Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
#include <iomanip>
#include <ostream>
#include <sstream>
#include <cstring>
#include "EventFilter/SiStripRawToDigi/interface/SiStripFEDBufferComponents.h"
#include "FWCore/Utilities/interface/CRC16.h"

namespace sistrip {

  void printHexValue(const uint8_t value, std::ostream& os) {
    const std::ios_base::fmtflags originalFormatFlags = os.flags();
    os << std::hex << std::setfill('0') << std::setw(2);
    os << uint16_t(value);
    os.flags(originalFormatFlags);
  }

  void printHexWord(const uint8_t* pointer, const size_t lengthInBytes, std::ostream& os) {
    size_t i = lengthInBytes - 1;
    do {
      printHexValue(pointer[i], os);
      if (i != 0)
        os << " ";
    } while (i-- != 0);
  }

  void printHex(const void* pointer, const size_t lengthInBytes, std::ostream& os) {
    const uint8_t* bytePointer = reinterpret_cast<const uint8_t*>(pointer);
    //if there is one 64 bit word or less, print it out
    if (lengthInBytes <= 8) {
      printHexWord(bytePointer, lengthInBytes, os);
    }
    //otherwise, print word numbers etc
    else {
      //header
      os << "word\tbyte\t                       \t\tbyte" << std::endl;
      ;
      const size_t words = lengthInBytes / 8;
      const size_t extraBytes = lengthInBytes - 8 * words;
      //print full words
      for (size_t w = 0; w < words; w++) {
        const size_t startByte = w * 8;
        os << w << '\t' << startByte + 8 << '\t';
        printHexWord(bytePointer + startByte, 8, os);
        os << "\t\t" << startByte << std::endl;
      }
      //print part word, if any
      if (extraBytes) {
        const size_t startByte = words * 8;
        os << words << '\t' << startByte + 8 << '\t';
        //padding
        size_t p = 8;
        while (p-- > extraBytes) {
          os << "00 ";
        }
        printHexWord(bytePointer + startByte, extraBytes, os);
        os << "\t\t" << startByte << std::endl;
      }
      os << std::endl;
    }
  }

  uint16_t calculateFEDBufferCRC(const uint8_t* buffer, const size_t lengthInBytes) {
    uint16_t crc = 0xFFFF;
    for (size_t i = 0; i < lengthInBytes - 8; i++) {
      crc = evf::compute_crc_8bit(crc, buffer[i ^ 7]);
    }
    for (size_t i = lengthInBytes - 8; i < lengthInBytes; i++) {
      uint8_t byte;
      //set CRC bytes to zero since these were not set when CRC was calculated
      if (i == lengthInBytes - 4 || i == lengthInBytes - 3)
        byte = 0x00;
      else
        byte = buffer[i ^ 7];
      crc = evf::compute_crc_8bit(crc, byte);
    }
    return crc;
  }

  std::ostream& operator<<(std::ostream& os, const FEDBufferFormat& value) {
    switch (value) {
      case BUFFER_FORMAT_OLD_VME:
        os << "Old VME";
        break;
      case BUFFER_FORMAT_OLD_SLINK:
        os << "Old S-Link";
        break;
      case BUFFER_FORMAT_NEW:
        os << "New";
        break;
      case BUFFER_FORMAT_INVALID:
        os << "Invalid";
        break;
      default:
        os << "Unrecognized";
        os << " (";
        printHexValue(value, os);
        os << ")";
        break;
    }
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDHeaderType& value) {
    switch (value) {
      case HEADER_TYPE_FULL_DEBUG:
        os << "Full debug";
        break;
      case HEADER_TYPE_APV_ERROR:
        os << "APV error";
        break;
      case HEADER_TYPE_NONE:
        os << "None";
        break;
      case HEADER_TYPE_INVALID:
        os << "Invalid";
        break;
      default:
        os << "Unrecognized";
        os << " (";
        printHexValue(value, os);
        os << ")";
        break;
    }
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDLegacyReadoutMode& value) {
    switch (value) {
      case READOUT_MODE_LEGACY_SCOPE:
        os << "(L) Scope mode";
        break;
      case READOUT_MODE_LEGACY_VIRGIN_RAW_REAL:
        os << "(L) Virgin raw (real)";
        break;
      case READOUT_MODE_LEGACY_VIRGIN_RAW_FAKE:
        os << "(L) Virgin raw (fake)";
        break;
      case READOUT_MODE_LEGACY_PROC_RAW_REAL:
        os << "(L) Processed raw (real)";
        break;
      case READOUT_MODE_LEGACY_PROC_RAW_FAKE:
        os << "(L) Processed raw (fake)";
        break;
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL:
        os << "(L) Zero suppressed (real)";
        break;
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE:
        os << "(L) Zero suppressed (fake)";
        break;
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_REAL:
        os << "(L) Zero suppressed lite (real)";
        break;
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_FAKE:
        os << "(L) Zero suppressed lite (fake)";
        break;
      case READOUT_MODE_LEGACY_SPY:
        os << "(L) Spy channel";
        break;
      case READOUT_MODE_LEGACY_PREMIX_RAW:
        os << "(L) PreMix raw";
        break;
      case READOUT_MODE_LEGACY_INVALID:
        os << "(L) Invalid";
        break;
      default:
        os << "(L) Unrecognized";
        os << " (";
        printHexValue(value, os);
        os << ")";
        break;
    }
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDReadoutMode& value) {
    switch (value) {
      case READOUT_MODE_SCOPE:
        os << "Scope mode";
        break;
      case READOUT_MODE_VIRGIN_RAW:
        os << "Virgin raw";
        break;
      case READOUT_MODE_PROC_RAW:
        os << "Processed raw";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED:
        os << "Zero suppressed";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_FAKE:
        os << "Zero suppressed (fake)";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
        os << "Zero suppressed lite";
        break;
      case READOUT_MODE_SPY:
        os << "Spy channel";
        break;
      /*case READOUT_MODE_ZERO_SUPPRESSED_CMOVERRIDE:
      os << "Zero suppressed CM Override";
      break;*/
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
        os << "Zero suppressed lite CM Override";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
        os << "Zero suppressed lite (8 bit, top-stripped)";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
        os << "Zero suppressed lite CM Override (8 bit, top-stripped)";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
        os << "Zero suppressed lite (8 bit, bottom-stripped)";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
        os << "Zero suppressed lite CM Override (8 bit, bottom-stripped)";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
        os << "Zero suppressed lite (8 bit, top/bottom-stripped)";
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
        os << "Zero suppressed lite CM Override (8 bit, top/bottom-stripped)";
        break;
      case READOUT_MODE_PREMIX_RAW:
        os << "PreMix raw";
        break;
      case READOUT_MODE_INVALID:
        os << "Invalid";
        break;
      default:
        os << "Unrecognized";
        os << " (";
        printHexValue(value, os);
        os << ")";
        break;
    }
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDDAQEventType& value) {
    switch (value) {
      case DAQ_EVENT_TYPE_PHYSICS:
        os << "Physics trigger";
        break;
      case DAQ_EVENT_TYPE_CALIBRATION:
        os << "Calibration trigger";
        break;
      case DAQ_EVENT_TYPE_TEST:
        os << "Test trigger";
        break;
      case DAQ_EVENT_TYPE_TECHNICAL:
        os << "Technical trigger";
        break;
      case DAQ_EVENT_TYPE_SIMULATED:
        os << "Simulated event";
        break;
      case DAQ_EVENT_TYPE_TRACED:
        os << "Traced event";
        break;
      case DAQ_EVENT_TYPE_ERROR:
        os << "Error";
        break;
      case DAQ_EVENT_TYPE_INVALID:
        os << "Unknown";
        break;
      default:
        os << "Unrecognized";
        os << " (";
        printHexValue(value, os);
        os << ")";
        break;
    }
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDTTSBits& value) {
    switch (value) {
      case TTS_DISCONNECTED0:
        os << "Disconected 0";
        break;
      case TTS_WARN_OVERFLOW:
        os << "Warning overflow";
        break;
      case TTS_OUT_OF_SYNC:
        os << "Out of sync";
        break;
      case TTS_BUSY:
        os << "Busy";
        break;
      case TTS_READY:
        os << "Ready";
        break;
      case TTS_ERROR:
        os << "Error";
        break;
      case TTS_INVALID:
        os << "Invalid";
        break;
      case TTS_DISCONNECTED1:
        os << "Disconected 1";
        break;
      default:
        os << "Unrecognized";
        os << " (";
        printHexValue(value, os);
        os << ")";
        break;
    }
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDBufferState& value) {
    switch (value) {
      case BUFFER_STATE_UNSET:
        os << "Unset";
        break;
      case BUFFER_STATE_EMPTY:
        os << "Empty";
        break;
      case BUFFER_STATE_PARTIAL_FULL:
        os << "Partial Full";
        break;
      case BUFFER_STATE_FULL:
        os << "Full";
        break;
      default:
        os << "Unrecognized";
        os << " (";
        printHexValue(value, os);
        os << ")";
        break;
    }
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDChannelStatus& value) {
    if (!(value & CHANNEL_STATUS_LOCKED))
      os << "Unlocked ";
    if (!(value & CHANNEL_STATUS_IN_SYNC))
      os << "Out-of-sync ";
    if (!(value & CHANNEL_STATUS_APV1_ADDRESS_GOOD))
      os << "APV 1 bad address ";
    if (!(value & CHANNEL_STATUS_APV1_NO_ERROR_BIT))
      os << "APV 1 error ";
    if (!(value & CHANNEL_STATUS_APV0_ADDRESS_GOOD))
      os << "APV 0 bad address ";
    if (!(value & CHANNEL_STATUS_APV0_NO_ERROR_BIT))
      os << "APV 0 error ";
    if (value == CHANNEL_STATUS_NO_PROBLEMS)
      os << "No errors";
    return os;
  }

