1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
|
#include <iomanip>
#include <ostream>
#include <sstream>
#include <cstring>
#include "EventFilter/SiStripRawToDigi/interface/SiStripFEDBufferComponents.h"
#include "FWCore/Utilities/interface/CRC16.h"
namespace sistrip {
void printHexValue(const uint8_t value, std::ostream& os) {
const std::ios_base::fmtflags originalFormatFlags = os.flags();
os << std::hex << std::setfill('0') << std::setw(2);
os << uint16_t(value);
os.flags(originalFormatFlags);
}
void printHexWord(const uint8_t* pointer, const size_t lengthInBytes, std::ostream& os) {
size_t i = lengthInBytes - 1;
do {
printHexValue(pointer[i], os);
if (i != 0)
os << " ";
} while (i-- != 0);
}
void printHex(const void* pointer, const size_t lengthInBytes, std::ostream& os) {
const uint8_t* bytePointer = reinterpret_cast<const uint8_t*>(pointer);
//if there is one 64 bit word or less, print it out
if (lengthInBytes <= 8) {
printHexWord(bytePointer, lengthInBytes, os);
}
//otherwise, print word numbers etc
else {
//header
os << "word\tbyte\t \t\tbyte" << std::endl;
;
const size_t words = lengthInBytes / 8;
const size_t extraBytes = lengthInBytes - 8 * words;
//print full words
for (size_t w = 0; w < words; w++) {
const size_t startByte = w * 8;
os << w << '\t' << startByte + 8 << '\t';
printHexWord(bytePointer + startByte, 8, os);
os << "\t\t" << startByte << std::endl;
}
//print part word, if any
if (extraBytes) {
const size_t startByte = words * 8;
os << words << '\t' << startByte + 8 << '\t';
//padding
size_t p = 8;
while (p-- > extraBytes) {
os << "00 ";
}
printHexWord(bytePointer + startByte, extraBytes, os);
os << "\t\t" << startByte << std::endl;
}
os << std::endl;
}
}
uint16_t calculateFEDBufferCRC(const uint8_t* buffer, const size_t lengthInBytes) {
uint16_t crc = 0xFFFF;
for (size_t i = 0; i < lengthInBytes - 8; i++) {
crc = evf::compute_crc_8bit(crc, buffer[i ^ 7]);
}
for (size_t i = lengthInBytes - 8; i < lengthInBytes; i++) {
uint8_t byte;
//set CRC bytes to zero since these were not set when CRC was calculated
if (i == lengthInBytes - 4 || i == lengthInBytes - 3)
byte = 0x00;
else
byte = buffer[i ^ 7];
crc = evf::compute_crc_8bit(crc, byte);
}
return crc;
}
std::ostream& operator<<(std::ostream& os, const FEDBufferFormat& value) {
switch (value) {
case BUFFER_FORMAT_OLD_VME:
os << "Old VME";
break;
case BUFFER_FORMAT_OLD_SLINK:
os << "Old S-Link";
break;
case BUFFER_FORMAT_NEW:
os << "New";
break;
case BUFFER_FORMAT_INVALID:
os << "Invalid";
break;
default:
os << "Unrecognized";
os << " (";
printHexValue(value, os);
os << ")";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDHeaderType& value) {
switch (value) {
case HEADER_TYPE_FULL_DEBUG:
os << "Full debug";
break;
case HEADER_TYPE_APV_ERROR:
os << "APV error";
break;
case HEADER_TYPE_NONE:
os << "None";
break;
case HEADER_TYPE_INVALID:
os << "Invalid";
break;
default:
os << "Unrecognized";
os << " (";
printHexValue(value, os);
os << ")";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDLegacyReadoutMode& value) {
switch (value) {
case READOUT_MODE_LEGACY_SCOPE:
os << "(L) Scope mode";
break;
case READOUT_MODE_LEGACY_VIRGIN_RAW_REAL:
os << "(L) Virgin raw (real)";
break;
case READOUT_MODE_LEGACY_VIRGIN_RAW_FAKE:
os << "(L) Virgin raw (fake)";
break;
case READOUT_MODE_LEGACY_PROC_RAW_REAL:
os << "(L) Processed raw (real)";
break;
case READOUT_MODE_LEGACY_PROC_RAW_FAKE:
os << "(L) Processed raw (fake)";
break;
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL:
os << "(L) Zero suppressed (real)";
break;
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE:
os << "(L) Zero suppressed (fake)";
break;
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_REAL:
os << "(L) Zero suppressed lite (real)";
break;
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_FAKE:
os << "(L) Zero suppressed lite (fake)";
