namespace fedchannelunpacker
std::string toString(fedchannelunpacker::StatusCode status);
} // namespace sistrip
#endif //ndef EventFilter_SiStripRawToDigi_SiStripFEDBuffer_H
|