  std::ostream& operator<<(std::ostream& os, const FEDBufferStatusCode& value) {
    switch (value) {
      case FEDBufferStatusCode::SUCCESS:
        os << "SUCCESS";
        break;
      case FEDBufferStatusCode::BUFFER_NULL:
        os << "Buffer pointer is NULL.";
        break;
      case FEDBufferStatusCode::BUFFER_TOO_SHORT:
        os << "Buffer is too small. Min size is 24.";
        break;
      case FEDBufferStatusCode::UNRECOGNIZED_FORMAT:
        os << "Buffer format not recognized. ";
        break;
      case FEDBufferStatusCode::EXPECT_NOT_SPY:
        os << "Unpacking of spy channel data with FEDBuffer is not supported";
        break;
      case FEDBufferStatusCode::EXPECT_SPY:
        os << "Buffer is not from spy channel";
        break;
      case FEDBufferStatusCode::WRONG_HEADERTYPE:
        os << "No or invalid header type";
        break;
      case FEDBufferStatusCode::CHANNEL_BEGIN_BEYOND_PAYLOAD:
      case FEDBufferStatusCode::CHANNEL_END_BEYOND_PAYLOAD:
        os << "Channel does not fit into buffer";
        break;
      case FEDBufferStatusCode::CHANNEL_TOO_SHORT:
        os << "Channel is too short";
        break;
    }
    return os;
  }

  FEDBufferFormat fedBufferFormatFromString(const std::string& bufferFormatString) {
    if ((bufferFormatString == "OLD_VME") || (bufferFormatString == "BUFFER_FORMAT_OLD_VME") ||
        (bufferFormatString == "Old VME")) {
      return BUFFER_FORMAT_OLD_VME;
    }
    if ((bufferFormatString == "OLD_SLINK") || (bufferFormatString == "BUFFER_FORMAT_OLD_SLINK") ||
        (bufferFormatString == "Old S-Link")) {
      return BUFFER_FORMAT_OLD_SLINK;
    }
    if ((bufferFormatString == "NEW") || (bufferFormatString == "BUFFER_FORMAT_NEW") || (bufferFormatString == "New")) {
      return BUFFER_FORMAT_NEW;
    }
    //if it was none of the above then return invalid
    return BUFFER_FORMAT_INVALID;
  }

  FEDHeaderType fedHeaderTypeFromString(const std::string& headerTypeString) {
    if ((headerTypeString == "FULL_DEBUG") || (headerTypeString == "HEADER_TYPE_FULL_DEBUG") ||
        (headerTypeString == "Full debug")) {
      return HEADER_TYPE_FULL_DEBUG;
    }
    if ((headerTypeString == "APV_ERROR") || (headerTypeString == "HEADER_TYPE_APV_ERROR") ||
        (headerTypeString == "APV error")) {
      return HEADER_TYPE_APV_ERROR;
    }
    if ((headerTypeString == "None") || (headerTypeString == "none")) {
      return HEADER_TYPE_NONE;
    }
    //if it was none of the above then return invalid
    return HEADER_TYPE_INVALID;
  }

