1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
|
#ifndef EventFilter_SiStripRawToDigi_SiStripFEDBufferComponents_H
#define EventFilter_SiStripRawToDigi_SiStripFEDBufferComponents_H
#include <ostream>
#include <memory>
#include <cstring>
#include <vector>
#include "DataFormats/FEDRawData/interface/FEDRawData.h"
#include "DataFormats/SiStripCommon/interface/ConstantsForHardwareSystems.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include <cstdint>
namespace sistrip {
//
// Constants
//
static const uint8_t INVALID = 0xFF;
static const uint8_t APV_MAX_ADDRESS = 192;
static const uint16_t SCOPE_MODE_MAX_SCOPE_LENGTH = 1022;
enum FEDBufferFormat {
BUFFER_FORMAT_INVALID = INVALID,
BUFFER_FORMAT_OLD_VME,
BUFFER_FORMAT_OLD_SLINK,
BUFFER_FORMAT_NEW
};
//these are the values which appear in the buffer.
static const uint8_t BUFFER_FORMAT_CODE_OLD = 0xED;
static const uint8_t BUFFER_FORMAT_CODE_NEW = 0xC5;
//enum values are values which appear in buffer. DO NOT CHANGE!
enum FEDHeaderType {
HEADER_TYPE_INVALID = INVALID,
HEADER_TYPE_FULL_DEBUG = 1,
HEADER_TYPE_APV_ERROR = 2,
HEADER_TYPE_NONE = 4 //spy channel
};
//enum values are values which appear in buffer. DO NOT CHANGE!
enum FEDReadoutMode {
READOUT_MODE_INVALID = INVALID,
READOUT_MODE_SCOPE = 0x1,
READOUT_MODE_VIRGIN_RAW = 0x2,
READOUT_MODE_ZERO_SUPPRESSED_LITE10 = 0x3,
READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE = 0x4,
READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT = 0x5,
READOUT_MODE_PROC_RAW = 0x6,
READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE = 0x7,
READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE = 0x8,
READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT = 0x9,
READOUT_MODE_ZERO_SUPPRESSED = 0xA,
READOUT_MODE_ZERO_SUPPRESSED_FAKE = 0xB,
READOUT_MODE_ZERO_SUPPRESSED_LITE8 = 0xC,
READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE = 0xD,
READOUT_MODE_SPY = 0xE,
READOUT_MODE_PREMIX_RAW = 0xF
};
enum FEDLegacyReadoutMode {
READOUT_MODE_LEGACY_INVALID = INVALID,
READOUT_MODE_LEGACY_SCOPE = 0x1,
READOUT_MODE_LEGACY_VIRGIN_RAW_REAL = 0x2,
READOUT_MODE_LEGACY_VIRGIN_RAW_FAKE = 0x3,
READOUT_MODE_LEGACY_PROC_RAW_REAL = 0x6,
READOUT_MODE_LEGACY_PROC_RAW_FAKE = 0x7,
READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL = 0xA,
READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE = 0xB,
READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_REAL = 0xC,
READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_FAKE = 0xD,
READOUT_MODE_LEGACY_SPY = 0xE,
READOUT_MODE_LEGACY_PREMIX_RAW = 0xF
};
static const uint8_t PACKET_CODE_SCOPE = 0xE1;
static const uint8_t PACKET_CODE_VIRGIN_RAW = 0xE6;
static const uint8_t PACKET_CODE_VIRGIN_RAW10 = 0x86;
static const uint8_t PACKET_CODE_VIRGIN_RAW8_BOTBOT = 0xC6; //FIXME need to implement this!
static const uint8_t PACKET_CODE_VIRGIN_RAW8_TOPBOT = 0xA6;
static const uint8_t PACKET_CODE_PROC_RAW = 0xF2;
static const uint8_t PACKET_CODE_PROC_RAW10 = 0x92; //FIXME need to implement this!
static const uint8_t PACKET_CODE_PROC_RAW8_BOTBOT = 0xCA;
static const uint8_t PACKET_CODE_PROC_RAW8_TOPBOT = 0xB2;
static const uint8_t PACKET_CODE_ZERO_SUPPRESSED = 0xEA;
static const uint8_t PACKET_CODE_ZERO_SUPPRESSED10 = 0x8A;
static const uint8_t PACKET_CODE_ZERO_SUPPRESSED8_BOTBOT = 0xCA;
static const uint8_t PACKET_CODE_ZERO_SUPPRESSED8_TOPBOT = 0xAA;
//enum values are values which appear in buffer. DO NOT CHANGE!
//see http://cmsdoc.cern.ch/cms/TRIDAS/horizontal/RUWG/DAQ_IF_guide/DAQ_IF_guide.html
enum FEDDAQEventType {
DAQ_EVENT_TYPE_PHYSICS = 0x1,
DAQ_EVENT_TYPE_CALIBRATION = 0x2,
DAQ_EVENT_TYPE_TEST = 0x3,
DAQ_EVENT_TYPE_TECHNICAL = 0x4,
DAQ_EVENT_TYPE_SIMULATED = 0x5,
DAQ_EVENT_TYPE_TRACED = 0x6,
DAQ_EVENT_TYPE_ERROR = 0xF,
DAQ_EVENT_TYPE_INVALID = INVALID
};
//enum values are values which appear in buffer. DO NOT CHANGE!
//see http://cmsdoc.cern.ch/cms/TRIDAS/horizontal/RUWG/DAQ_IF_guide/DAQ_IF_guide.html
enum FEDTTSBits {
TTS_DISCONNECTED0 = 0x0,
TTS_WARN_OVERFLOW = 0x1,
TTS_OUT_OF_SYNC = 0x2,
TTS_BUSY = 0x4,
TTS_READY = 0x8,
TTS_ERROR = 0x12,
TTS_DISCONNECTED1 = 0xF,
TTS_INVALID = INVALID
};
//enum values are values which appear in buffer. DO NOT CHANGE!
enum FEDBufferState {
BUFFER_STATE_UNSET = 0x0,
BUFFER_STATE_EMPTY = 0x1,
BUFFER_STATE_PARTIAL_FULL = 0x4,
BUFFER_STATE_FULL = 0x8
};
//enum values are values which appear in buffer. DO NOT CHANGE!
enum FEDChannelStatus {
CHANNEL_STATUS_LOCKED = 0x20,
CHANNEL_STATUS_IN_SYNC = 0x10,
CHANNEL_STATUS_APV1_ADDRESS_GOOD = 0x08,
CHANNEL_STATUS_APV0_NO_ERROR_BIT = 0x04,
CHANNEL_STATUS_APV0_ADDRESS_GOOD = 0x02,
CHANNEL_STATUS_APV1_NO_ERROR_BIT = 0x01,
CHANNEL_STATUS_NO_PROBLEMS = CHANNEL_STATUS_LOCKED | CHANNEL_STATUS_IN_SYNC | CHANNEL_STATUS_APV1_ADDRESS_GOOD |
CHANNEL_STATUS_APV0_NO_ERROR_BIT | CHANNEL_STATUS_APV0_ADDRESS_GOOD |
CHANNEL_STATUS_APV1_NO_ERROR_BIT
};
enum class FEDBufferStatusCode {
// for FEDBufferBase
SUCCESS = 0,
BUFFER_NULL,
BUFFER_TOO_SHORT,
UNRECOGNIZED_FORMAT,
// for FEDBuffer and FEDSpyBuffer
EXPECT_NOT_SPY,
EXPECT_SPY,
// for FEDBuffer
WRONG_HEADERTYPE,
CHANNEL_BEGIN_BEYOND_PAYLOAD,
CHANNEL_TOO_SHORT,
CHANNEL_END_BEYOND_PAYLOAD,
};
//
// Global function declarations
//
//used by these classes
uint8_t internalFEDChannelNum(const uint8_t internalFEUnitNum, const uint8_t internalFEUnitChannelNum);
void printHex(const void* pointer, const size_t length, std::ostream& os);
//calculate the CRC for a FED buffer
uint16_t calculateFEDBufferCRC(const uint8_t* buffer, const size_t lengthInBytes);
//to make enums printable
std::ostream& operator<<(std::ostream& os, const FEDBufferFormat& value);
std::ostream& operator<<(std::ostream& os, const FEDHeaderType& value);
std::ostream& operator<<(std::ostream& os, const FEDLegacyReadoutMode& value);
std::ostream& operator<<(std::ostream& os, const FEDReadoutMode& value);
std::ostream& operator<<(std::ostream& os, const FEDDAQEventType& value);
std::ostream& operator<<(std::ostream& os, const FEDTTSBits& value);
std::ostream& operator<<(std::ostream& os, const FEDBufferState& value);
std::ostream& operator<<(std::ostream& os, const FEDChannelStatus& value);
std::ostream& operator<<(std::ostream& os, const FEDBufferStatusCode& value);
//convert name of an element of enum to enum value (useful for getting values from config)
FEDBufferFormat fedBufferFormatFromString(const std::string& bufferFormatString);
FEDHeaderType fedHeaderTypeFromString(const std::string& headerTypeString);
FEDReadoutMode fedReadoutModeFromString(const std::string& readoutModeString);
uint8_t packetCodeFromString(const std::string& packetCodeString, FEDReadoutMode mode);
FEDDAQEventType fedDAQEventTypeFromString(const std::string& daqEventTypeString);
//
// Class definitions
//
//handles conversion between order of data in buffer in VR/PR modes (readout order) and strip order (physical order)
class FEDStripOrdering {
public:
//convert strip/sample index in channel (ie 0-255) between physical and readout order
static uint8_t physicalOrderForStripInChannel(const uint8_t readoutOrderStripIndexInChannel);
static uint8_t readoutOrderForStripInChannel(const uint8_t physicalOrderStripIndexInChannel);
//convert strip/sample index in APV (ie 0-127) between physical and readout order
static uint8_t physicalOrderForStripInAPV(const uint8_t readoutOrderStripIndexInAPV);
static uint8_t readoutOrderForStripInAPV(const uint8_t physicalOrderStripIndexInAPV);
};
//see http://cmsdoc.cern.ch/cms/TRIDAS/horizontal/RUWG/DAQ_IF_guide/DAQ_IF_guide.html
