Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#include <iomanip>
#include <ostream>
#include <cstring>
#include "FWCore/MessageLogger/interface/MessageLogger.h"

#include "EventFilter/SiStripRawToDigi/interface/SiStripFEDBuffer.h"

#include "DataFormats/SiStripCommon/interface/SiStripFedKey.h"
#include "FWCore/Utilities/interface/Likely.h"

namespace sistrip {

  FEDBuffer::FEDBuffer(const FEDRawData& fedBuffer, const bool allowBadBuffer) : FEDBufferBase(fedBuffer, false) {
    validChannels_ = 0;
    channels_.reserve(FEDCH_PER_FED);
    //build the correct type of FE header object
    if ((headerType() != HEADER_TYPE_INVALID) && (headerType() != HEADER_TYPE_NONE)) {
      feHeader_ = FEDFEHeader::newFEHeader(headerType(), getPointerToDataAfterTrackerSpecialHeader());
      payloadPointer_ = getPointerToDataAfterTrackerSpecialHeader() + feHeader_->lengthInBytes();
    } else {
      feHeader_ = std::unique_ptr<FEDFEHeader>();
      payloadPointer_ = getPointerToDataAfterTrackerSpecialHeader();
    }
    payloadLength_ = getPointerToByteAfterEndOfPayload() - payloadPointer_;
    //check if FE units are present in data
    //in Full Debug mode, use the lengths from the header
    const FEDFullDebugHeader* fdHeader = dynamic_cast<FEDFullDebugHeader*>(feHeader_.get());
    if (fdHeader) {
      for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
        if (fdHeader->fePresent(iFE))
          fePresent_[iFE] = true;
        else
          fePresent_[iFE] = false;
      }
    }
    //in APV error mode, use the FE present byte in the FED status register
    // a value of '1' means a FE unit's data is missing (in old firmware versions it is always 0)
    else {
      for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
        if (fedStatusRegister().feDataMissingFlag(iFE))
          fePresent_[iFE] = false;
        else
          fePresent_[iFE] = true;
      }
    }
  }

  FEDBufferStatusCode FEDBuffer::findChannels() {
    auto st = FEDBufferStatusCode::SUCCESS;
    //set min length to 2 for ZSLite, 7 for ZS and 3 for raw
    uint16_t minLength;
    switch (readoutMode()) {
      case READOUT_MODE_ZERO_SUPPRESSED:
      case READOUT_MODE_ZERO_SUPPRESSED_FAKE:
        minLength = 7;
        break;
      case READOUT_MODE_PREMIX_RAW:
        minLength = 2;
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
        minLength = 2;
        break;
      default:
        minLength = 3;
        break;
    }
    uint16_t offsetBeginningOfChannel = 0;
    for (uint16_t i = 0; i < FEDCH_PER_FED; i++) {
      //if FE unit is not enabled then skip rest of FE unit adding NULL pointers
      if UNLIKELY (!(fePresent(i / FEDCH_PER_FEUNIT) && feEnabled(i / FEDCH_PER_FEUNIT))) {
        channels_.insert(channels_.end(), uint16_t(FEDCH_PER_FEUNIT), FEDChannel(payloadPointer_, 0, 0));
        i += FEDCH_PER_FEUNIT - 1;
        validChannels_ += FEDCH_PER_FEUNIT;
        continue;
      }
      //if FE unit is enabled
      //check that channel length bytes fit into buffer
      if UNLIKELY (offsetBeginningOfChannel + 1 >= payloadLength_) {
        const SiStripFedKey key(0, i / FEDCH_PER_FEUNIT, i % FEDCH_PER_FEUNIT);
        LogDebug("FEDBuffer") << "Channel " << uint16_t(i) << " (FE unit " << key.feUnit() << " channel "
                              << key.feChan() << " according to external numbering scheme) "
                              << "does not fit into buffer. "
                              << "Channel starts at " << uint16_t(offsetBeginningOfChannel) << " in payload. "
                              << "Payload length is " << uint16_t(payloadLength_) << ". ";
        st = FEDBufferStatusCode::CHANNEL_BEGIN_BEYOND_PAYLOAD;
        break;
      }

      channels_.emplace_back(payloadPointer_, offsetBeginningOfChannel);
      //get length and check that whole channel fits into buffer
      uint16_t channelLength = channels_.back().length();