  FEDReadoutMode fedReadoutModeFromString(const std::string& readoutModeString) {
    if ((readoutModeString == "READOUT_MODE_SCOPE") || (readoutModeString == "SCOPE") ||
        (readoutModeString == "SCOPE_MODE") || (readoutModeString == "Scope mode")) {
      return READOUT_MODE_SCOPE;
    }
    if ((readoutModeString == "READOUT_MODE_VIRGIN_RAW") || (readoutModeString == "VIRGIN_RAW") ||
        (readoutModeString == "Virgin raw")) {
      return READOUT_MODE_VIRGIN_RAW;
    }
    if ((readoutModeString == "READOUT_MODE_PROC_RAW") || (readoutModeString == "PROC_RAW") ||
        (readoutModeString == "PROCESSED_RAW") || (readoutModeString == "Processed raw")) {
      return READOUT_MODE_PROC_RAW;
    }
    if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED") || (readoutModeString == "ZERO_SUPPRESSED") ||
        (readoutModeString == "Zero suppressed")) {
      return READOUT_MODE_ZERO_SUPPRESSED;
    }
    if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE8") || (readoutModeString == "ZERO_SUPPRESSED_LITE8") ||
        (readoutModeString == "Zero suppressed lite8")) {
      return READOUT_MODE_ZERO_SUPPRESSED_LITE8;
    }
    if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT") ||
        (readoutModeString == "ZERO_SUPPRESSED_LITE8_TOPBOT") ||
        (readoutModeString == "Zero suppressed lite8 TopBot")) {
      return READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT;
    }
    if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT") ||
        (readoutModeString == "ZERO_SUPPRESSED_LITE8_BOTBOT") ||
        (readoutModeString == "Zero suppressed lite8 BotBot")) {
      return READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT;
    }
    if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE10") ||
        (readoutModeString == "ZERO_SUPPRESSED_LITE10") || (readoutModeString == "Zero suppressed lite10")) {
      return READOUT_MODE_ZERO_SUPPRESSED_LITE10;
    }
    if ((readoutModeString == "READOUT_MODE_PREMIX_RAW") || (readoutModeString == "PREMIX_RAW") ||
        (readoutModeString == "PreMix Raw")) {
      return READOUT_MODE_PREMIX_RAW;
    }
    if ((readoutModeString == "READOUT_MODE_SPY") || (readoutModeString == "SPY") ||
        (readoutModeString == "Spy channel")) {
      return READOUT_MODE_SPY;
    }
    //if it was none of the above then return invalid
    return READOUT_MODE_INVALID;
  }
  uint8_t packetCodeFromString(const std::string& packetCode, FEDReadoutMode mode) {
    if (mode == READOUT_MODE_ZERO_SUPPRESSED) {
      if (packetCode == "ZERO_SUPPRESSED" || packetCode == "Zero suppressed") {
        return PACKET_CODE_ZERO_SUPPRESSED;
      } else if (packetCode == "ZERO_SUPPRESSED10" || packetCode == "Zero suppressed 10") {
        return PACKET_CODE_ZERO_SUPPRESSED10;
      } else if (packetCode == "ZERO_SUPPRESSED8_BOTBOT" || packetCode == "Zero suppressed 8 BOTBOT") {
        return PACKET_CODE_ZERO_SUPPRESSED8_BOTBOT;
      } else if (packetCode == "ZERO_SUPPRESSED8_TOPBOT" || packetCode == "Zero suppressed 8 TOPBOT") {
        return PACKET_CODE_ZERO_SUPPRESSED8_TOPBOT;
      } else {
        throw cms::Exception("FEDBuffer")
            << "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode ZERO_SUPPRESSED";
      }
    } else if (mode == READOUT_MODE_VIRGIN_RAW) {
      if (packetCode == "VIRGIN_RAW" || packetCode == "Virgin raw") {
        return PACKET_CODE_VIRGIN_RAW;
      } else if (packetCode == "VIRGIN_RAW10" || packetCode == "Virgin raw 10") {
        return PACKET_CODE_VIRGIN_RAW10;
      } else if (packetCode == "VIRGIN_RAW8_BOTBOT" || packetCode == "Virgin raw 8 BOTBOT") {
        return PACKET_CODE_VIRGIN_RAW8_BOTBOT;
      } else if (packetCode == "VIRGIN_RAW8_TOPBOT" || packetCode == "Virgin raw 8 TOPBOT") {
        return PACKET_CODE_VIRGIN_RAW8_TOPBOT;
      } else {
        throw cms::Exception("FEDBuffer")
            << "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode VIRGIN_RAW";
      }
    } else if (mode == READOUT_MODE_PROC_RAW) {
      if (packetCode == "PROC_RAW" || packetCode == "Processed raw") {
        return PACKET_CODE_PROC_RAW;
      } else if (packetCode == "PROC_RAW10" || packetCode == "Processed raw 10") {
        return PACKET_CODE_PROC_RAW10;
      } else if (packetCode == "PROC_RAW8_BOTBOT" || packetCode == "Processed raw 8 BOTBOT") {
        return PACKET_CODE_PROC_RAW8_BOTBOT;
      } else if (packetCode == "PROC_RAW8_TOPBOT" || packetCode == "Processed raw 8 TOPBOT") {
        return PACKET_CODE_PROC_RAW8_TOPBOT;
      } else {
        throw cms::Exception("FEDBuffer")
            << "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode PROC_RAW";
      }
    } else if (mode == READOUT_MODE_SCOPE) {
      if (packetCode == "SCOPE" || packetCode == "Scope" || packetCode.empty()) {  // default
        return PACKET_CODE_SCOPE;
      } else {
        throw cms::Exception("FEDBuffer")
            << "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode SCOPE";
      }
    } else {
      if (!packetCode.empty()) {
        throw cms::Exception("FEDBuffer") << "Packet codes are only needed for zero-suppressed (non-lite), virgin raw, "
                                             "processed raw and spy data. FEDReadoutMode="
                                          << mode << " and packetCode='" << packetCode << "'";
      }
      return 0;
    }
  }

  FEDDAQEventType fedDAQEventTypeFromString(const std::string& daqEventTypeString) {
    if ((daqEventTypeString == "PHYSICS") || (daqEventTypeString == "DAQ_EVENT_TYPE_PHYSICS") ||
        (daqEventTypeString == "Physics trigger")) {
      return DAQ_EVENT_TYPE_PHYSICS;
    }
    if ((daqEventTypeString == "CALIBRATION") || (daqEventTypeString == "DAQ_EVENT_TYPE_CALIBRATION") ||
        (daqEventTypeString == "Calibration trigger")) {
      return DAQ_EVENT_TYPE_CALIBRATION;
    }
    if ((daqEventTypeString == "TEST") || (daqEventTypeString == "DAQ_EVENT_TYPE_TEST") ||
        (daqEventTypeString == "Test trigger")) {
      return DAQ_EVENT_TYPE_TEST;
    }
    if ((daqEventTypeString == "TECHNICAL") || (daqEventTypeString == "DAQ_EVENT_TYPE_TECHNICAL") ||
        (daqEventTypeString == "Technical trigger")) {
      return DAQ_EVENT_TYPE_TECHNICAL;
    }
    if ((daqEventTypeString == "SIMULATED") || (daqEventTypeString == "DAQ_EVENT_TYPE_SIMULATED") ||
        (daqEventTypeString == "Simulated trigger")) {
      return DAQ_EVENT_TYPE_SIMULATED;
    }
    if ((daqEventTypeString == "TRACED") || (daqEventTypeString == "DAQ_EVENT_TYPE_TRACED") ||
        (daqEventTypeString == "Traced event")) {
      return DAQ_EVENT_TYPE_TRACED;
    }
    if ((daqEventTypeString == "ERROR") || (daqEventTypeString == "DAQ_EVENT_TYPE_ERROR") ||
        (daqEventTypeString == "Error")) {
      return DAQ_EVENT_TYPE_ERROR;
    }
    //if it was none of the above then return invalid
    return DAQ_EVENT_TYPE_INVALID;
  }

  void FEDStatusRegister::printFlags(std::ostream& os) const {
    if (slinkFullFlag())
      os << "SLINK_FULL ";
    if (trackerHeaderMonitorDataReadyFlag())
      os << "HEADER_MONITOR_READY ";
    if (qdrMemoryFullFlag())
      os << "QDR_FULL ";
    if (qdrMemoryPartialFullFlag())
      os << "QDR_PARTIAL_FULL ";
    if (qdrMemoryEmptyFlag())
      os << "QDR_EMPTY ";
    if (l1aBxFIFOFullFlag())
      os << "L1A_FULL ";
    if (l1aBxFIFOPartialFullFlag())
      os << "L1A_PARTIAL_FULL ";
    if (l1aBxFIFOEmptyFlag())
      os << "L1A_EMPTY ";
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      if (feDataMissingFlag(iFE))
        os << "FEUNIT" << uint16_t(iFE) << "MISSING ";
    }
  }

  FEDBufferState FEDStatusRegister::qdrMemoryState() const {
    uint8_t result(0x00);
    if (qdrMemoryFullFlag())
      result |= BUFFER_STATE_FULL;
    if (qdrMemoryPartialFullFlag())
      result |= BUFFER_STATE_PARTIAL_FULL;
    if (qdrMemoryEmptyFlag())
      result |= BUFFER_STATE_EMPTY;
    return FEDBufferState(result);
  }

  FEDBufferState FEDStatusRegister::l1aBxFIFOState() const {
    uint8_t result(0x00);
    if (l1aBxFIFOFullFlag())
      result |= BUFFER_STATE_FULL;
    if (l1aBxFIFOPartialFullFlag())
      result |= BUFFER_STATE_PARTIAL_FULL;
    if (l1aBxFIFOEmptyFlag())
      result |= BUFFER_STATE_EMPTY;
    return FEDBufferState(result);
  }

  void FEDStatusRegister::setBit(const uint8_t num, const bool bitSet) {
    const uint16_t mask = (0x0001 << num);
    if (bitSet)
      data_ |= mask;
    else
      data_ &= (~mask);
  }

  FEDStatusRegister& FEDStatusRegister::setQDRMemoryBufferState(const FEDBufferState state) {
    switch (state) {
      case BUFFER_STATE_FULL:
      case BUFFER_STATE_PARTIAL_FULL:
      case BUFFER_STATE_EMPTY:
      case BUFFER_STATE_UNSET:
        break;
      default:
        std::ostringstream ss;
        ss << "Invalid buffer state: ";
        printHex(&state, 1, ss);
        throw cms::Exception("FEDBuffer") << ss.str();
    }
    setQDRMemoryFullFlag(state & BUFFER_STATE_FULL);
    setQDRMemoryPartialFullFlag(state & BUFFER_STATE_PARTIAL_FULL);
    setQDRMemoryEmptyFlag(state & BUFFER_STATE_EMPTY);
    return *this;
  }