class FEDDAQHeader {
public:
FEDDAQHeader() {}
explicit FEDDAQHeader(const uint8_t* header);
//0x5 in first fragment
uint8_t boeNibble() const;
uint8_t eventTypeNibble() const;
FEDDAQEventType eventType() const;
uint32_t l1ID() const;
uint16_t bxID() const;
uint16_t sourceID() const;
uint8_t version() const;
//0 if current header word is last, 1 otherwise
bool hBit() const;
bool lastHeader() const;
void print(std::ostream& os) const;
//used by digi2Raw
const uint8_t* data() const;
FEDDAQHeader& setEventType(const FEDDAQEventType evtType);
FEDDAQHeader& setL1ID(const uint32_t l1ID);
FEDDAQHeader& setBXID(const uint16_t bxID);
FEDDAQHeader& setSourceID(const uint16_t sourceID);
FEDDAQHeader(const uint32_t l1ID,
const uint16_t bxID,
const uint16_t sourceID,
const FEDDAQEventType evtType = DAQ_EVENT_TYPE_PHYSICS);
private:
uint8_t header_[8];
};
//see http://cmsdoc.cern.ch/cms/TRIDAS/horizontal/RUWG/DAQ_IF_guide/DAQ_IF_guide.html
class FEDDAQTrailer {
public:
FEDDAQTrailer() {}
explicit FEDDAQTrailer(const uint8_t* trailer);
//0xA in first fragment
uint8_t eoeNibble() const;
uint32_t eventLengthIn64BitWords() const;
uint32_t eventLengthInBytes() const;
uint16_t crc() const;
//set to 1 if FRL detects a transmission error over S-link
bool cBit() const;
bool slinkTransmissionError() const { return cBit(); }
//set to 1 if the FED ID is not the one expected by the FRL
bool fBit() const;
bool badSourceID() const { return fBit(); }
uint8_t eventStatusNibble() const;
uint8_t ttsNibble() const;
FEDTTSBits ttsBits() const;
//0 if the current trailer is the last, 1 otherwise
bool tBit() const;
bool lastTrailer() const { return !tBit(); }
//set to 1 if the S-link sender card detects a CRC error (the CRC it computes is put in the CRC field)
bool rBit() const;
bool slinkCRCError() const { return rBit(); }
void print(std::ostream& os) const;
//used by digi2Raw
const uint8_t* data() const;
FEDDAQTrailer& setEventLengthIn64BitWords(const uint32_t eventLengthIn64BitWords);
FEDDAQTrailer& setCRC(const uint16_t crc);
FEDDAQTrailer& setSLinkTransmissionErrorBit(const bool bitSet);
FEDDAQTrailer& setBadSourceIDBit(const bool bitSet);
FEDDAQTrailer& setSLinkCRCErrorBit(const bool bitSet);
FEDDAQTrailer& setEventStatusNibble(const uint8_t eventStatusNibble);
FEDDAQTrailer& setTTSBits(const FEDTTSBits ttsBits);
FEDDAQTrailer(const uint32_t eventLengthIn64BitWords,
const uint16_t crc = 0,
const FEDTTSBits ttsBits = TTS_READY,
const bool slinkTransmissionError = false,
const bool badFEDID = false,
const bool slinkCRCError = false,
const uint8_t eventStatusNibble = 0);
private:
uint8_t trailer_[8];
};
class FEDStatusRegister {
public:
FEDStatusRegister(const uint16_t fedStatusRegister);
bool slinkFullFlag() const;
bool trackerHeaderMonitorDataReadyFlag() const;
bool qdrMemoryFullFlag() const;
bool qdrMemoryPartialFullFlag() const;
bool qdrMemoryEmptyFlag() const;
bool l1aBxFIFOFullFlag() const;
bool l1aBxFIFOPartialFullFlag() const;
bool l1aBxFIFOEmptyFlag() const;
FEDBufferState qdrMemoryState() const;
FEDBufferState l1aBxFIFOState() const;
bool feDataMissingFlag(const uint8_t internalFEUnitNum) const;
void print(std::ostream& os) const;
void printFlags(std::ostream& os) const;
operator uint16_t() const;
//used by digi2Raw
FEDStatusRegister& setSLinkFullFlag(const bool bitSet);
FEDStatusRegister& setTrackerHeaderMonitorDataReadyFlag(const bool bitSet);
FEDStatusRegister& setQDRMemoryBufferState(const FEDBufferState state);
FEDStatusRegister& setL1ABXFIFOBufferState(const FEDBufferState state);
FEDStatusRegister(const FEDBufferState qdrMemoryBufferState = BUFFER_STATE_UNSET,
const FEDBufferState l1aBxFIFOBufferState = BUFFER_STATE_UNSET,
const bool trackerHeaderMonitorDataReadyFlagSet = false,
const bool slinkFullFlagSet = false);
private:
bool getBit(const uint8_t num) const;
void setBit(const uint8_t num, const bool bitSet);
void setQDRMemoryFullFlag(const bool bitSet);
void setQDRMemoryPartialFullFlag(const bool bitSet);
void setQDRMemoryEmptyFlag(const bool bitSet);
void setL1ABXFIFOFullFlag(const bool bitSet);
void setL1ABXFIFOPartialFullFlag(const bool bitSet);
void setL1ABXFIFOEmptyFlag(const bool bitSet);
uint16_t data_;
};
class TrackerSpecialHeader {
public:
TrackerSpecialHeader();
//construct with a pointer to the data. The data will be coppied and swapped if necessary.
explicit TrackerSpecialHeader(const uint8_t* headerPointer);
uint8_t bufferFormatByte() const;
FEDBufferFormat bufferFormat() const;
uint8_t headerTypeNibble() const;
FEDHeaderType headerType() const;
uint8_t trackerEventTypeNibble() const;
FEDReadoutMode readoutMode() const;
FEDLegacyReadoutMode legacyReadoutMode() const;
uint8_t apveAddress() const;
uint8_t apvAddressErrorRegister() const;
bool majorityAddressErrorForFEUnit(const uint8_t internalFEUnitNum) const;
uint8_t feEnableRegister() const;
bool feEnabled(const uint8_t internalFEUnitNum) const;
uint8_t feOverflowRegister() const;
bool feOverflow(const uint8_t internalFEUnitNum) const;
uint16_t fedStatusRegisterWord() const;
FEDStatusRegister fedStatusRegister() const;
void print(std::ostream& os) const;
//used by digi2Raw
//returns ordered buffer (ie this may need to be swapped to get original order)
const uint8_t* data() const;
bool wasSwapped() const;
TrackerSpecialHeader& setBufferFormat(const FEDBufferFormat newBufferFormat);
TrackerSpecialHeader& setHeaderType(const FEDHeaderType headerType);
TrackerSpecialHeader& setReadoutMode(const FEDReadoutMode readoutMode);
TrackerSpecialHeader& setAPVEAddress(const uint8_t address);
TrackerSpecialHeader& setAPVEAddressErrorRegister(const uint8_t addressErrorRegister);
TrackerSpecialHeader& setAPVAddressErrorForFEUnit(const uint8_t internalFEUnitNum, const bool error);
TrackerSpecialHeader& setFEEnableRegister(const uint8_t feEnableRegister);
TrackerSpecialHeader& setFEEnableForFEUnit(const uint8_t internalFEUnitNum, const bool enabled);
TrackerSpecialHeader& setFEOverflowRegister(const uint8_t feOverflowRegister);
TrackerSpecialHeader& setFEOverflowForFEUnit(const uint8_t internalFEUnitNum, const bool overflow);
TrackerSpecialHeader& setFEDStatusRegister(const FEDStatusRegister fedStatusRegister);
TrackerSpecialHeader(const FEDBufferFormat bufferFormat,
const FEDReadoutMode readoutMode,
const FEDHeaderType headerType,
const uint8_t address = 0x00,
const uint8_t addressErrorRegister = 0x00,
const uint8_t feEnableRegister = 0xFF,
const uint8_t feOverflowRegister = 0x00,
const FEDStatusRegister fedStatusRegister = FEDStatusRegister());
// detect the buffer format without constructing the full header
static FEDBufferFormat bufferFormat(const uint8_t* headerPointer) {
if (headerPointer[BUFFERFORMAT] == BUFFER_FORMAT_CODE_NEW) {
return BUFFER_FORMAT_NEW;
} else if (headerPointer[BUFFERFORMAT] == BUFFER_FORMAT_CODE_OLD) {
return BUFFER_FORMAT_OLD_SLINK;
} else if (headerPointer[BUFFERFORMAT ^ 4] == BUFFER_FORMAT_CODE_OLD) {
// same case as used to detect "wordSwapped_" in the constructor
return BUFFER_FORMAT_OLD_VME;
} else {
return BUFFER_FORMAT_INVALID;
}
}
private:
void setBufferFormatByte(const FEDBufferFormat newBufferFormat);
void setHeaderTypeNibble(const uint8_t value);
void setReadoutModeBits(const uint8_t value);
enum byteIndicies {
FEDSTATUS = 0,
FEOVERFLOW = 2,
FEENABLE = 3,
ADDRESSERROR = 4,
APVEADDRESS = 5,
BUFFERTYPE = 6,
BUFFERFORMAT = 7
};
//copy of header, 32 bit word swapped if needed
uint8_t specialHeader_[8];
//was the header word swapped wrt order in buffer?