break;
case READOUT_MODE_LEGACY_SPY:
os << "(L) Spy channel";
break;
case READOUT_MODE_LEGACY_PREMIX_RAW:
os << "(L) PreMix raw";
break;
case READOUT_MODE_LEGACY_INVALID:
os << "(L) Invalid";
break;
default:
os << "(L) Unrecognized";
os << " (";
printHexValue(value, os);
os << ")";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDReadoutMode& value) {
switch (value) {
case READOUT_MODE_SCOPE:
os << "Scope mode";
break;
case READOUT_MODE_VIRGIN_RAW:
os << "Virgin raw";
break;
case READOUT_MODE_PROC_RAW:
os << "Processed raw";
break;
case READOUT_MODE_ZERO_SUPPRESSED:
os << "Zero suppressed";
break;
case READOUT_MODE_ZERO_SUPPRESSED_FAKE:
os << "Zero suppressed (fake)";
break;
case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
os << "Zero suppressed lite";
break;
case READOUT_MODE_SPY:
os << "Spy channel";
break;
/*case READOUT_MODE_ZERO_SUPPRESSED_CMOVERRIDE:
os << "Zero suppressed CM Override";
break;*/
case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
os << "Zero suppressed lite CM Override";
break;
case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
os << "Zero suppressed lite (8 bit, top-stripped)";
break;
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
os << "Zero suppressed lite CM Override (8 bit, top-stripped)";
break;
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
os << "Zero suppressed lite (8 bit, bottom-stripped)";
break;
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
os << "Zero suppressed lite CM Override (8 bit, bottom-stripped)";
break;
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
os << "Zero suppressed lite (8 bit, top/bottom-stripped)";
break;
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
os << "Zero suppressed lite CM Override (8 bit, top/bottom-stripped)";
break;
case READOUT_MODE_PREMIX_RAW:
os << "PreMix raw";
break;
case READOUT_MODE_INVALID:
os << "Invalid";
break;
default:
os << "Unrecognized";
os << " (";
printHexValue(value, os);
os << ")";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDDAQEventType& value) {
switch (value) {
case DAQ_EVENT_TYPE_PHYSICS:
os << "Physics trigger";
break;
case DAQ_EVENT_TYPE_CALIBRATION:
os << "Calibration trigger";
break;
case DAQ_EVENT_TYPE_TEST:
os << "Test trigger";
break;
case DAQ_EVENT_TYPE_TECHNICAL:
os << "Technical trigger";
break;
case DAQ_EVENT_TYPE_SIMULATED:
os << "Simulated event";
break;
case DAQ_EVENT_TYPE_TRACED:
os << "Traced event";
break;
case DAQ_EVENT_TYPE_ERROR:
os << "Error";
break;
case DAQ_EVENT_TYPE_INVALID:
os << "Unknown";
break;
default:
os << "Unrecognized";
os << " (";
printHexValue(value, os);
os << ")";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDTTSBits& value) {
switch (value) {
case TTS_DISCONNECTED0:
os << "Disconected 0";
break;
case TTS_WARN_OVERFLOW:
os << "Warning overflow";
break;
case TTS_OUT_OF_SYNC:
os << "Out of sync";
break;
case TTS_BUSY:
os << "Busy";
break;
case TTS_READY:
os << "Ready";
break;
case TTS_ERROR:
os << "Error";
break;
case TTS_INVALID:
os << "Invalid";
break;
case TTS_DISCONNECTED1:
os << "Disconected 1";
break;
default:
os << "Unrecognized";
os << " (";
printHexValue(value, os);
os << ")";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDBufferState& value) {
switch (value) {
case BUFFER_STATE_UNSET:
os << "Unset";
break;
case BUFFER_STATE_EMPTY:
os << "Empty";
break;
case BUFFER_STATE_PARTIAL_FULL:
os << "Partial Full";
break;
case BUFFER_STATE_FULL:
os << "Full";
break;
default:
os << "Unrecognized";
os << " (";
printHexValue(value, os);
os << ")";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDChannelStatus& value) {
if (!(value & CHANNEL_STATUS_LOCKED))
os << "Unlocked ";
if (!(value & CHANNEL_STATUS_IN_SYNC))
os << "Out-of-sync ";
if (!(value & CHANNEL_STATUS_APV1_ADDRESS_GOOD))
os << "APV 1 bad address ";
if (!(value & CHANNEL_STATUS_APV1_NO_ERROR_BIT))