  FEDStatusRegister& FEDStatusRegister::setL1ABXFIFOBufferState(const FEDBufferState state) {
    switch (state) {
      case BUFFER_STATE_FULL:
      case BUFFER_STATE_PARTIAL_FULL:
      case BUFFER_STATE_EMPTY:
      case BUFFER_STATE_UNSET:
        break;
      default:
        std::ostringstream ss;
        ss << "Invalid buffer state: ";
        printHex(&state, 1, ss);
        throw cms::Exception("FEDBuffer") << ss.str();
    }
    setL1ABXFIFOFullFlag(state & BUFFER_STATE_FULL);
    setL1ABXFIFOPartialFullFlag(state & BUFFER_STATE_PARTIAL_FULL);
    setL1ABXFIFOEmptyFlag(state & BUFFER_STATE_EMPTY);
    return *this;
  }

  void FEDBackendStatusRegister::printFlags(std::ostream& os) const {
    if (internalFreezeFlag())
      os << "INTERNAL_FREEZE ";
    if (slinkDownFlag())
      os << "SLINK_DOWN ";
    if (slinkFullFlag())
      os << "SLINK_FULL ";
    if (backpressureFlag())
      os << "BACKPRESSURE ";
    if (ttcReadyFlag())
      os << "TTC_READY ";
    if (trackerHeaderMonitorDataReadyFlag())
      os << "HEADER_MONITOR_READY ";
    printFlagsForBuffer(qdrMemoryState(), "QDR", os);
    printFlagsForBuffer(frameAddressFIFOState(), "FRAME_ADDRESS", os);
    printFlagsForBuffer(totalLengthFIFOState(), "TOTAL_LENGTH", os);
    printFlagsForBuffer(trackerHeaderFIFOState(), "TRACKER_HEADER", os);
    printFlagsForBuffer(l1aBxFIFOState(), "L1ABX", os);
    printFlagsForBuffer(feEventLengthFIFOState(), "FE_LENGTH", os);
    printFlagsForBuffer(feFPGABufferState(), "FE", os);
  }

  void FEDBackendStatusRegister::printFlagsForBuffer(const FEDBufferState bufferState,
                                                     const std::string name,
                                                     std::ostream& os) const {
    if (bufferState & BUFFER_STATE_EMPTY)
      os << name << "_EMPTY ";
    if (bufferState & BUFFER_STATE_PARTIAL_FULL)
      os << name << "_PARTIAL_FULL ";
    if (bufferState & BUFFER_STATE_FULL)
      os << name << "_FULL ";
    if (bufferState == BUFFER_STATE_UNSET)
      os << name << "_UNSET ";
  }

  FEDBufferState FEDBackendStatusRegister::getBufferState(const uint8_t bufferPosition) const {
    uint8_t result = 0x00;
    if (getBit(bufferPosition + STATE_OFFSET_EMPTY))
      result |= BUFFER_STATE_EMPTY;
    if (getBit(bufferPosition + STATE_OFFSET_PARTIAL_FULL))
      result |= BUFFER_STATE_PARTIAL_FULL;
    if (getBit(bufferPosition + STATE_OFFSET_FULL))
      result |= BUFFER_STATE_FULL;
    return FEDBufferState(result);
  }

  void FEDBackendStatusRegister::setBufferSate(const uint8_t bufferPosition, const FEDBufferState state) {
    switch (state) {
      case BUFFER_STATE_FULL:
      case BUFFER_STATE_PARTIAL_FULL:
      case BUFFER_STATE_EMPTY:
      case BUFFER_STATE_UNSET:
        break;
      default:
        std::ostringstream ss;
        ss << "Invalid buffer state: ";
        printHex(&state, 1, ss);
        throw cms::Exception("FEDBuffer") << ss.str();
    }
    setBit(bufferPosition + STATE_OFFSET_EMPTY, state & BUFFER_STATE_EMPTY);
    setBit(bufferPosition + STATE_OFFSET_PARTIAL_FULL, state & BUFFER_STATE_PARTIAL_FULL);
    setBit(bufferPosition + STATE_OFFSET_FULL, state & BUFFER_STATE_FULL);
  }

  void FEDBackendStatusRegister::setBit(const uint8_t num, const bool bitSet) {
    const uint32_t mask = (0x00000001 << num);
    if (bitSet)
      data_ |= mask;
    else
      data_ &= (~mask);
  }

  FEDBackendStatusRegister::FEDBackendStatusRegister(const FEDBufferState qdrMemoryBufferState,
                                                     const FEDBufferState frameAddressFIFOBufferState,
                                                     const FEDBufferState totalLengthFIFOBufferState,
                                                     const FEDBufferState trackerHeaderFIFOBufferState,
                                                     const FEDBufferState l1aBxFIFOBufferState,
                                                     const FEDBufferState feEventLengthFIFOBufferState,
                                                     const FEDBufferState feFPGABufferState,
                                                     const bool backpressure,
                                                     const bool slinkFull,
                                                     const bool slinkDown,
                                                     const bool internalFreeze,
                                                     const bool trackerHeaderMonitorDataReady,
                                                     const bool ttcReady)
      : data_(0) {
    setInternalFreezeFlag(internalFreeze);
    setSLinkDownFlag(slinkDown);
    setSLinkFullFlag(slinkFull);
    setBackpressureFlag(backpressure);
    setTTCReadyFlag(ttcReady);
    setTrackerHeaderMonitorDataReadyFlag(trackerHeaderMonitorDataReady);
    setQDRMemoryState(qdrMemoryBufferState);
    setFrameAddressFIFOState(frameAddressFIFOBufferState);
    setTotalLengthFIFOState(totalLengthFIFOBufferState);
    setTrackerHeaderFIFOState(trackerHeaderFIFOBufferState);
    setL1ABXFIFOState(l1aBxFIFOBufferState);
    setFEEventLengthFIFOState(feEventLengthFIFOBufferState);
    setFEFPGABufferState(feFPGABufferState);
  }

  TrackerSpecialHeader::TrackerSpecialHeader(const uint8_t* headerPointer) {
    //the buffer format byte is one of the valid values if we assume the buffer is not swapped
    const bool validFormatByteWhenNotWordSwapped = ((headerPointer[BUFFERFORMAT] == BUFFER_FORMAT_CODE_NEW) ||
                                                    (headerPointer[BUFFERFORMAT] == BUFFER_FORMAT_CODE_OLD));
    //the buffer format byte is the old value if we assume the buffer is swapped
    const bool validFormatByteWhenWordSwapped = (headerPointer[BUFFERFORMAT ^ 4] == BUFFER_FORMAT_CODE_OLD);
    //if the buffer format byte is valid if the buffer is not swapped or it is never valid
    if (validFormatByteWhenNotWordSwapped || (!validFormatByteWhenNotWordSwapped && !validFormatByteWhenWordSwapped)) {
      memcpy(specialHeader_, headerPointer, 8);
      wordSwapped_ = false;
    } else {
      memcpy(specialHeader_, headerPointer + 4, 4);
      memcpy(specialHeader_ + 4, headerPointer, 4);
      wordSwapped_ = true;
    }
  }

  FEDBufferFormat TrackerSpecialHeader::bufferFormat() const {
    if (bufferFormatByte() == BUFFER_FORMAT_CODE_NEW)
      return BUFFER_FORMAT_NEW;
    else if (bufferFormatByte() == BUFFER_FORMAT_CODE_OLD) {
      if (wordSwapped_)
        return BUFFER_FORMAT_OLD_VME;
      else
        return BUFFER_FORMAT_OLD_SLINK;
    } else
      return BUFFER_FORMAT_INVALID;
  }