bool wordSwapped_;
};
class FEDBackendStatusRegister {
public:
FEDBackendStatusRegister(const uint32_t backendStatusRegister);
bool internalFreezeFlag() const;
bool slinkDownFlag() const;
bool slinkFullFlag() const;
bool backpressureFlag() const;
bool ttcReadyFlag() const;
bool trackerHeaderMonitorDataReadyFlag() const;
FEDBufferState qdrMemoryState() const;
FEDBufferState frameAddressFIFOState() const;
FEDBufferState totalLengthFIFOState() const;
FEDBufferState trackerHeaderFIFOState() const;
FEDBufferState l1aBxFIFOState() const;
FEDBufferState feEventLengthFIFOState() const;
FEDBufferState feFPGABufferState() const;
void print(std::ostream& os) const;
void printFlags(std::ostream& os) const;
operator uint32_t() const;
//used by digi2Raw
FEDBackendStatusRegister& setInternalFreezeFlag(const bool bitSet);
FEDBackendStatusRegister& setSLinkDownFlag(const bool bitSet);
FEDBackendStatusRegister& setSLinkFullFlag(const bool bitSet);
FEDBackendStatusRegister& setBackpressureFlag(const bool bitSet);
FEDBackendStatusRegister& setTTCReadyFlag(const bool bitSet);
FEDBackendStatusRegister& setTrackerHeaderMonitorDataReadyFlag(const bool bitSet);
FEDBackendStatusRegister& setQDRMemoryState(const FEDBufferState state);
FEDBackendStatusRegister& setFrameAddressFIFOState(const FEDBufferState state);
FEDBackendStatusRegister& setTotalLengthFIFOState(const FEDBufferState state);
FEDBackendStatusRegister& setTrackerHeaderFIFOState(const FEDBufferState state);
FEDBackendStatusRegister& setL1ABXFIFOState(const FEDBufferState state);
FEDBackendStatusRegister& setFEEventLengthFIFOState(const FEDBufferState state);
FEDBackendStatusRegister& setFEFPGABufferState(const FEDBufferState state);
FEDBackendStatusRegister(const FEDBufferState qdrMemoryBufferState = BUFFER_STATE_UNSET,
const FEDBufferState frameAddressFIFOBufferState = BUFFER_STATE_UNSET,
const FEDBufferState totalLengthFIFOBufferState = BUFFER_STATE_UNSET,
const FEDBufferState trackerHeaderFIFOBufferState = BUFFER_STATE_UNSET,
const FEDBufferState l1aBxFIFOBufferState = BUFFER_STATE_UNSET,
const FEDBufferState feEventLengthFIFOBufferState = BUFFER_STATE_UNSET,
const FEDBufferState feFPGABufferState = BUFFER_STATE_UNSET,
const bool backpressure = false,
const bool slinkFull = false,
const bool slinkDown = false,
const bool internalFreeze = false,
const bool trackerHeaderMonitorDataReady = false,
const bool ttcReady = true);
private:
bool getBit(const uint8_t num) const;
void setBit(const uint8_t num, const bool bitSet);
//get the state of the buffer in position 'bufferPosition'
FEDBufferState getBufferState(const uint8_t bufferPosition) const;
//set the state of the buffer in position 'bufferPosition' to state 'state'
void setBufferSate(const uint8_t bufferPosition, const FEDBufferState state);
void printFlagsForBuffer(const FEDBufferState bufferState, const std::string name, std::ostream& os) const;
//constants marking order of flags in buffer
//eg. bit offset for L1A/BX FIFO Partial full flag is STATE_OFFSET_PARTIAL_FULL+BUFFER_POSITION_L1ABX_FIFO
// bit offset for total length FIFO empty flag is STATE_OFFSET_EMPTY+BUFFER_POSITION_TOTAL_LENGTH_FIFO
//see BE FPGA technical description
enum bufferPositions {
BUFFER_POSITION_QDR_MEMORY = 0,
BUFFER_POSITION_FRAME_ADDRESS_FIFO = 1,
BUFFER_POSITION_TOTAL_LENGTH_FIFO = 2,
BUFFER_POSITION_TRACKER_HEADER_FIFO = 3,
BUFFER_POSITION_L1ABX_FIFO = 4,
BUFFER_POSITION_FE_EVENT_LENGTH_FIFO = 5,
BUFFER_POSITION_FE_FPGA_BUFFER = 6
};
enum stateOffsets { STATE_OFFSET_FULL = 8, STATE_OFFSET_PARTIAL_FULL = 16, STATE_OFFSET_EMPTY = 24 };
uint32_t data_;
};
class FEDFEHeader {
public:
//factory function: allocates new FEDFEHeader derrivative of appropriate type
static std::unique_ptr<FEDFEHeader> newFEHeader(const FEDHeaderType headerType, const uint8_t* headerBuffer);
//used by digi2Raw
static std::unique_ptr<FEDFEHeader> newFEHeader(const FEDHeaderType headerType);
//create a buffer to use with digi2Raw
static std::unique_ptr<FEDFEHeader> newFEFakeHeader(const FEDHeaderType headerType);
virtual ~FEDFEHeader();
//the length of the header
virtual size_t lengthInBytes() const = 0;
//check that there are no errors indicated in which ever error bits are available in the header
//check bits for both APVs on a channel
bool checkChannelStatusBits(const uint8_t internalFEUnitNum, const uint8_t internalFEUnitChannelNum) const;
virtual bool checkChannelStatusBits(const uint8_t internalFEDChannelNum) const = 0;
//check bits for one APV
bool checkStatusBits(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const uint8_t apvNum) const;
virtual bool checkStatusBits(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const = 0;
virtual void print(std::ostream& os) const = 0;
virtual FEDFEHeader* clone() const = 0;
//used by digi2Raw
virtual const uint8_t* data() const = 0;
virtual void setChannelStatus(const uint8_t internalFEDChannelNum, const FEDChannelStatus status) = 0;
virtual void setFEUnitMajorityAddress(const uint8_t internalFEUnitNum, const uint8_t address) = 0;
virtual void setBEStatusRegister(const FEDBackendStatusRegister beStatusRegister) = 0;
virtual void setDAQRegister(const uint32_t daqRegister) = 0;
virtual void setDAQRegister2(const uint32_t daqRegister2) = 0;
virtual void set32BitReservedRegister(const uint8_t internalFEUnitNum, const uint32_t reservedRegister) = 0;
virtual void setFEUnitLength(const uint8_t internalFEUnitNum, const uint16_t length) = 0;
void setChannelStatus(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const FEDChannelStatus status);
};
class FEDAPVErrorHeader final : public FEDFEHeader {
public:
explicit FEDAPVErrorHeader(const uint8_t* headerBuffer);
~FEDAPVErrorHeader() override;
size_t lengthInBytes() const override;
bool checkChannelStatusBits(const uint8_t internalFEDChannelNum) const override;
bool checkStatusBits(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const override;
void print(std::ostream& os) const override;
FEDAPVErrorHeader* clone() const override;
//used by digi2Raw
const uint8_t* data() const override;
FEDAPVErrorHeader& setAPVStatusBit(const uint8_t internalFEDChannelNum, const uint8_t apvNum, const bool apvGood);
FEDAPVErrorHeader& setAPVStatusBit(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const uint8_t apvNum,
const bool apvGood);
FEDAPVErrorHeader(const std::vector<bool>& apvsGood = std::vector<bool>(APVS_PER_FED, true));
//Information which is not present in APVError mode is allowed to be set here so that the methods can be called on the base class without caring
//if the values need to be set.
void setChannelStatus(const uint8_t internalFEDChannelNum, const FEDChannelStatus status) override;
void setFEUnitMajorityAddress(const uint8_t internalFEUnitNum, const uint8_t address) override;
void setBEStatusRegister(const FEDBackendStatusRegister beStatusRegister) override;
void setDAQRegister(const uint32_t daqRegister) override;
void setDAQRegister2(const uint32_t daqRegister2) override;
void set32BitReservedRegister(const uint8_t internalFEUnitNum, const uint32_t reservedRegister) override;
void setFEUnitLength(const uint8_t internalFEUnitNum, const uint16_t length) override;
private:
static const size_t APV_ERROR_HEADER_SIZE_IN_64BIT_WORDS = 3;
static const size_t APV_ERROR_HEADER_SIZE_IN_BYTES = APV_ERROR_HEADER_SIZE_IN_64BIT_WORDS * 8;
uint8_t header_[APV_ERROR_HEADER_SIZE_IN_BYTES];
};
class FEDFullDebugHeader final : public FEDFEHeader {
public:
explicit FEDFullDebugHeader(const uint8_t* headerBuffer);
~FEDFullDebugHeader() override;
size_t lengthInBytes() const override;
bool checkChannelStatusBits(const uint8_t internalFEDChannelNum) const override;
bool checkStatusBits(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const override;
void print(std::ostream& os) const override;
FEDFullDebugHeader* clone() const override;
uint8_t feUnitMajorityAddress(const uint8_t internalFEUnitNum) const;
FEDBackendStatusRegister beStatusRegister() const;
uint32_t daqRegister() const;
uint32_t daqRegister2() const;
uint16_t feUnitLength(const uint8_t internalFEUnitNum) const;
bool fePresent(const uint8_t internalFEUnitNum) const;
FEDChannelStatus getChannelStatus(const uint8_t internalFEDChannelNum) const;
FEDChannelStatus getChannelStatus(const uint8_t internalFEUnitNum, const uint8_t internalFEUnitChannelNum) const;
//These methods return true if there was an error of the appropriate type (ie if the error bit is 0).