os << "APV 1 error ";
if (!(value & CHANNEL_STATUS_APV0_ADDRESS_GOOD))
os << "APV 0 bad address ";
if (!(value & CHANNEL_STATUS_APV0_NO_ERROR_BIT))
os << "APV 0 error ";
if (value == CHANNEL_STATUS_NO_PROBLEMS)
os << "No errors";
return os;
}
std::ostream& operator<<(std::ostream& os, const FEDBufferStatusCode& value) {
switch (value) {
case FEDBufferStatusCode::SUCCESS:
os << "SUCCESS";
break;
case FEDBufferStatusCode::BUFFER_NULL:
os << "Buffer pointer is NULL.";
break;
case FEDBufferStatusCode::BUFFER_TOO_SHORT:
os << "Buffer is too small. Min size is 24.";
break;
case FEDBufferStatusCode::UNRECOGNIZED_FORMAT:
os << "Buffer format not recognized. ";
break;
case FEDBufferStatusCode::EXPECT_NOT_SPY:
os << "Unpacking of spy channel data with FEDBuffer is not supported";
break;
case FEDBufferStatusCode::EXPECT_SPY:
os << "Buffer is not from spy channel";
break;
case FEDBufferStatusCode::WRONG_HEADERTYPE:
os << "No or invalid header type";
break;
case FEDBufferStatusCode::CHANNEL_BEGIN_BEYOND_PAYLOAD:
case FEDBufferStatusCode::CHANNEL_END_BEYOND_PAYLOAD:
os << "Channel does not fit into buffer";
break;
case FEDBufferStatusCode::CHANNEL_TOO_SHORT:
os << "Channel is too short";
break;
}
return os;
}
FEDBufferFormat fedBufferFormatFromString(const std::string& bufferFormatString) {
if ((bufferFormatString == "OLD_VME") || (bufferFormatString == "BUFFER_FORMAT_OLD_VME") ||
(bufferFormatString == "Old VME")) {
return BUFFER_FORMAT_OLD_VME;
}
if ((bufferFormatString == "OLD_SLINK") || (bufferFormatString == "BUFFER_FORMAT_OLD_SLINK") ||
(bufferFormatString == "Old S-Link")) {
return BUFFER_FORMAT_OLD_SLINK;
}
if ((bufferFormatString == "NEW") || (bufferFormatString == "BUFFER_FORMAT_NEW") || (bufferFormatString == "New")) {
return BUFFER_FORMAT_NEW;
}
//if it was none of the above then return invalid
return BUFFER_FORMAT_INVALID;
}
FEDHeaderType fedHeaderTypeFromString(const std::string& headerTypeString) {
if ((headerTypeString == "FULL_DEBUG") || (headerTypeString == "HEADER_TYPE_FULL_DEBUG") ||
(headerTypeString == "Full debug")) {
return HEADER_TYPE_FULL_DEBUG;
}
if ((headerTypeString == "APV_ERROR") || (headerTypeString == "HEADER_TYPE_APV_ERROR") ||
(headerTypeString == "APV error")) {
return HEADER_TYPE_APV_ERROR;
}
if ((headerTypeString == "None") || (headerTypeString == "none")) {
return HEADER_TYPE_NONE;
}
//if it was none of the above then return invalid
return HEADER_TYPE_INVALID;
}
FEDReadoutMode fedReadoutModeFromString(const std::string& readoutModeString) {
if ((readoutModeString == "READOUT_MODE_SCOPE") || (readoutModeString == "SCOPE") ||
(readoutModeString == "SCOPE_MODE") || (readoutModeString == "Scope mode")) {
return READOUT_MODE_SCOPE;
}
if ((readoutModeString == "READOUT_MODE_VIRGIN_RAW") || (readoutModeString == "VIRGIN_RAW") ||
(readoutModeString == "Virgin raw")) {
return READOUT_MODE_VIRGIN_RAW;
}
if ((readoutModeString == "READOUT_MODE_PROC_RAW") || (readoutModeString == "PROC_RAW") ||
(readoutModeString == "PROCESSED_RAW") || (readoutModeString == "Processed raw")) {
return READOUT_MODE_PROC_RAW;
}
if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED") || (readoutModeString == "ZERO_SUPPRESSED") ||
(readoutModeString == "Zero suppressed")) {
return READOUT_MODE_ZERO_SUPPRESSED;
}
if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE8") || (readoutModeString == "ZERO_SUPPRESSED_LITE8") ||
(readoutModeString == "Zero suppressed lite8")) {
return READOUT_MODE_ZERO_SUPPRESSED_LITE8;
}
if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT") ||
(readoutModeString == "ZERO_SUPPRESSED_LITE8_TOPBOT") ||
(readoutModeString == "Zero suppressed lite8 TopBot")) {
return READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT;
}
if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT") ||
(readoutModeString == "ZERO_SUPPRESSED_LITE8_BOTBOT") ||