  FEDLegacyReadoutMode TrackerSpecialHeader::legacyReadoutMode() const {
    const uint8_t eventTypeNibble = trackerEventTypeNibble();
    const uint8_t mode = (eventTypeNibble & 0xF);
    switch (mode) {
      case READOUT_MODE_LEGACY_VIRGIN_RAW_REAL:
      case READOUT_MODE_LEGACY_VIRGIN_RAW_FAKE:
      case READOUT_MODE_LEGACY_PROC_RAW_REAL:
      case READOUT_MODE_LEGACY_PROC_RAW_FAKE:
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL:
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE:
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_REAL:
      case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_FAKE:
        return FEDLegacyReadoutMode(mode);
      default:
        return READOUT_MODE_LEGACY_INVALID;
    }
  }

  TrackerSpecialHeader& TrackerSpecialHeader::setBufferFormat(const FEDBufferFormat newBufferFormat) {
    //check if order in buffer is different
    if (((bufferFormat() == BUFFER_FORMAT_OLD_VME) && (newBufferFormat != BUFFER_FORMAT_OLD_VME)) ||
        ((bufferFormat() != BUFFER_FORMAT_OLD_VME) && (newBufferFormat == BUFFER_FORMAT_OLD_VME))) {
      wordSwapped_ = !wordSwapped_;
    }
    //set appropriate code
    setBufferFormatByte(newBufferFormat);
    return *this;
  }

  void TrackerSpecialHeader::setBufferFormatByte(const FEDBufferFormat newBufferFormat) {
    switch (newBufferFormat) {
      case BUFFER_FORMAT_OLD_VME:
      case BUFFER_FORMAT_OLD_SLINK:
        specialHeader_[BUFFERFORMAT] = BUFFER_FORMAT_CODE_OLD;
        break;
      case BUFFER_FORMAT_NEW:
        specialHeader_[BUFFERFORMAT] = BUFFER_FORMAT_CODE_NEW;
        break;
      default:
        std::ostringstream ss;
        ss << "Invalid buffer format: ";
        printHex(&newBufferFormat, 1, ss);
        throw cms::Exception("FEDBuffer") << ss.str();
    }
  }

  TrackerSpecialHeader& TrackerSpecialHeader::setHeaderType(const FEDHeaderType headerType) {
    switch (headerType) {
      case HEADER_TYPE_FULL_DEBUG:
      case HEADER_TYPE_APV_ERROR:
      case HEADER_TYPE_NONE:
        setHeaderTypeNibble(headerType);
        return *this;
      default:
        std::ostringstream ss;
        ss << "Invalid header type: ";
        printHex(&headerType, 1, ss);
        throw cms::Exception("FEDBuffer") << ss.str();
    }
  }

  TrackerSpecialHeader& TrackerSpecialHeader::setReadoutMode(const FEDReadoutMode readoutMode) {
    switch (readoutMode) {
      case READOUT_MODE_SCOPE:
      case READOUT_MODE_VIRGIN_RAW:
      case READOUT_MODE_PROC_RAW:
      case READOUT_MODE_SPY:
      case READOUT_MODE_ZERO_SUPPRESSED:
      case READOUT_MODE_ZERO_SUPPRESSED_FAKE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
      case READOUT_MODE_PREMIX_RAW:
        setReadoutModeBits(readoutMode);
        break;
      default:
        std::ostringstream ss;
        ss << "Invalid readout mode: ";
        printHex(&readoutMode, 1, ss);
        throw cms::Exception("FEDBuffer") << ss.str();
    }
    return *this;
  }

  TrackerSpecialHeader& TrackerSpecialHeader::setAPVAddressErrorForFEUnit(const uint8_t internalFEUnitNum,
                                                                          const bool error) {
    const uint8_t mask = 0x1 << internalFEUnitNum;
    const uint8_t result = ((apvAddressErrorRegister() & (~mask)) | (error ? mask : 0x00));
    setAPVEAddressErrorRegister(result);
    return *this;
  }

  TrackerSpecialHeader& TrackerSpecialHeader::setFEEnableForFEUnit(const uint8_t internalFEUnitNum,
                                                                   const bool enabled) {
    const uint8_t mask = 0x1 << internalFEUnitNum;
    const uint8_t result = ((feEnableRegister() & (~mask)) | (enabled ? mask : 0x00));
    setFEEnableRegister(result);
    return *this;
  }

  TrackerSpecialHeader& TrackerSpecialHeader::setFEOverflowForFEUnit(const uint8_t internalFEUnitNum,
                                                                     const bool overflow) {
    const uint8_t mask = 0x1 << internalFEUnitNum;
    const uint8_t result = ((feOverflowRegister() & (~mask)) | (overflow ? mask : 0x00));
    setFEEnableRegister(result);
    return *this;
  }

  TrackerSpecialHeader::TrackerSpecialHeader(const FEDBufferFormat bufferFormat,
                                             const FEDReadoutMode readoutMode,
                                             const FEDHeaderType headerType,
                                             const uint8_t address,
                                             const uint8_t addressErrorRegister,
                                             const uint8_t feEnableRegister,
                                             const uint8_t feOverflowRegister,
                                             const FEDStatusRegister fedStatusRegister) {
    memset(specialHeader_, 0x00, 8);
    //determine if order is swapped in real buffer
    wordSwapped_ = (bufferFormat == BUFFER_FORMAT_OLD_VME);
    //set fields
    setBufferFormatByte(bufferFormat);
    setReadoutMode(readoutMode);
    setHeaderType(headerType);
    setAPVEAddress(address);
    setAPVEAddressErrorRegister(addressErrorRegister);
    setFEEnableRegister(feEnableRegister);
    setFEOverflowRegister(feOverflowRegister);
    setFEDStatusRegister(fedStatusRegister);
  }

  FEDDAQEventType FEDDAQHeader::eventType() const {
    switch (eventTypeNibble()) {
      case DAQ_EVENT_TYPE_PHYSICS:
      case DAQ_EVENT_TYPE_CALIBRATION:
      case DAQ_EVENT_TYPE_TEST:
      case DAQ_EVENT_TYPE_TECHNICAL:
      case DAQ_EVENT_TYPE_SIMULATED:
      case DAQ_EVENT_TYPE_TRACED:
      case DAQ_EVENT_TYPE_ERROR:
        return FEDDAQEventType(eventTypeNibble());
      default:
        return DAQ_EVENT_TYPE_INVALID;
    }
  }

  FEDDAQHeader& FEDDAQHeader::setEventType(const FEDDAQEventType evtType) {
    header_[7] = ((header_[7] & 0xF0) | evtType);
    return *this;
  }

  FEDDAQHeader& FEDDAQHeader::setL1ID(const uint32_t l1ID) {
    header_[4] = (l1ID & 0x000000FF);
    header_[5] = ((l1ID & 0x0000FF00) >> 8);
    header_[6] = ((l1ID & 0x00FF0000) >> 16);
    return *this;
  }

  FEDDAQHeader& FEDDAQHeader::setBXID(const uint16_t bxID) {
    header_[3] = ((bxID & 0x0FF0) >> 4);
    header_[2] = ((header_[2] & 0x0F) | ((bxID & 0x000F) << 4));
    return *this;
  }

  FEDDAQHeader& FEDDAQHeader::setSourceID(const uint16_t sourceID) {
    header_[2] = ((header_[2] & 0xF0) | ((sourceID & 0x0F00) >> 8));
    header_[1] = (sourceID & 0x00FF);
    return *this;
  }

  FEDDAQHeader::FEDDAQHeader(const uint32_t l1ID,
                             const uint16_t bxID,
                             const uint16_t sourceID,
                             const FEDDAQEventType evtType) {
    //clear everything (FOV,H,x,$ all set to 0)
    memset(header_, 0x0, 8);
    //set the BoE nibble to indicate this is the last fragment
    header_[7] = 0x50;
    //set variable fields vith values supplied
    setEventType(evtType);
    setL1ID(l1ID);
    setBXID(bxID);
    setSourceID(sourceID);
  }