//They return false if the error could not occur due to a more general error.
//was channel unlocked
bool unlocked(const uint8_t internalFEDChannelNum) const;
bool unlocked(const uint8_t internalFEUnitNum, const uint8_t internalFEUnitChannelNum) const;
//was channel out of sync if it was unlocked
bool outOfSync(const uint8_t internalFEDChannelNum) const;
bool outOfSync(const uint8_t internalFEUnitNum, const uint8_t internalFEUnitChannelNum) const;
//was there an internal APV error if it was in sync
bool apvError(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const;
bool apvError(const uint8_t internalFEUnitNum, const uint8_t internalFEUnitChannelNum, const uint8_t apvNum) const;
//was the APV address wrong if it was in sync (does not depend on APV internal error bit)
bool apvAddressError(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const;
bool apvAddressError(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const uint8_t apvNum) const;
//used by digi2Raw
const uint8_t* data() const override;
void setChannelStatus(const uint8_t internalFEDChannelNum, const FEDChannelStatus status) override;
void setFEUnitMajorityAddress(const uint8_t internalFEUnitNum, const uint8_t address) override;
void setBEStatusRegister(const FEDBackendStatusRegister beStatusRegister) override;
void setDAQRegister(const uint32_t daqRegister) override;
void setDAQRegister2(const uint32_t daqRegister2) override;
void set32BitReservedRegister(const uint8_t internalFEUnitNum, const uint32_t reservedRegister) override;
void setFEUnitLength(const uint8_t internalFEUnitNum, const uint16_t length) override;
static uint32_t get32BitWordFrom(const uint8_t* startOfWord);
uint8_t* feWord(const uint8_t internalFEUnitNum);
const uint8_t* feWord(const uint8_t internalFEUnitNum) const;
FEDFullDebugHeader(const std::vector<uint16_t>& feUnitLengths = std::vector<uint16_t>(FEUNITS_PER_FED, 0),
const std::vector<uint8_t>& feMajorityAddresses = std::vector<uint8_t>(FEUNITS_PER_FED, 0),
const std::vector<FEDChannelStatus>& channelStatus =
std::vector<FEDChannelStatus>(FEDCH_PER_FED, CHANNEL_STATUS_NO_PROBLEMS),
const FEDBackendStatusRegister beStatusRegister = FEDBackendStatusRegister(),
const uint32_t daqRegister = 0,
const uint32_t daqRegister2 = 0);
private:
bool getBit(const uint8_t internalFEDChannelNum, const uint8_t bit) const;
static void set32BitWordAt(uint8_t* startOfWord, const uint32_t value);
void setBit(const uint8_t internalFEDChannelNum, const uint8_t bit, const bool value);
//These methods return true if there was an error of the appropriate type (ie if the error bit is 0).
//They ignore any previous errors which make the status bits meaningless and return the value of the bit anyway.
//In general, the methods above which only return an error for the likely cause are more useful.
bool unlockedFromBit(const uint8_t internalFEDChannelNum) const;
bool outOfSyncFromBit(const uint8_t internalFEDChannelNum) const;
bool apvErrorFromBit(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const;
bool apvAddressErrorFromBit(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const;
//following methods set the bits to 1 (no error) if value is false
void setUnlocked(const uint8_t internalFEDChannelNum, const bool value);
void setOutOfSync(const uint8_t internalFEDChannelNum, const bool value);
void setAPVAddressError(const uint8_t internalFEDChannelNum, const uint8_t apvNum, const bool value);
void setAPVError(const uint8_t internalFEDChannelNum, const uint8_t apvNum, const bool value);
static const size_t FULL_DEBUG_HEADER_SIZE_IN_64BIT_WORDS = FEUNITS_PER_FED * 2;
static const size_t FULL_DEBUG_HEADER_SIZE_IN_BYTES = FULL_DEBUG_HEADER_SIZE_IN_64BIT_WORDS * 8;
uint8_t header_[FULL_DEBUG_HEADER_SIZE_IN_BYTES];
};
//holds information about position of a channel in the buffer for use by unpacker
class FEDChannel {
public:
FEDChannel(const uint8_t* const data, const uint32_t offset, const uint16_t length);
//gets length from first 2 bytes (assuming normal FED channel)
FEDChannel(const uint8_t* const data, const uint32_t offset);
uint16_t length() const;
const uint8_t* data() const;
uint32_t offset() const;
/**
* Retrieve the APV CM median for a non-lite zero-suppressed channel
*
* apvIndex should be either 0 or 1 (there are, by construction, two APVs on every channel)
* No additional checks are done here, so the caller should check
* the readout mode and/or packet code.
*/
uint16_t cmMedian(const uint8_t apvIndex) const;
//third byte of channel data for normal FED channels
uint8_t packetCode() const;
private:
friend class FEDBuffer;
const uint8_t* data_;
uint32_t offset_;
uint16_t length_;
};
//base class for sistrip FED buffers which have a DAQ header/trailer and tracker special header
class FEDBufferBase {
public:
/**
* constructor from a FEDRawData buffer
*
* The sistrip::preconstructCheckFEDBufferBase() method should be used to check
* the validity of the fedBuffer before constructing a sistrip::FEDBufferBase.
*
* @see sistrip::preconstructCheckFEDBufferBase()
*/
explicit FEDBufferBase(const FEDRawData& fedBuffer);
virtual ~FEDBufferBase();
//dump buffer to stream
void dump(std::ostream& os) const;
//dump original buffer before word swapping
void dumpOriginalBuffer(std::ostream& os) const;
virtual void print(std::ostream& os) const;
//calculate the CRC from the buffer
uint16_t calcCRC() const;
//methods to get parts of the buffer
FEDDAQHeader daqHeader() const;
FEDDAQTrailer daqTrailer() const;
size_t bufferSize() const;
TrackerSpecialHeader trackerSpecialHeader() const;
//methods to get info from DAQ header
FEDDAQEventType daqEventType() const;
uint32_t daqLvl1ID() const;
uint16_t daqBXID() const;
uint16_t daqSourceID() const;
uint16_t sourceID() const;
//methods to get info from DAQ trailer
uint32_t daqEventLengthIn64bitWords() const;
uint32_t daqEventLengthInBytes() const;
uint16_t daqCRC() const;
FEDTTSBits daqTTSState() const;
//methods to get info from the tracker special header
FEDBufferFormat bufferFormat() const;
FEDHeaderType headerType() const;
FEDLegacyReadoutMode legacyReadoutMode() const;
FEDReadoutMode readoutMode() const;
uint8_t packetCode(bool legacy = false, const uint8_t internalFEDChannelNum = 0) const;
uint8_t apveAddress() const;
bool majorityAddressErrorForFEUnit(const uint8_t internalFEUnitNum) const;
bool feEnabled(const uint8_t internalFEUnitNum) const;
uint8_t nFEUnitsEnabled() const;
bool feOverflow(const uint8_t internalFEUnitNum) const;
FEDStatusRegister fedStatusRegister() const;
//check that channel has no errors
virtual bool channelGood(const uint8_t internalFEDChannelNum) const;
bool channelGood(const uint8_t internalFEUnitNum, const uint8_t internalChannelNum) const;
//return channel object for channel
const FEDChannel& channel(const uint8_t internalFEDChannelNum) const;
const FEDChannel& channel(const uint8_t internalFEUnitNum, const uint8_t internalChannelNum) const;
//summary checks
//check that tracker special header is valid (does not check for FE unit errors indicated in special header)
bool doTrackerSpecialHeaderChecks() const;
//check for errors in DAQ heaqder and trailer (not including bad CRC)
bool doDAQHeaderAndTrailerChecks() const;
//do both
bool doChecks() const;
//print the result of all detailed checks
virtual std::string checkSummary() const;
//detailed checks
bool checkCRC() const;
bool checkMajorityAddresses() const;
//methods to check tracker special header
bool checkBufferFormat() const;
bool checkHeaderType() const;
bool checkReadoutMode() const;
bool checkAPVEAddressValid() const;
bool checkNoFEOverflows() const;
//methods to check daq header and trailer
bool checkNoSlinkCRCError() const;
bool checkNoSLinkTransmissionError() const;
bool checkSourceIDs() const;
bool checkNoUnexpectedSourceID() const;
bool checkNoExtraHeadersOrTrailers() const;
bool checkLengthFromTrailer() const;
protected:
const uint8_t* getPointerToDataAfterTrackerSpecialHeader() const;
const uint8_t* getPointerToByteAfterEndOfPayload() const;
FEDBufferBase(const FEDRawData& fedBuffer, const bool fillChannelVector);
std::vector<FEDChannel> channels_;
private:
void init();
const uint8_t* originalBuffer_;
const uint8_t* orderedBuffer_;
const size_t bufferSize_;
FEDDAQHeader daqHeader_;
FEDDAQTrailer daqTrailer_;
TrackerSpecialHeader specialHeader_;
};
//
// Inline function definitions
//
/**
* Check if a FEDRawData object satisfies the requirements for constructing a sistrip::FEDBufferBase
*
* These are:
* - FEDRawData::data() is non-null
* - FEDRawData::size() is large enough (at least big enough to hold a sistrip::TrackerSpecialHeader)
* - (unless checkRecognizedFormat is false) the buffer format (inside the sistrip::TrackerSpecialHeader) is recognized
*
* In case any check fails, a value different from sistrip::FEDBufferStatusCode::SUCCESS
* is returned, and detailed information printed to LogDebug("FEDBuffer"), if relevant.