      //check that the channel length is long enough to contain the header
      if UNLIKELY (channelLength < minLength) {
        const SiStripFedKey key(0, i / FEDCH_PER_FEUNIT, i % FEDCH_PER_FEUNIT);
        LogDebug("FEDBuffer") << "Channel " << uint16_t(i) << " (FE unit " << key.feUnit() << " channel "
                              << key.feChan() << " according to external numbering scheme)"
                              << " is too short. "
                              << "Channel starts at " << uint16_t(offsetBeginningOfChannel) << " in payload. "
                              << "Channel length is " << uint16_t(channelLength) << ". "
                              << "Min length is " << uint16_t(minLength) << ". ";
        st = FEDBufferStatusCode::CHANNEL_TOO_SHORT;
        break;
      }
      if UNLIKELY (offsetBeginningOfChannel + channelLength > payloadLength_) {
        const SiStripFedKey key(0, i / FEDCH_PER_FEUNIT, i % FEDCH_PER_FEUNIT);
        LogDebug("FEDBuffer") << "Channel " << uint16_t(i) << " (FE unit " << key.feUnit() << " channel "
                              << key.feChan() << " according to external numbering scheme)"
                              << "does not fit into buffer. "
                              << "Channel starts at " << uint16_t(offsetBeginningOfChannel) << " in payload. "
                              << "Channel length is " << uint16_t(channelLength) << ". "
                              << "Payload length is " << uint16_t(payloadLength_) << ". ";
        st = FEDBufferStatusCode::CHANNEL_END_BEYOND_PAYLOAD;
        break;
      }

      validChannels_++;
      const uint16_t offsetEndOfChannel = offsetBeginningOfChannel + channelLength;
      //add padding if necessary and calculate offset for begining of next channel
      if (!((i + 1) % FEDCH_PER_FEUNIT)) {
        uint8_t numPaddingBytes = 8 - (offsetEndOfChannel % 8);
        if (numPaddingBytes == 8)
          numPaddingBytes = 0;
        offsetBeginningOfChannel = offsetEndOfChannel + numPaddingBytes;
      } else {
        offsetBeginningOfChannel = offsetEndOfChannel;
      }
    }
    if UNLIKELY (FEDBufferStatusCode::SUCCESS != st) {  // for the allowBadBuffer case
      channels_.insert(channels_.end(), uint16_t(FEDCH_PER_FED - validChannels_), FEDChannel(payloadPointer_, 0, 0));
    }
    return st;
  }

  bool FEDBuffer::doCorruptBufferChecks() const {
    return (checkCRC() && checkChannelLengthsMatchBufferLength() && checkChannelPacketCodes() &&
            //checkClusterLengths() &&
            checkFEUnitLengths());
    //checkFEUnitAPVAddresses() );
  }

  bool FEDBuffer::checkAllChannelStatusBits() const {
    for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
      //if FE unit is disabled then skip all channels on it
      if (!feGood(iCh / FEDCH_PER_FEUNIT)) {
        iCh += FEDCH_PER_FEUNIT;
        continue;
      }
      //channel is bad then return false
      if (!checkStatusBits(iCh))
        return false;
    }
    //if no bad channels have been found then they are all fine
    return true;
  }

  bool FEDBuffer::checkChannelLengths() const { return (validChannels_ == FEDCH_PER_FED); }

  bool FEDBuffer::checkChannelLengthsMatchBufferLength() const {
    //check they fit into buffer
    if (!checkChannelLengths())
      return false;

    //payload length from length of data buffer
    const uint16_t payloadLengthInWords = payloadLength_ / 8;

    //find channel length
    //find last enabled FE unit
    uint8_t lastEnabledFeUnit = 7;
    while (!(fePresent(lastEnabledFeUnit) && feEnabled(lastEnabledFeUnit)) && lastEnabledFeUnit != 0)
      lastEnabledFeUnit--;
    //last channel is last channel on last enabled FE unit
    const FEDChannel& lastChannel = channels_[internalFEDChannelNum(lastEnabledFeUnit, FEDCH_PER_FEUNIT - 1)];
    const uint16_t offsetLastChannel = lastChannel.offset();
    const uint16_t offsetEndOfChannelData = offsetLastChannel + lastChannel.length();
    const uint16_t channelDataLength = offsetEndOfChannelData;
    //channel length in words is length in bytes rounded up to nearest word
    uint16_t channelDataLengthInWords = channelDataLength / 8;
    if (channelDataLength % 8)
      channelDataLengthInWords++;