  FEDTTSBits FEDDAQTrailer::ttsBits() const {
    switch (ttsNibble()) {
      case TTS_DISCONNECTED0:
      case TTS_WARN_OVERFLOW:
      case TTS_OUT_OF_SYNC:
      case TTS_BUSY:
      case TTS_READY:
      case TTS_ERROR:
      case TTS_DISCONNECTED1:
        return FEDTTSBits(ttsNibble());
      default:
        return TTS_INVALID;
    }
  }

  FEDDAQTrailer::FEDDAQTrailer(const uint32_t eventLengthIn64BitWords,
                               const uint16_t crc,
                               const FEDTTSBits ttsBits,
                               const bool slinkTransmissionError,
                               const bool badFEDID,
                               const bool slinkCRCError,
                               const uint8_t eventStatusNibble) {
    //clear everything (T,x,$ all set to 0)
    memset(trailer_, 0x0, 8);
    //set the EoE nibble to indicate this is the last fragment
    trailer_[7] = 0xA0;
    //set variable fields vith values supplied
    setEventLengthIn64BitWords(eventLengthIn64BitWords);
    setEventStatusNibble(eventStatusNibble);
    setTTSBits(ttsBits);
    setCRC(crc);
    setSLinkTransmissionErrorBit(slinkTransmissionError);
    setBadSourceIDBit(badFEDID);
    setSLinkCRCErrorBit(slinkCRCError);
  }

  FEDDAQTrailer& FEDDAQTrailer::setEventLengthIn64BitWords(const uint32_t eventLengthIn64BitWords) {
    trailer_[4] = (eventLengthIn64BitWords & 0x000000FF);
    trailer_[5] = ((eventLengthIn64BitWords & 0x0000FF00) >> 8);
    trailer_[6] = ((eventLengthIn64BitWords & 0x00FF0000) >> 16);
    return *this;
  }

  FEDDAQTrailer& FEDDAQTrailer::setCRC(const uint16_t crc) {
    trailer_[2] = (crc & 0x00FF);
    trailer_[3] = ((crc >> 8) & 0x00FF);
    return *this;
  }

  FEDDAQTrailer& FEDDAQTrailer::setSLinkTransmissionErrorBit(const bool bitSet) {
    if (bitSet)
      trailer_[1] |= 0x80;
    else
      trailer_[1] &= (~0x80);
    return *this;
  }

  FEDDAQTrailer& FEDDAQTrailer::setBadSourceIDBit(const bool bitSet) {
    if (bitSet)
      trailer_[1] |= 0x40;
    else
      trailer_[1] &= (~0x40);
    return *this;
  }

  FEDDAQTrailer& FEDDAQTrailer::setSLinkCRCErrorBit(const bool bitSet) {
    if (bitSet)
      trailer_[0] |= 0x04;
    else
      trailer_[0] &= (~0x40);
    return *this;
  }

  FEDDAQTrailer& FEDDAQTrailer::setEventStatusNibble(const uint8_t eventStatusNibble) {
    trailer_[1] = ((trailer_[1] & 0xF0) | (eventStatusNibble & 0x0F));
    return *this;
  }

  FEDDAQTrailer& FEDDAQTrailer::setTTSBits(const FEDTTSBits ttsBits) {
    trailer_[0] = ((trailer_[0] & 0x0F) | (ttsBits & 0xF0));
    return *this;
  }

  FEDAPVErrorHeader::~FEDAPVErrorHeader() {}

  size_t FEDAPVErrorHeader::lengthInBytes() const { return APV_ERROR_HEADER_SIZE_IN_BYTES; }

  void FEDAPVErrorHeader::print(std::ostream& os) const { printHex(header_, APV_ERROR_HEADER_SIZE_IN_BYTES, os); }

  FEDAPVErrorHeader* FEDAPVErrorHeader::clone() const { return new FEDAPVErrorHeader(*this); }

  bool FEDAPVErrorHeader::checkStatusBits(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const {
    //3 bytes per FE unit, channel order is reversed in FE unit data, 2 bits per channel
    const uint16_t bitNumber = (internalFEDChannelNum / FEDCH_PER_FEUNIT) * 24 +
                               (FEDCH_PER_FEUNIT - 1 - (internalFEDChannelNum % FEDCH_PER_FEUNIT)) * 2 + apvNum;
    //bit high means no error
    return (header_[bitNumber / 8] & (0x01 << (bitNumber % 8)));
  }

  bool FEDAPVErrorHeader::checkChannelStatusBits(const uint8_t internalFEDChannelNum) const {
    return (checkStatusBits(internalFEDChannelNum, 0) && checkStatusBits(internalFEDChannelNum, 1));
  }

  const uint8_t* FEDAPVErrorHeader::data() const { return header_; }

  FEDAPVErrorHeader::FEDAPVErrorHeader(const std::vector<bool>& apvsGood) {
    memset(header_, 0x00, APV_ERROR_HEADER_SIZE_IN_BYTES);
    for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
      setAPVStatusBit(iCh, 0, apvsGood[iCh * 2]);
      setAPVStatusBit(iCh, 1, apvsGood[iCh * 2 + 1]);
    }
  }

  FEDAPVErrorHeader& FEDAPVErrorHeader::setAPVStatusBit(const uint8_t internalFEDChannelNum,
                                                        const uint8_t apvNum,
                                                        const bool apvGood) {
    //3 bytes per FE unit, channel order is reversed in FE unit data, 2 bits per channel
    const uint16_t bitNumber = (internalFEDChannelNum / FEDCH_PER_FED) * 24 +
                               (FEDCH_PER_FED - 1 - (internalFEDChannelNum % FEDCH_PER_FED)) * 2 + apvNum;
    const uint8_t byteNumber = bitNumber / 8;
    const uint8_t bitInByte = bitNumber % 8;
    const uint8_t mask = (0x01 << bitInByte);
    header_[byteNumber] = ((header_[byteNumber] & (~mask)) | (apvGood ? mask : 0x00));
    return *this;
  }

  void FEDAPVErrorHeader::setChannelStatus(const uint8_t internalFEDChannelNum, const FEDChannelStatus status) {
    //if channel is unlocked then set both APV bits bad
    if ((!(status & CHANNEL_STATUS_LOCKED)) || (!(status & CHANNEL_STATUS_IN_SYNC))) {
      setAPVStatusBit(internalFEDChannelNum, 0, false);
      setAPVStatusBit(internalFEDChannelNum, 1, false);
      return;
    } else {
      if ((status & CHANNEL_STATUS_APV0_ADDRESS_GOOD) && (status & CHANNEL_STATUS_APV0_NO_ERROR_BIT)) {
        setAPVStatusBit(internalFEDChannelNum, 0, true);
      } else {
        setAPVStatusBit(internalFEDChannelNum, 0, false);
      }
      if ((status & CHANNEL_STATUS_APV1_ADDRESS_GOOD) && (status & CHANNEL_STATUS_APV1_NO_ERROR_BIT)) {
        setAPVStatusBit(internalFEDChannelNum, 1, true);
      } else {
        setAPVStatusBit(internalFEDChannelNum, 1, false);
      }
    }
  }

  //These methods do nothing as the values in question are in present in the APV Error header.
  //The methods exist so that users of the base class can set the values without caring which type of header they have and so if they are needed.
  void FEDAPVErrorHeader::setFEUnitMajorityAddress(const uint8_t internalFEUnitNum, const uint8_t address) { return; }
  void FEDAPVErrorHeader::setBEStatusRegister(const FEDBackendStatusRegister beStatusRegister) { return; }
  void FEDAPVErrorHeader::setDAQRegister(const uint32_t daqRegister) { return; }
  void FEDAPVErrorHeader::setDAQRegister2(const uint32_t daqRegister2) { return; }
  void FEDAPVErrorHeader::set32BitReservedRegister(const uint8_t internalFEUnitNum, const uint32_t reservedRegister) {
    return;
  }
  void FEDAPVErrorHeader::setFEUnitLength(const uint8_t internalFEUnitNum, const uint16_t length) { return; }