*/
inline FEDBufferStatusCode preconstructCheckFEDBufferBase(const FEDRawData& fedBuffer,
bool checkRecognizedFormat = true) {
if (!fedBuffer.data())
return FEDBufferStatusCode::BUFFER_NULL;
//min buffer length. DAQ header, DAQ trailer, tracker special header.
static const size_t MIN_BUFFER_SIZE = 8 + 8 + 8;
//check size is non zero
if (fedBuffer.size() < MIN_BUFFER_SIZE) {
LogDebug("FEDBuffer") << "Buffer is too small. Min size is " << MIN_BUFFER_SIZE << ". Buffer size is "
<< fedBuffer.size() << ". ";
return FEDBufferStatusCode::BUFFER_TOO_SHORT;
}
if (checkRecognizedFormat) {
if (BUFFER_FORMAT_INVALID == TrackerSpecialHeader::bufferFormat(fedBuffer.data() + 8)) {
LogDebug("FEDBuffer") << "Buffer format not recognized. Tracker special header: "
<< TrackerSpecialHeader(fedBuffer.data() + 8);
return FEDBufferStatusCode::UNRECOGNIZED_FORMAT;
}
}
return FEDBufferStatusCode::SUCCESS;
}
inline std::ostream& operator<<(std::ostream& os, const FEDBufferBase& obj) {
obj.print(os);
os << obj.checkSummary();
return os;
}
inline uint8_t internalFEDChannelNum(const uint8_t internalFEUnitNum, const uint8_t internalFEUnitChannelNum) {
return (internalFEUnitNum * FEDCH_PER_FEUNIT + internalFEUnitChannelNum);
}
inline std::ostream& operator<<(std::ostream& os, const FEDDAQHeader& obj) {
obj.print(os);
return os;
}
inline std::ostream& operator<<(std::ostream& os, const FEDDAQTrailer& obj) {
obj.print(os);
return os;
}
inline std::ostream& operator<<(std::ostream& os, const TrackerSpecialHeader& obj) {
obj.print(os);
return os;
}
inline std::ostream& operator<<(std::ostream& os, const FEDStatusRegister& obj) {
obj.print(os);
return os;
}
inline std::ostream& operator<<(std::ostream& os, const FEDFEHeader& obj) {
obj.print(os);
return os;
}
//FEDStripOrdering
inline uint8_t FEDStripOrdering::physicalOrderForStripInChannel(const uint8_t readoutOrderStripIndexInChannel) {
return physicalOrderForStripInAPV(readoutOrderStripIndexInChannel / 2) +
(readoutOrderStripIndexInChannel % 2) * STRIPS_PER_APV;
}
inline uint8_t FEDStripOrdering::readoutOrderForStripInChannel(const uint8_t physicalOrderStripIndexInChannel) {
return (readoutOrderForStripInAPV(physicalOrderStripIndexInChannel % 128) * 2 +
(physicalOrderStripIndexInChannel / 128));
}
inline uint8_t FEDStripOrdering::physicalOrderForStripInAPV(const uint8_t readout_order) {
return ((32 * (readout_order % 4)) + (8 * static_cast<uint16_t>(static_cast<float>(readout_order) / 4.0)) -
(31 * static_cast<uint16_t>(static_cast<float>(readout_order) / 16.0)));
}
inline uint8_t FEDStripOrdering::readoutOrderForStripInAPV(const uint8_t physical_order) {
return (4 * ((static_cast<uint16_t>((static_cast<float>(physical_order) / 8.0))) % 4) +
static_cast<uint16_t>(static_cast<float>(physical_order) / 32.0) + 16 * (physical_order % 8));
}
//TrackerSpecialHeader
inline TrackerSpecialHeader::TrackerSpecialHeader() : wordSwapped_(false) {}
inline uint8_t TrackerSpecialHeader::bufferFormatByte() const { return specialHeader_[BUFFERFORMAT]; }
inline uint8_t TrackerSpecialHeader::headerTypeNibble() const { return ((specialHeader_[BUFFERTYPE] & 0xF0) >> 4); }
inline FEDHeaderType TrackerSpecialHeader::headerType() const {
const auto nibble = headerTypeNibble();
switch (nibble) {
case HEADER_TYPE_FULL_DEBUG:
case HEADER_TYPE_APV_ERROR:
case HEADER_TYPE_NONE:
return FEDHeaderType(nibble);
default:
return HEADER_TYPE_INVALID;
}
}
inline uint8_t TrackerSpecialHeader::trackerEventTypeNibble() const { return (specialHeader_[BUFFERTYPE] & 0x0F); }
inline FEDReadoutMode TrackerSpecialHeader::readoutMode() const {
const auto nibble = trackerEventTypeNibble();
//if it is scope mode then return as is (it cannot be fake data)
//if it is premix then return as is: stripping last bit would make it spy data !
if ((nibble == READOUT_MODE_SCOPE) || (nibble == READOUT_MODE_PREMIX_RAW)) // 0x or 0xf
return FEDReadoutMode(nibble);
//if not then ignore the last bit which indicates if it is real or fake
else {
const uint8_t mode = (nibble & 0xF);
switch (mode) {
case READOUT_MODE_VIRGIN_RAW:
case READOUT_MODE_PROC_RAW:
case READOUT_MODE_ZERO_SUPPRESSED:
case READOUT_MODE_ZERO_SUPPRESSED_FAKE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
//case READOUT_MODE_ZERO_SUPPRESSED_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
case READOUT_MODE_SPY:
return FEDReadoutMode(mode);
default:
return READOUT_MODE_INVALID;
}
}
}
inline uint8_t TrackerSpecialHeader::apveAddress() const { return specialHeader_[APVEADDRESS]; }
inline uint8_t TrackerSpecialHeader::apvAddressErrorRegister() const { return specialHeader_[ADDRESSERROR]; }
inline bool TrackerSpecialHeader::majorityAddressErrorForFEUnit(const uint8_t internalFEUnitNum) const {
return (!(readoutMode() == READOUT_MODE_SCOPE) && !((0x1 << internalFEUnitNum) & apvAddressErrorRegister()));
}
inline uint8_t TrackerSpecialHeader::feEnableRegister() const { return specialHeader_[FEENABLE]; }
inline bool TrackerSpecialHeader::feEnabled(const uint8_t internalFEUnitNum) const {
return ((0x1 << internalFEUnitNum) & feEnableRegister());
}
inline uint8_t TrackerSpecialHeader::feOverflowRegister() const { return specialHeader_[FEOVERFLOW]; }
inline bool TrackerSpecialHeader::feOverflow(const uint8_t internalFEUnitNum) const {
return ((0x1 << internalFEUnitNum) & feOverflowRegister());
}
inline uint16_t TrackerSpecialHeader::fedStatusRegisterWord() const {
//get 16 bits
uint16_t statusRegister = ((specialHeader_[(FEDSTATUS + 1)] << 8) | specialHeader_[FEDSTATUS]);
return statusRegister;
}
inline FEDStatusRegister TrackerSpecialHeader::fedStatusRegister() const {
return FEDStatusRegister(fedStatusRegisterWord());
}
inline void TrackerSpecialHeader::print(std::ostream& os) const { printHex(specialHeader_, 8, os); }
inline const uint8_t* TrackerSpecialHeader::data() const { return specialHeader_; }
inline bool TrackerSpecialHeader::wasSwapped() const { return wordSwapped_; }
inline void TrackerSpecialHeader::setHeaderTypeNibble(const uint8_t value) {
specialHeader_[BUFFERTYPE] = ((specialHeader_[BUFFERTYPE] & 0x0F) | ((value << 4) & 0xF0));
}
inline void TrackerSpecialHeader::setReadoutModeBits(const uint8_t value) {
specialHeader_[BUFFERTYPE] = ((specialHeader_[BUFFERTYPE] & (~0x0F)) | (value & 0x0F));
}
inline TrackerSpecialHeader& TrackerSpecialHeader::setAPVEAddress(const uint8_t address) {
specialHeader_[APVEADDRESS] = address;
return *this;
}
inline TrackerSpecialHeader& TrackerSpecialHeader::setAPVEAddressErrorRegister(const uint8_t addressErrorRegister) {
specialHeader_[ADDRESSERROR] = addressErrorRegister;
return *this;
}
inline TrackerSpecialHeader& TrackerSpecialHeader::setFEEnableRegister(const uint8_t feEnableRegister) {
specialHeader_[FEENABLE] = feEnableRegister;
return *this;
}
inline TrackerSpecialHeader& TrackerSpecialHeader::setFEOverflowRegister(const uint8_t feOverflowRegister) {
specialHeader_[FEOVERFLOW] = feOverflowRegister;
return *this;
}
inline TrackerSpecialHeader& TrackerSpecialHeader::setFEDStatusRegister(const FEDStatusRegister fedStatusRegister) {