    //check lengths match
    if (channelDataLengthInWords == payloadLengthInWords) {
      return true;
    } else {
      return false;
    }
  }

  bool FEDBuffer::checkChannelPacketCodes() const {
    const uint8_t correctPacketCode = getCorrectPacketCode();
    //if the readout mode if not one which has a packet code then this is set to zero. in this case return true
    if (!correctPacketCode)
      return true;
    for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
      //if FE unit is disabled then skip all channels on it
      if (!feGood(iCh / FEDCH_PER_FEUNIT)) {
        iCh += FEDCH_PER_FEUNIT;
        continue;
      }
      //only check enabled, working channels
      if (FEDBuffer::channelGood(iCh, true)) {
        //if a channel is bad then return false
        if (channels_[iCh].packetCode() != correctPacketCode)
          return false;
      }
    }
    //if no bad channels were found the they are all ok
    return true;
  }

  bool FEDBuffer::checkFEUnitAPVAddresses() const {
    //get golden address
    const uint8_t goldenAddress = apveAddress();
    //don't check if the address is 00 since APVe is probably not connected
    if (goldenAddress == 0x00)
      return true;
    //check can only be done for full debug headers
    const FEDFullDebugHeader* fdHeader = dynamic_cast<FEDFullDebugHeader*>(feHeader_.get());
    if (!fdHeader)
      return true;
    //check all enabled FE units
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      if (!feGood(iFE))
        continue;
      //if address is bad then return false
      if (fdHeader->feUnitMajorityAddress(iFE) != goldenAddress)
        return false;
    }
    //if no bad addresses were found then return true
    return true;
  }

  bool FEDBuffer::checkFEUnitLengths() const {
    //check can only be done for full debug headers
    const FEDFullDebugHeader* fdHeader = dynamic_cast<FEDFullDebugHeader*>(feHeader_.get());
    if (!fdHeader)
      return true;
    //check lengths for enabled FE units
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      if (!feGood(iFE))
        continue;
      if (calculateFEUnitLength(iFE) != fdHeader->feUnitLength(iFE))
        return false;
    }
    //if no errors were encountered then return true
    return true;
  }

  uint16_t FEDBuffer::calculateFEUnitLength(const uint8_t internalFEUnitNumber) const {
    //get length from channels
    uint16_t lengthFromChannels = 0;
    for (uint8_t iCh = 0; iCh < FEDCH_PER_FEUNIT; iCh++) {
      lengthFromChannels += channels_[internalFEDChannelNum(internalFEUnitNumber, iCh)].length();
    }
    return lengthFromChannels;
  }

  bool FEDBuffer::checkFEPayloadsPresent() const {
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      if (!fePresent(iFE))
        return false;
    }
    return true;
  }