  FEDFullDebugHeader::~FEDFullDebugHeader() {}

  size_t FEDFullDebugHeader::lengthInBytes() const { return FULL_DEBUG_HEADER_SIZE_IN_BYTES; }

  void FEDFullDebugHeader::print(std::ostream& os) const { printHex(header_, FULL_DEBUG_HEADER_SIZE_IN_BYTES, os); }

  FEDFullDebugHeader* FEDFullDebugHeader::clone() const { return new FEDFullDebugHeader(*this); }

  bool FEDFullDebugHeader::checkStatusBits(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const {
    return (!unlockedFromBit(internalFEDChannelNum) && !outOfSyncFromBit(internalFEDChannelNum) &&
            !apvError(internalFEDChannelNum, apvNum) && !apvAddressError(internalFEDChannelNum, apvNum));
  }

  bool FEDFullDebugHeader::checkChannelStatusBits(const uint8_t internalFEDChannelNum) const {
    //return ( !unlockedFromBit(internalFEDChannelNum) &&
    //         !outOfSyncFromBit(internalFEDChannelNum) &&
    //         !apvErrorFromBit(internalFEDChannelNum,0) &&
    //         !apvAddressErrorFromBit(internalFEDChannelNum,0) &&
    //         !apvErrorFromBit(internalFEDChannelNum,1) &&
    //         !apvAddressErrorFromBit(internalFEDChannelNum,1) );
    return (getChannelStatus(internalFEDChannelNum) == CHANNEL_STATUS_NO_PROBLEMS);
  }

  FEDChannelStatus FEDFullDebugHeader::getChannelStatus(const uint8_t internalFEDChannelNum) const {
    const uint8_t* pFEWord = feWord(internalFEDChannelNum / FEDCH_PER_FEUNIT);
    const uint8_t feUnitChanNum = internalFEDChannelNum % FEDCH_PER_FEUNIT;
    const uint8_t startByteInFEWord = (FEDCH_PER_FEUNIT - 1 - feUnitChanNum) * 6 / 8;
    switch ((FEDCH_PER_FEUNIT - 1 - feUnitChanNum) % 4) {
      case 0:
        return FEDChannelStatus(pFEWord[startByteInFEWord] & 0x3F);
      case 1:
        return FEDChannelStatus(((pFEWord[startByteInFEWord] & 0xC0) >> 6) |
                                ((pFEWord[startByteInFEWord + 1] & 0x0F) << 2));
      case 2:
        return FEDChannelStatus(((pFEWord[startByteInFEWord] & 0xF0) >> 4) |
                                ((pFEWord[startByteInFEWord + 1] & 0x03) << 4));
      case 3:
        return FEDChannelStatus((pFEWord[startByteInFEWord] & 0xFC) >> 2);
      //stop compiler warning
      default:
        return FEDChannelStatus(0);
    }
    /*const uint8_t feUnitChanNum = internalFEDChannelNum / FEDCH_PER_FEUNIT;
    const uint8_t* pFEWord = feWord(feUnitChanNum);
    const uint8_t startByteInFEWord = feUnitChanNum * 3 / 4;
    //const uint8_t shift = ( 6 - ((feUnitChanNum-1)%4) );
    //const uint16_t mask = ( 0x003F << shift );
    //uint8_t result = ( (pFEWord[startByteInFEWord] & (mask&0x00FF)) >> shift );
    //result |= ( (pFEWord[startByteInFEWord+1] & (mask>>8)) << (8-shift) );
    switch (feUnitChanNum % 4) {
    case 0:
      return FEDChannelStatus( pFEWord[startByteInFEWord] & 0x3F );
    case 1:
      return FEDChannelStatus( ((pFEWord[startByteInFEWord] & 0xC0) >> 6) | ((pFEWord[startByteInFEWord+1] & 0x0F) << 2) );
    case 2:
      return FEDChannelStatus( ((pFEWord[startByteInFEWord] & 0xF0) >> 4) | ((pFEWord[startByteInFEWord+1] & 0x03) << 4) );
    case 3:
      return FEDChannelStatus( (pFEWord[startByteInFEWord] & 0xFC) >> 2 );
    //stop compiler warning
    default:
      return FEDChannelStatus(0);
    }*/
  }

  const uint8_t* FEDFullDebugHeader::data() const { return header_; }

  FEDFullDebugHeader::FEDFullDebugHeader(const std::vector<uint16_t>& feUnitLengths,
                                         const std::vector<uint8_t>& feMajorityAddresses,
                                         const std::vector<FEDChannelStatus>& channelStatus,
                                         const FEDBackendStatusRegister beStatusRegister,
                                         const uint32_t daqRegister,
                                         const uint32_t daqRegister2) {
    memset(header_, 0x00, FULL_DEBUG_HEADER_SIZE_IN_BYTES);
    setBEStatusRegister(beStatusRegister);
    setDAQRegister(daqRegister);
    setDAQRegister2(daqRegister2);
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      setFEUnitLength(iFE, feUnitLengths[iFE]);
      setFEUnitMajorityAddress(iFE, feMajorityAddresses[iFE]);
    }
    for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
      setChannelStatus(iCh, channelStatus[iCh]);
    }
  }

  void FEDFullDebugHeader::setChannelStatus(const uint8_t internalFEDChannelNum, const FEDChannelStatus status) {
    setUnlocked(internalFEDChannelNum, !(status & CHANNEL_STATUS_LOCKED));
    setOutOfSync(internalFEDChannelNum, !(status & CHANNEL_STATUS_IN_SYNC));
    setAPVAddressError(internalFEDChannelNum, 1, !(status & CHANNEL_STATUS_APV1_ADDRESS_GOOD));
    setAPVAddressError(internalFEDChannelNum, 0, !(status & CHANNEL_STATUS_APV0_ADDRESS_GOOD));
    setAPVError(internalFEDChannelNum, 1, !(status & CHANNEL_STATUS_APV1_NO_ERROR_BIT));
    setAPVError(internalFEDChannelNum, 0, !(status & CHANNEL_STATUS_APV0_NO_ERROR_BIT));
  }

  void FEDFullDebugHeader::setFEUnitMajorityAddress(const uint8_t internalFEUnitNum, const uint8_t address) {
    feWord(internalFEUnitNum)[9] = address;
  }

  void FEDFullDebugHeader::setBEStatusRegister(const FEDBackendStatusRegister beStatusRegister) {
    set32BitWordAt(feWord(0) + 10, beStatusRegister);
  }

  void FEDFullDebugHeader::setDAQRegister(const uint32_t daqRegister) { set32BitWordAt(feWord(7) + 10, daqRegister); }

  void FEDFullDebugHeader::setDAQRegister2(const uint32_t daqRegister2) {
    set32BitWordAt(feWord(6) + 10, daqRegister2);
  }

  //used by DigiToRaw to copy reserved registers in internalFEUnit buffers 1 through 5
  void FEDFullDebugHeader::set32BitReservedRegister(const uint8_t internalFEUnitNum, const uint32_t reservedRegister) {
    set32BitWordAt(feWord(internalFEUnitNum) + 10, reservedRegister);
  }

  void FEDFullDebugHeader::setFEUnitLength(const uint8_t internalFEUnitNum, const uint16_t length) {
    feWord(internalFEUnitNum)[15] = ((length & 0xFF00) >> 8);
    feWord(internalFEUnitNum)[14] = (length & 0x00FF);
  }

  void FEDFullDebugHeader::setBit(const uint8_t internalFEDChannelNum, const uint8_t bit, const bool value) {
    const uint8_t bitInFeWord = (FEDCH_PER_FEUNIT - 1 - (internalFEDChannelNum % FEDCH_PER_FEUNIT)) * 6 + bit;
    uint8_t& byte = *(feWord(internalFEDChannelNum / FEDCH_PER_FEUNIT) + (bitInFeWord / 8));
    const uint8_t mask = (0x1 << bitInFeWord % 8);
    byte = ((byte & (~mask)) | (value ? mask : 0x0));
  }