specialHeader_[FEDSTATUS] = (static_cast<uint16_t>(fedStatusRegister) & 0x00FF);
specialHeader_[FEDSTATUS + 1] = ((static_cast<uint16_t>(fedStatusRegister) & 0xFF00) >> 8);
return *this;
}
//FEDStatusRegister
inline FEDStatusRegister::FEDStatusRegister(const uint16_t fedStatusRegister) : data_(fedStatusRegister) {}
inline FEDStatusRegister::operator uint16_t() const { return data_; }
inline bool FEDStatusRegister::getBit(const uint8_t num) const { return ((0x1 << num) & (data_)); }
inline bool FEDStatusRegister::slinkFullFlag() const { return getBit(0); }
inline bool FEDStatusRegister::trackerHeaderMonitorDataReadyFlag() const { return getBit(1); }
inline bool FEDStatusRegister::qdrMemoryFullFlag() const { return getBit(2); }
inline bool FEDStatusRegister::qdrMemoryPartialFullFlag() const { return getBit(3); }
inline bool FEDStatusRegister::qdrMemoryEmptyFlag() const { return getBit(4); }
inline bool FEDStatusRegister::l1aBxFIFOFullFlag() const { return getBit(5); }
inline bool FEDStatusRegister::l1aBxFIFOPartialFullFlag() const { return getBit(6); }
inline bool FEDStatusRegister::l1aBxFIFOEmptyFlag() const { return getBit(7); }
inline bool FEDStatusRegister::feDataMissingFlag(const uint8_t internalFEUnitNum) const {
return getBit(8 + internalFEUnitNum);
}
inline void FEDStatusRegister::print(std::ostream& os) const { printHex(&data_, 2, os); }
inline FEDStatusRegister& FEDStatusRegister::setSLinkFullFlag(const bool bitSet) {
setBit(0, bitSet);
return *this;
}
inline FEDStatusRegister& FEDStatusRegister::setTrackerHeaderMonitorDataReadyFlag(const bool bitSet) {
setBit(1, bitSet);
return *this;
}
inline void FEDStatusRegister::setQDRMemoryFullFlag(const bool bitSet) { setBit(2, bitSet); }
inline void FEDStatusRegister::setQDRMemoryPartialFullFlag(const bool bitSet) { setBit(3, bitSet); }
inline void FEDStatusRegister::setQDRMemoryEmptyFlag(const bool bitSet) { setBit(4, bitSet); }
inline void FEDStatusRegister::setL1ABXFIFOFullFlag(const bool bitSet) { setBit(5, bitSet); }
inline void FEDStatusRegister::setL1ABXFIFOPartialFullFlag(const bool bitSet) { setBit(6, bitSet); }
inline void FEDStatusRegister::setL1ABXFIFOEmptyFlag(const bool bitSet) { setBit(7, bitSet); }
inline FEDStatusRegister::FEDStatusRegister(const FEDBufferState qdrMemoryBufferState,
const FEDBufferState l1aBxFIFOBufferState,
const bool trackerHeaderMonitorDataReadyFlagSet,
const bool slinkFullFlagSet)
: data_(0x0000) {
setSLinkFullFlag(slinkFullFlagSet);
setTrackerHeaderMonitorDataReadyFlag(trackerHeaderMonitorDataReadyFlagSet);
setQDRMemoryBufferState(qdrMemoryBufferState);
setL1ABXFIFOBufferState(l1aBxFIFOBufferState);
}
//FEDBackendStatusRegister
inline FEDBackendStatusRegister::FEDBackendStatusRegister(const uint32_t backendStatusRegister)
: data_(backendStatusRegister) {}
inline FEDBackendStatusRegister::operator uint32_t() const { return data_; }
inline void FEDBackendStatusRegister::print(std::ostream& os) const { printHex(&data_, 4, os); }
inline bool FEDBackendStatusRegister::getBit(const uint8_t num) const { return ((0x1 << num) & (data_)); }
inline bool FEDBackendStatusRegister::internalFreezeFlag() const { return getBit(1); }
inline bool FEDBackendStatusRegister::slinkDownFlag() const { return getBit(2); }
inline bool FEDBackendStatusRegister::slinkFullFlag() const { return getBit(3); }
inline bool FEDBackendStatusRegister::backpressureFlag() const { return getBit(4); }
inline bool FEDBackendStatusRegister::ttcReadyFlag() const { return getBit(6); }
inline bool FEDBackendStatusRegister::trackerHeaderMonitorDataReadyFlag() const { return getBit(7); }
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setInternalFreezeFlag(const bool bitSet) {
setBit(1, bitSet);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setSLinkDownFlag(const bool bitSet) {
setBit(2, bitSet);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setSLinkFullFlag(const bool bitSet) {
setBit(3, bitSet);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setBackpressureFlag(const bool bitSet) {
setBit(4, bitSet);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setTTCReadyFlag(const bool bitSet) {
setBit(6, bitSet);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setTrackerHeaderMonitorDataReadyFlag(const bool bitSet) {
setBit(7, bitSet);
return *this;
}
inline FEDBufferState FEDBackendStatusRegister::qdrMemoryState() const {
return getBufferState(BUFFER_POSITION_QDR_MEMORY);
}
inline FEDBufferState FEDBackendStatusRegister::frameAddressFIFOState() const {
return getBufferState(BUFFER_POSITION_FRAME_ADDRESS_FIFO);
}
inline FEDBufferState FEDBackendStatusRegister::totalLengthFIFOState() const {
return getBufferState(BUFFER_POSITION_TOTAL_LENGTH_FIFO);
}
inline FEDBufferState FEDBackendStatusRegister::trackerHeaderFIFOState() const {
return getBufferState(BUFFER_POSITION_TRACKER_HEADER_FIFO);
}
inline FEDBufferState FEDBackendStatusRegister::l1aBxFIFOState() const {
return getBufferState(BUFFER_POSITION_L1ABX_FIFO);
}
inline FEDBufferState FEDBackendStatusRegister::feEventLengthFIFOState() const {
return getBufferState(BUFFER_POSITION_FE_EVENT_LENGTH_FIFO);
}
inline FEDBufferState FEDBackendStatusRegister::feFPGABufferState() const {
return getBufferState(BUFFER_POSITION_FE_FPGA_BUFFER);
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setQDRMemoryState(const FEDBufferState state) {
setBufferSate(BUFFER_POSITION_QDR_MEMORY, state);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setFrameAddressFIFOState(const FEDBufferState state) {
setBufferSate(BUFFER_POSITION_FRAME_ADDRESS_FIFO, state);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setTotalLengthFIFOState(const FEDBufferState state) {
setBufferSate(BUFFER_POSITION_TOTAL_LENGTH_FIFO, state);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setTrackerHeaderFIFOState(const FEDBufferState state) {
setBufferSate(BUFFER_POSITION_TRACKER_HEADER_FIFO, state);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setL1ABXFIFOState(const FEDBufferState state) {
setBufferSate(BUFFER_POSITION_L1ABX_FIFO, state);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setFEEventLengthFIFOState(const FEDBufferState state) {
setBufferSate(BUFFER_POSITION_FE_EVENT_LENGTH_FIFO, state);
return *this;
}
inline FEDBackendStatusRegister& FEDBackendStatusRegister::setFEFPGABufferState(const FEDBufferState state) {
setBufferSate(BUFFER_POSITION_FE_FPGA_BUFFER, state);
return *this;
}
//FEDFEHeader
inline std::unique_ptr<FEDFEHeader> FEDFEHeader::newFEHeader(const FEDHeaderType headerType,
const uint8_t* headerBuffer) {
switch (headerType) {
case HEADER_TYPE_FULL_DEBUG:
return std::unique_ptr<FEDFEHeader>(new FEDFullDebugHeader(headerBuffer));
case HEADER_TYPE_APV_ERROR:
return std::unique_ptr<FEDFEHeader>(new FEDAPVErrorHeader(headerBuffer));
default:
return std::unique_ptr<FEDFEHeader>();
}
}
inline std::unique_ptr<FEDFEHeader> FEDFEHeader::newFEHeader(const FEDHeaderType headerType) {
switch (headerType) {
case HEADER_TYPE_FULL_DEBUG:
return std::unique_ptr<FEDFEHeader>(new FEDFullDebugHeader());
case HEADER_TYPE_APV_ERROR:
return std::unique_ptr<FEDFEHeader>(new FEDAPVErrorHeader());
default:
return std::unique_ptr<FEDFEHeader>();
}
}
inline std::unique_ptr<FEDFEHeader> FEDFEHeader::newFEFakeHeader(const FEDHeaderType headerType) {
switch (headerType) {
case HEADER_TYPE_FULL_DEBUG:
return std::unique_ptr<FEDFEHeader>(new FEDFullDebugHeader);
case HEADER_TYPE_APV_ERROR:
return std::unique_ptr<FEDFEHeader>(new FEDAPVErrorHeader);
default:
return std::unique_ptr<FEDFEHeader>();
}
}
inline bool FEDFEHeader::checkChannelStatusBits(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum) const {
return checkChannelStatusBits(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum));
}
inline bool FEDFEHeader::checkStatusBits(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const uint8_t apvNum) const {
return checkStatusBits(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum), apvNum);
}
inline void FEDFEHeader::setChannelStatus(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const FEDChannelStatus status) {
this->setChannelStatus(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum), status);
}
inline FEDAPVErrorHeader::FEDAPVErrorHeader(const uint8_t* headerBuffer) {
memcpy(header_, headerBuffer, APV_ERROR_HEADER_SIZE_IN_BYTES);
}
inline FEDAPVErrorHeader& FEDAPVErrorHeader::setAPVStatusBit(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const uint8_t apvNum,
const bool apvGood) {
return setAPVStatusBit(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum), apvNum, apvGood);
}
inline FEDFullDebugHeader::FEDFullDebugHeader(const uint8_t* headerBuffer) {
memcpy(header_, headerBuffer, FULL_DEBUG_HEADER_SIZE_IN_BYTES);
}
inline uint8_t FEDFullDebugHeader::feUnitMajorityAddress(const uint8_t internalFEUnitNum) const {
return feWord(internalFEUnitNum)[9];
}
inline FEDBackendStatusRegister FEDFullDebugHeader::beStatusRegister() const {
return FEDBackendStatusRegister(get32BitWordFrom(feWord(0) + 10));
}
inline uint32_t FEDFullDebugHeader::daqRegister() const { return get32BitWordFrom(feWord(7) + 10); }
inline uint32_t FEDFullDebugHeader::daqRegister2() const { return get32BitWordFrom(feWord(6) + 10); }
inline uint16_t FEDFullDebugHeader::feUnitLength(const uint8_t internalFEUnitNum) const {
return ((feWord(internalFEUnitNum)[15] << 8) | (feWord(internalFEUnitNum)[14]));
}
inline bool FEDFullDebugHeader::fePresent(const uint8_t internalFEUnitNum) const {
return (feUnitLength(internalFEUnitNum) != 0);
}
inline bool FEDFullDebugHeader::unlocked(const uint8_t internalFEDChannelNum) const {
return unlockedFromBit(internalFEDChannelNum);
}
inline bool FEDFullDebugHeader::unlocked(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum) const {
return unlocked(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum));
}
inline bool FEDFullDebugHeader::outOfSync(const uint8_t internalFEDChannelNum) const {
return (!unlocked(internalFEDChannelNum) && outOfSyncFromBit(internalFEDChannelNum));
}
inline bool FEDFullDebugHeader::outOfSync(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum) const {
return outOfSync(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum));
}
inline bool FEDFullDebugHeader::apvError(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const {
return (!unlockedFromBit(internalFEDChannelNum) && !outOfSyncFromBit(internalFEDChannelNum) &&
apvErrorFromBit(internalFEDChannelNum, apvNum));
}
inline bool FEDFullDebugHeader::apvError(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const uint8_t apvNum) const {
return apvError(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum), apvNum);
}
inline bool FEDFullDebugHeader::apvAddressError(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const {
return (!unlockedFromBit(internalFEDChannelNum) && !outOfSyncFromBit(internalFEDChannelNum) &&
apvAddressErrorFromBit(internalFEDChannelNum, apvNum));
}
inline bool FEDFullDebugHeader::apvAddressError(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum,
const uint8_t apvNum) const {
return apvAddressError(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum), apvNum);
}
inline FEDChannelStatus FEDFullDebugHeader::getChannelStatus(const uint8_t internalFEUnitNum,
const uint8_t internalFEUnitChannelNum) const {
return getChannelStatus(internalFEDChannelNum(internalFEUnitNum, internalFEUnitChannelNum));
}
inline bool FEDFullDebugHeader::unlockedFromBit(const uint8_t internalFEDChannelNum) const {
return !getBit(internalFEDChannelNum, 5);
}
inline bool FEDFullDebugHeader::outOfSyncFromBit(const uint8_t internalFEDChannelNum) const {
return !getBit(internalFEDChannelNum, 4);
}
inline bool FEDFullDebugHeader::apvErrorFromBit(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const {
//Discovered March 2012: two bits inverted in firmware. Decided
//to update documentation but keep firmware identical for
//backward compatibility. So status bit order is actually:
//apvErr1 - apvAddrErr0 - apvErr0 - apvAddrErr1 - OOS - unlocked.
//Before, it was: return !getBit(internalFEDChannelNum,0+2*apvNum);
return !getBit(internalFEDChannelNum, 0 + 2 * (1 - apvNum));
}
inline bool FEDFullDebugHeader::apvAddressErrorFromBit(const uint8_t internalFEDChannelNum,
const uint8_t apvNum) const {
return !getBit(internalFEDChannelNum, 1 + 2 * apvNum);
}
inline bool FEDFullDebugHeader::getBit(const uint8_t internalFEDChannelNum, const uint8_t bit) const {
const uint8_t* pFEWord = feWord(internalFEDChannelNum / FEDCH_PER_FEUNIT);
const uint8_t bitInFeWord = ((FEDCH_PER_FEUNIT - 1) - (internalFEDChannelNum % FEDCH_PER_FEUNIT)) * 6 + bit;
return (pFEWord[bitInFeWord / 8] & (0x1 << (bitInFeWord % 8)));
}
inline uint32_t FEDFullDebugHeader::get32BitWordFrom(const uint8_t* startOfWord) {
return (startOfWord[0] | (startOfWord[1] << 8) | (startOfWord[2] << 16) | (startOfWord[3] << 24));
}
inline void FEDFullDebugHeader::set32BitWordAt(uint8_t* startOfWord, const uint32_t value) {
memcpy(startOfWord, &value, 4);
}
inline const uint8_t* FEDFullDebugHeader::feWord(const uint8_t internalFEUnitNum) const {
return header_ + internalFEUnitNum * 2 * 8;
}
//re-use const method
inline uint8_t* FEDFullDebugHeader::feWord(const uint8_t internalFEUnitNum) {
return const_cast<uint8_t*>(std::as_const(*this).feWord(internalFEUnitNum));
}
inline void FEDFullDebugHeader::setUnlocked(const uint8_t internalFEDChannelNum, const bool value) {
setBit(internalFEDChannelNum, 5, !value);
}
inline void FEDFullDebugHeader::setOutOfSync(const uint8_t internalFEDChannelNum, const bool value) {
setBit(internalFEDChannelNum, 4, !value);
}
inline void FEDFullDebugHeader::setAPVAddressError(const uint8_t internalFEDChannelNum,
const uint8_t apvNum,
const bool value) {
setBit(internalFEDChannelNum, 1 + 2 * apvNum, !value);
}
inline void FEDFullDebugHeader::setAPVError(const uint8_t internalFEDChannelNum,
const uint8_t apvNum,
const bool value) {
//Discovered March 2012: two bits inverted in firmware. Decided
//to update documentation but keep firmware identical for
//backward compatibility. So status bit order is actually:
//apvErr1 - apvAddrErr0 - apvErr0 - apvAddrErr1 - OOS - unlocked.