  std::string FEDBuffer::checkSummary() const {
    std::ostringstream summary;
    summary << FEDBufferBase::checkSummary();
    summary << "Check FE unit payloads are all present: " << (checkFEPayloadsPresent() ? "passed" : "FAILED")
            << std::endl;
    if (!checkFEPayloadsPresent()) {
      summary << "FE units missing payloads: ";
      for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
        if (!fePresent(iFE))
          summary << uint16_t(iFE) << " ";
      }
      summary << std::endl;
    }
    summary << "Check channel status bits: " << (checkAllChannelStatusBits() ? "passed" : "FAILED") << std::endl;
    if (!checkAllChannelStatusBits()) {
      unsigned int badChannels = 0;
      if (headerType() == HEADER_TYPE_FULL_DEBUG) {
        const FEDFullDebugHeader* fdHeader = dynamic_cast<FEDFullDebugHeader*>(feHeader_.get());
        if (fdHeader) {
          for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
            if (!feGood(iCh / FEDCH_PER_FEUNIT))
              continue;
            if (!checkStatusBits(iCh)) {
              summary << uint16_t(iCh) << ": " << fdHeader->getChannelStatus(iCh) << std::endl;
              badChannels++;
            }
          }
        }
      } else {
        summary << "Channels with errors: ";
        for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
          if (!feGood(iCh / FEDCH_PER_FEUNIT))
            continue;
          if (!checkStatusBits(iCh)) {
            summary << uint16_t(iCh) << " ";
            badChannels++;
          }
        }
        summary << std::endl;
      }
      summary << "Number of channels with bad status bits: " << badChannels << std::endl;
    }
    summary << "Check channel lengths match buffer length: "
            << (checkChannelLengthsMatchBufferLength() ? "passed" : "FAILED") << std::endl;
    summary << "Check channel packet codes: " << (checkChannelPacketCodes() ? "passed" : "FAILED") << std::endl;
    if (!checkChannelPacketCodes()) {
      summary << "Channels with bad packet codes: ";
      for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
        if (!feGood(iCh / FEDCH_PER_FEUNIT))
          continue;
        if (channels_[iCh].packetCode() != getCorrectPacketCode())
          summary << uint16_t(iCh) << " ";
      }
    }
    summary << "Check FE unit lengths: " << (checkFEUnitLengths() ? "passed" : "FAILED") << std::endl;
    if (!checkFEUnitLengths()) {
      const FEDFullDebugHeader* fdHeader = dynamic_cast<FEDFullDebugHeader*>(feHeader_.get());
      if (fdHeader) {
        summary << "Bad FE units:" << std::endl;
        for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
          if (!feGood(iFE))
            continue;
          uint16_t lengthFromChannels = calculateFEUnitLength(iFE);
          uint16_t lengthFromHeader = fdHeader->feUnitLength(iFE);
          if (lengthFromHeader != lengthFromChannels) {
            summary << "FE unit: " << uint16_t(iFE) << " length in header: " << lengthFromHeader
                    << " length from channel lengths: " << lengthFromChannels << std::endl;
          }
        }
      }
    }
    summary << "Check FE unit APV addresses match APVe: " << (checkFEUnitAPVAddresses() ? "passed" : "FAILED")
            << std::endl;
    if (!checkFEUnitAPVAddresses()) {
      const FEDFullDebugHeader* fdHeader = dynamic_cast<FEDFullDebugHeader*>(feHeader_.get());
      if (fdHeader) {
        const uint8_t goldenAddress = apveAddress();
        summary << "Address from APVe:" << uint16_t(goldenAddress) << std::endl;
        summary << "Bad FE units:" << std::endl;
        for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
          if (!feGood(iFE))
            continue;
          if (fdHeader->feUnitMajorityAddress(iFE) != goldenAddress) {
            summary << "FE unit: " << uint16_t(iFE)
                    << " majority address: " << uint16_t(fdHeader->feUnitMajorityAddress(iFE)) << std::endl;
          }
        }
      }
    }
    return summary.str();
  }

  uint8_t FEDBuffer::nFEUnitsPresent() const {
    uint8_t result = 0;
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      if (fePresent(iFE))
        result++;
    }
    return result;
  }

  void FEDBuffer::print(std::ostream& os) const {
    FEDBufferBase::print(os);
    if (headerType() == HEADER_TYPE_FULL_DEBUG) {
      os << "FE units with data: " << uint16_t(nFEUnitsPresent()) << std::endl;
      os << "BE status register flags: ";
      dynamic_cast<const FEDFullDebugHeader*>(feHeader())->beStatusRegister().printFlags(os);
      os << std::endl;
    }
  }

  std::string toString(fedchannelunpacker::StatusCode status) {
    using namespace sistrip::fedchannelunpacker;
    switch (status) {
      case StatusCode::SUCCESS:
        return "SUCCESS";
      case StatusCode::BAD_CHANNEL_LENGTH:
        return "Channel length is invalid.";
      case StatusCode::UNORDERED_DATA:
        return "First strip of new cluster is not greater than last strip of previous cluster.";
      case StatusCode::BAD_PACKET_CODE:
        return "Invalid packet code.";
      case StatusCode::ZERO_PACKET_CODE:
        return "Invalid packet code 0 for zero-suppressed data.";
    }
    return "";
  }
}  // namespace sistrip