  FEDFEHeader::~FEDFEHeader() {}

  FEDBufferBase::FEDBufferBase(const FEDRawData& fedBuffer)
      : channels_(FEDCH_PER_FED, FEDChannel(nullptr, 0, 0)),
        originalBuffer_(fedBuffer.data()),
        bufferSize_(fedBuffer.size()) {
    init();
  }

  FEDBufferBase::FEDBufferBase(const FEDRawData& fedBuffer, const bool fillChannelVector)
      : originalBuffer_(fedBuffer.data()), bufferSize_(fedBuffer.size()) {
    init();
    if (fillChannelVector)
      channels_.assign(FEDCH_PER_FED, FEDChannel(nullptr, 0, 0));
  }

  void FEDBufferBase::init() {
    //construct tracker special header using second 64 bit word
    specialHeader_ = TrackerSpecialHeader(originalBuffer_ + 8);

    //check the buffer format
    const FEDBufferFormat bufferFormat = specialHeader_.bufferFormat();
    //swap the buffer words so that the whole buffer is in slink ordering
    if ((bufferFormat == BUFFER_FORMAT_OLD_VME) || (bufferFormat == BUFFER_FORMAT_NEW)) {
      uint8_t* newBuffer = new uint8_t[bufferSize_];
      const uint32_t* originalU32 = reinterpret_cast<const uint32_t*>(originalBuffer_);
      const size_t sizeU32 = bufferSize_ / 4;
      uint32_t* newU32 = reinterpret_cast<uint32_t*>(newBuffer);
      if (bufferFormat == BUFFER_FORMAT_OLD_VME) {
        //swap whole buffer
        for (size_t i = 0; i < sizeU32; i += 2) {
          newU32[i] = originalU32[i + 1];
          newU32[i + 1] = originalU32[i];
        }
      }
      if (bufferFormat == BUFFER_FORMAT_NEW) {
        //copy DAQ header
        memcpy(newU32, originalU32, 8);
        //copy DAQ trailer
        memcpy(newU32 + sizeU32 - 2, originalU32 + sizeU32 - 2, 8);
        //swap the payload
        for (size_t i = 2; i < sizeU32 - 2; i += 2) {
          newU32[i] = originalU32[i + 1];
          newU32[i + 1] = originalU32[i];
        }
      }
      orderedBuffer_ = newBuffer;
    }  //if ( (bufferFormat == BUFFER_FORMAT_OLD_VME) || (bufferFormat == BUFFER_FORMAT_NEW) )
    else {
      orderedBuffer_ = originalBuffer_;
    }

    //construct header object at begining of buffer
    daqHeader_ = FEDDAQHeader(orderedBuffer_);
    //construct trailer object using last 64 bit word of buffer
    daqTrailer_ = FEDDAQTrailer(orderedBuffer_ + bufferSize_ - 8);
  }

  FEDBufferBase::~FEDBufferBase() {
    //if the buffer was coppied and swapped then delete the copy
    if (orderedBuffer_ != originalBuffer_)
      delete[] orderedBuffer_;
  }

  void FEDBufferBase::print(std::ostream& os) const {
    os << "buffer format: " << bufferFormat() << std::endl;
    os << "Buffer size: " << bufferSize() << " bytes" << std::endl;
    os << "Event length from DAQ trailer: " << daqEventLengthInBytes() << " bytes" << std::endl;
    os << "Source ID: " << daqSourceID() << std::endl;
    os << "Header type: " << headerType() << std::endl;
    os << "Readout mode: " << readoutMode() << std::endl;
    os << "DAQ event type: " << daqEventType() << std::endl;
    os << "TTS state: " << daqTTSState() << std::endl;
    os << "L1 ID: " << daqLvl1ID() << std::endl;
    os << "BX ID: " << daqBXID() << std::endl;
    os << "FED status register flags: ";
    fedStatusRegister().printFlags(os);
    os << std::endl;
    os << "APVe Address: " << uint16_t(apveAddress()) << std::endl;
    os << "Enabled FE units: " << uint16_t(nFEUnitsEnabled()) << std::endl;
  }

  uint8_t FEDBufferBase::nFEUnitsEnabled() const {
    uint8_t result = 0;
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      if (feEnabled(iFE))
        result++;
    }
    return result;
  }

  bool FEDBufferBase::checkSourceIDs() const {
    return ((daqSourceID() >= FED_ID_MIN) && (daqSourceID() <= FED_ID_MAX));
  }

  bool FEDBufferBase::checkMajorityAddresses() const {
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      if (!feEnabled(iFE))
        continue;
      if (majorityAddressErrorForFEUnit(iFE))
        return false;
    }
    return true;
  }

  bool FEDBufferBase::channelGood(const uint8_t internalFEDChannelNum) const {
    const uint8_t feUnit = internalFEDChannelNum / FEDCH_PER_FEUNIT;
    return (!majorityAddressErrorForFEUnit(feUnit) && feEnabled(feUnit) && !feOverflow(feUnit));
  }

  std::string FEDBufferBase::checkSummary() const {
    std::ostringstream summary;
    summary << "Check buffer type valid: " << (checkBufferFormat() ? "passed" : "FAILED") << std::endl;
    summary << "Check header format valid: " << (checkHeaderType() ? "passed" : "FAILED") << std::endl;
    summary << "Check readout mode valid: " << (checkReadoutMode() ? "passed" : "FAILED") << std::endl;
    //summary << "Check APVe address valid: " << ( checkAPVEAddressValid() ? "passed" : "FAILED" ) << std::endl;
    summary << "Check FE unit majority addresses: " << (checkMajorityAddresses() ? "passed" : "FAILED") << std::endl;
    if (!checkMajorityAddresses()) {
      summary << "FEs with majority address error: ";
      unsigned int badFEs = 0;
      for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
        if (!feEnabled(iFE))
          continue;
        if (majorityAddressErrorForFEUnit(iFE)) {
          summary << uint16_t(iFE) << " ";
          badFEs++;
        }
      }
      summary << std::endl;
      summary << "Number of FE Units with bad addresses: " << badFEs << std::endl;
    }
    summary << "Check for FE unit buffer overflows: " << (checkNoFEOverflows() ? "passed" : "FAILED") << std::endl;
    if (!checkNoFEOverflows()) {
      summary << "FEs which overflowed: ";
      unsigned int badFEs = 0;
      for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
        if (feOverflow(iFE)) {
          summary << uint16_t(iFE) << " ";
          badFEs++;
        }
      }
      summary << std::endl;
      summary << "Number of FE Units which overflowed: " << badFEs << std::endl;
    }
    summary << "Check for S-Link CRC errors: " << (checkNoSlinkCRCError() ? "passed" : "FAILED") << std::endl;
    summary << "Check for S-Link transmission error: " << (checkNoSLinkTransmissionError() ? "passed" : "FAILED")
            << std::endl;
    summary << "Check CRC: " << (checkCRC() ? "passed" : "FAILED") << std::endl;
    summary << "Check source ID is FED ID: " << (checkSourceIDs() ? "passed" : "FAILED") << std::endl;
    summary << "Check for unexpected source ID at FRL: " << (checkNoUnexpectedSourceID() ? "passed" : "FAILED")
            << std::endl;
    summary << "Check there are no extra headers or trailers: "
            << (checkNoExtraHeadersOrTrailers() ? "passed" : "FAILED") << std::endl;
    summary << "Check length from trailer: " << (checkLengthFromTrailer() ? "passed" : "FAILED") << std::endl;
    return summary.str();
  }
}  // namespace sistrip