//Before, it was: return !getBit(internalFEDChannelNum,0+2*apvNum);
setBit(internalFEDChannelNum, 0 + 2 * (1 - apvNum), !value);
}
//FEDDAQHeader
inline FEDDAQHeader::FEDDAQHeader(const uint8_t* header) { memcpy(header_, header, 8); }
inline uint8_t FEDDAQHeader::boeNibble() const { return ((header_[7] & 0xF0) >> 4); }
inline uint8_t FEDDAQHeader::eventTypeNibble() const { return (header_[7] & 0x0F); }
inline uint32_t FEDDAQHeader::l1ID() const { return (header_[4] | (header_[5] << 8) | (header_[6] << 16)); }
inline uint16_t FEDDAQHeader::bxID() const { return ((header_[3] << 4) | ((header_[2] & 0xF0) >> 4)); }
inline uint16_t FEDDAQHeader::sourceID() const { return (((header_[2] & 0x0F) << 8) | header_[1]); }
inline uint8_t FEDDAQHeader::version() const { return ((header_[0] & 0xF0) >> 4); }
inline bool FEDDAQHeader::hBit() const { return (header_[0] & 0x8); }
inline bool FEDDAQHeader::lastHeader() const { return !hBit(); }
inline const uint8_t* FEDDAQHeader::data() const { return header_; }
inline void FEDDAQHeader::print(std::ostream& os) const { printHex(header_, 8, os); }
//FEDDAQTrailer
inline FEDDAQTrailer::FEDDAQTrailer(const uint8_t* trailer) { memcpy(trailer_, trailer, 8); }
inline uint8_t FEDDAQTrailer::eoeNibble() const { return ((trailer_[7] & 0xF0) >> 4); }
inline uint32_t FEDDAQTrailer::eventLengthIn64BitWords() const {
return (trailer_[4] | (trailer_[5] << 8) | (trailer_[6] << 16));
}
inline uint32_t FEDDAQTrailer::eventLengthInBytes() const { return eventLengthIn64BitWords() * 8; }
inline uint16_t FEDDAQTrailer::crc() const { return (trailer_[2] | (trailer_[3] << 8)); }
inline bool FEDDAQTrailer::cBit() const { return (trailer_[1] & 0x80); }
inline bool FEDDAQTrailer::fBit() const { return (trailer_[1] & 0x40); }
inline uint8_t FEDDAQTrailer::eventStatusNibble() const { return (trailer_[1] & 0x0F); }
inline uint8_t FEDDAQTrailer::ttsNibble() const { return ((trailer_[0] & 0xF0) >> 4); }
inline bool FEDDAQTrailer::tBit() const { return (trailer_[0] & 0x08); }
inline bool FEDDAQTrailer::rBit() const { return (trailer_[0] & 0x04); }
inline void FEDDAQTrailer::print(std::ostream& os) const { printHex(trailer_, 8, os); }
inline const uint8_t* FEDDAQTrailer::data() const { return trailer_; }
//FEDBufferBase
inline void FEDBufferBase::dump(std::ostream& os) const { printHex(orderedBuffer_, bufferSize_, os); }
inline void FEDBufferBase::dumpOriginalBuffer(std::ostream& os) const { printHex(originalBuffer_, bufferSize_, os); }
inline uint16_t FEDBufferBase::calcCRC() const { return calculateFEDBufferCRC(orderedBuffer_, bufferSize_); }
inline FEDDAQHeader FEDBufferBase::daqHeader() const { return daqHeader_; }
inline FEDDAQTrailer FEDBufferBase::daqTrailer() const { return daqTrailer_; }
inline size_t FEDBufferBase::bufferSize() const { return bufferSize_; }
inline TrackerSpecialHeader FEDBufferBase::trackerSpecialHeader() const { return specialHeader_; }
inline FEDDAQEventType FEDBufferBase::daqEventType() const { return daqHeader_.eventType(); }
inline uint32_t FEDBufferBase::daqLvl1ID() const { return daqHeader_.l1ID(); }
inline uint16_t FEDBufferBase::daqBXID() const { return daqHeader_.bxID(); }
inline uint16_t FEDBufferBase::daqSourceID() const { return daqHeader_.sourceID(); }
inline uint32_t FEDBufferBase::daqEventLengthIn64bitWords() const { return daqTrailer_.eventLengthIn64BitWords(); }
inline uint32_t FEDBufferBase::daqEventLengthInBytes() const { return daqTrailer_.eventLengthInBytes(); }
inline uint16_t FEDBufferBase::daqCRC() const { return daqTrailer_.crc(); }
inline FEDTTSBits FEDBufferBase::daqTTSState() const { return daqTrailer_.ttsBits(); }
inline FEDBufferFormat FEDBufferBase::bufferFormat() const { return specialHeader_.bufferFormat(); }
inline FEDHeaderType FEDBufferBase::headerType() const { return specialHeader_.headerType(); }
inline FEDLegacyReadoutMode FEDBufferBase::legacyReadoutMode() const { return specialHeader_.legacyReadoutMode(); }
inline FEDReadoutMode FEDBufferBase::readoutMode() const { return specialHeader_.readoutMode(); }
inline bool FEDBufferBase::doChecks() const {
return doTrackerSpecialHeaderChecks() && doDAQHeaderAndTrailerChecks();
}
inline uint8_t FEDBufferBase::packetCode(bool legacy, const uint8_t internalFEDChannelNum) const {
if (legacy) {
FEDLegacyReadoutMode mode = legacyReadoutMode();
switch (mode) {
case READOUT_MODE_LEGACY_SCOPE:
return PACKET_CODE_SCOPE;
case READOUT_MODE_LEGACY_VIRGIN_RAW_REAL:
case READOUT_MODE_LEGACY_VIRGIN_RAW_FAKE:
return PACKET_CODE_VIRGIN_RAW;
case READOUT_MODE_LEGACY_PROC_RAW_REAL:
case READOUT_MODE_LEGACY_PROC_RAW_FAKE:
return PACKET_CODE_PROC_RAW;
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE:
return PACKET_CODE_ZERO_SUPPRESSED;
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_REAL:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_FAKE:
case READOUT_MODE_LEGACY_PREMIX_RAW:
case READOUT_MODE_LEGACY_SPY:
case READOUT_MODE_LEGACY_INVALID:
default:
return 0;
}
} else {
FEDReadoutMode mode = readoutMode();
switch (mode) {
case READOUT_MODE_SCOPE:
return PACKET_CODE_SCOPE;
case READOUT_MODE_VIRGIN_RAW:
return channel(internalFEDChannelNum).packetCode();
case READOUT_MODE_PROC_RAW:
return PACKET_CODE_PROC_RAW;
case READOUT_MODE_ZERO_SUPPRESSED:
return channel(internalFEDChannelNum).packetCode();
case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
case READOUT_MODE_PREMIX_RAW:
case READOUT_MODE_SPY:
case READOUT_MODE_INVALID:
default:
return 0;
}
}
}
inline uint8_t FEDBufferBase::apveAddress() const { return specialHeader_.apveAddress(); }
inline bool FEDBufferBase::majorityAddressErrorForFEUnit(const uint8_t internalFEUnitNum) const {
return (specialHeader_.majorityAddressErrorForFEUnit(internalFEUnitNum) && (specialHeader_.apveAddress() != 0x00));
}
inline bool FEDBufferBase::feEnabled(const uint8_t internalFEUnitNum) const {
return specialHeader_.feEnabled(internalFEUnitNum);
}
inline bool FEDBufferBase::feOverflow(const uint8_t internalFEUnitNum) const {
return specialHeader_.feOverflow(internalFEUnitNum);
}
inline FEDStatusRegister FEDBufferBase::fedStatusRegister() const { return specialHeader_.fedStatusRegister(); }
inline bool FEDBufferBase::channelGood(const uint8_t internalFEUnitNum, const uint8_t internalChannelNum) const {
return channelGood(internalFEDChannelNum(internalFEUnitNum, internalChannelNum));
}
inline const FEDChannel& FEDBufferBase::channel(const uint8_t internalFEDChannelNum) const {
return channels_[internalFEDChannelNum];
}
inline const FEDChannel& FEDBufferBase::channel(const uint8_t internalFEUnitNum,
const uint8_t internalChannelNum) const {
return channel(internalFEDChannelNum(internalFEUnitNum, internalChannelNum));
}
inline bool FEDBufferBase::doTrackerSpecialHeaderChecks() const {
return (checkBufferFormat() && checkHeaderType() && checkReadoutMode() &&
//checkAPVEAddressValid() &&
checkNoFEOverflows());
}
inline bool FEDBufferBase::doDAQHeaderAndTrailerChecks() const {
return (checkNoSLinkTransmissionError() && checkSourceIDs() && checkNoUnexpectedSourceID() &&
checkNoExtraHeadersOrTrailers() && checkLengthFromTrailer());
}
inline bool FEDBufferBase::checkCRC() const { return (checkNoSlinkCRCError() && (calcCRC() == daqCRC())); }
inline bool FEDBufferBase::checkBufferFormat() const { return (bufferFormat() != BUFFER_FORMAT_INVALID); }
inline bool FEDBufferBase::checkHeaderType() const { return (headerType() != HEADER_TYPE_INVALID); }
inline bool FEDBufferBase::checkReadoutMode() const { return (readoutMode() != READOUT_MODE_INVALID); }
inline bool FEDBufferBase::checkAPVEAddressValid() const { return (apveAddress() <= APV_MAX_ADDRESS); }
inline bool FEDBufferBase::checkNoFEOverflows() const { return !specialHeader_.feOverflowRegister(); }
inline bool FEDBufferBase::checkNoSlinkCRCError() const { return !daqTrailer_.slinkCRCError(); }
inline bool FEDBufferBase::checkNoSLinkTransmissionError() const { return !daqTrailer_.slinkTransmissionError(); }
inline bool FEDBufferBase::checkNoUnexpectedSourceID() const { return !daqTrailer_.badSourceID(); }
inline bool FEDBufferBase::checkNoExtraHeadersOrTrailers() const {
return ((daqHeader_.boeNibble() == 0x5) && (daqTrailer_.eoeNibble() == 0xA));
}
inline bool FEDBufferBase::checkLengthFromTrailer() const { return (bufferSize() == daqEventLengthInBytes()); }
inline const uint8_t* FEDBufferBase::getPointerToDataAfterTrackerSpecialHeader() const { return orderedBuffer_ + 16; }
inline const uint8_t* FEDBufferBase::getPointerToByteAfterEndOfPayload() const {
return orderedBuffer_ + bufferSize_ - 8;
}
//FEDChannel
inline FEDChannel::FEDChannel(const uint8_t* const data, const uint32_t offset) : data_(data), offset_(offset) {
length_ = (data_[(offset_) ^ 7] + (data_[(offset_ + 1) ^ 7] << 8));
}
inline FEDChannel::FEDChannel(const uint8_t* const data, const uint32_t offset, const uint16_t length)
: data_(data), offset_(offset), length_(length) {}
inline uint16_t FEDChannel::length() const { return length_; }
inline uint8_t FEDChannel::packetCode() const { return data_[(offset_ + 2) ^ 7]; }
inline uint16_t FEDChannel::cmMedian(const uint8_t apvIndex) const {
uint16_t result = 0;
//CM median is 10 bits with lowest order byte first. First APV CM median starts in 4th byte of channel data
result |= data_[(offset_ + 3 + 2 * apvIndex) ^ 7];
result |= (((data_[(offset_ + 4 + 2 * apvIndex) ^ 7]) << 8) & 0x300);
return result;
}
inline const uint8_t* FEDChannel::data() const { return data_; }
inline uint32_t FEDChannel::offset() const { return offset_; }
} // namespace sistrip
#endif //ndef EventFilter_SiStripRawToDigi_FEDBufferComponents_H
|