(readoutModeString == "Zero suppressed lite8 BotBot")) {
return READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT;
}
if ((readoutModeString == "READOUT_MODE_ZERO_SUPPRESSED_LITE10") ||
(readoutModeString == "ZERO_SUPPRESSED_LITE10") || (readoutModeString == "Zero suppressed lite10")) {
return READOUT_MODE_ZERO_SUPPRESSED_LITE10;
}
if ((readoutModeString == "READOUT_MODE_PREMIX_RAW") || (readoutModeString == "PREMIX_RAW") ||
(readoutModeString == "PreMix Raw")) {
return READOUT_MODE_PREMIX_RAW;
}
if ((readoutModeString == "READOUT_MODE_SPY") || (readoutModeString == "SPY") ||
(readoutModeString == "Spy channel")) {
return READOUT_MODE_SPY;
}
//if it was none of the above then return invalid
return READOUT_MODE_INVALID;
}
uint8_t packetCodeFromString(const std::string& packetCode, FEDReadoutMode mode) {
if (mode == READOUT_MODE_ZERO_SUPPRESSED) {
if (packetCode == "ZERO_SUPPRESSED" || packetCode == "Zero suppressed") {
return PACKET_CODE_ZERO_SUPPRESSED;
} else if (packetCode == "ZERO_SUPPRESSED10" || packetCode == "Zero suppressed 10") {
return PACKET_CODE_ZERO_SUPPRESSED10;
} else if (packetCode == "ZERO_SUPPRESSED8_BOTBOT" || packetCode == "Zero suppressed 8 BOTBOT") {
return PACKET_CODE_ZERO_SUPPRESSED8_BOTBOT;
} else if (packetCode == "ZERO_SUPPRESSED8_TOPBOT" || packetCode == "Zero suppressed 8 TOPBOT") {
return PACKET_CODE_ZERO_SUPPRESSED8_TOPBOT;
} else {
throw cms::Exception("FEDBuffer")
<< "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode ZERO_SUPPRESSED";
}
} else if (mode == READOUT_MODE_VIRGIN_RAW) {
if (packetCode == "VIRGIN_RAW" || packetCode == "Virgin raw") {
return PACKET_CODE_VIRGIN_RAW;
} else if (packetCode == "VIRGIN_RAW10" || packetCode == "Virgin raw 10") {
return PACKET_CODE_VIRGIN_RAW10;
} else if (packetCode == "VIRGIN_RAW8_BOTBOT" || packetCode == "Virgin raw 8 BOTBOT") {
return PACKET_CODE_VIRGIN_RAW8_BOTBOT;
} else if (packetCode == "VIRGIN_RAW8_TOPBOT" || packetCode == "Virgin raw 8 TOPBOT") {
return PACKET_CODE_VIRGIN_RAW8_TOPBOT;
} else {
throw cms::Exception("FEDBuffer")
<< "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode VIRGIN_RAW";
}
} else if (mode == READOUT_MODE_PROC_RAW) {
if (packetCode == "PROC_RAW" || packetCode == "Processed raw") {
return PACKET_CODE_PROC_RAW;
} else if (packetCode == "PROC_RAW10" || packetCode == "Processed raw 10") {
return PACKET_CODE_PROC_RAW10;
} else if (packetCode == "PROC_RAW8_BOTBOT" || packetCode == "Processed raw 8 BOTBOT") {
return PACKET_CODE_PROC_RAW8_BOTBOT;
} else if (packetCode == "PROC_RAW8_TOPBOT" || packetCode == "Processed raw 8 TOPBOT") {
return PACKET_CODE_PROC_RAW8_TOPBOT;
} else {
throw cms::Exception("FEDBuffer")
<< "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode PROC_RAW";
}
} else if (mode == READOUT_MODE_SCOPE) {
if (packetCode == "SCOPE" || packetCode == "Scope" || packetCode.empty()) { // default
return PACKET_CODE_SCOPE;
} else {
throw cms::Exception("FEDBuffer")
<< "'" << packetCode << "' cannot be converted into a valid packet code for FEDReadoutMode SCOPE";
}
} else {
if (!packetCode.empty()) {
throw cms::Exception("FEDBuffer") << "Packet codes are only needed for zero-suppressed (non-lite), virgin raw, "
"processed raw and spy data. FEDReadoutMode="
<< mode << " and packetCode='" << packetCode << "'";
}
return 0;
}
}
FEDDAQEventType fedDAQEventTypeFromString(const std::string& daqEventTypeString) {
if ((daqEventTypeString == "PHYSICS") || (daqEventTypeString == "DAQ_EVENT_TYPE_PHYSICS") ||
(daqEventTypeString == "Physics trigger")) {
return DAQ_EVENT_TYPE_PHYSICS;
}
if ((daqEventTypeString == "CALIBRATION") || (daqEventTypeString == "DAQ_EVENT_TYPE_CALIBRATION") ||
(daqEventTypeString == "Calibration trigger")) {
return DAQ_EVENT_TYPE_CALIBRATION;
}
if ((daqEventTypeString == "TEST") || (daqEventTypeString == "DAQ_EVENT_TYPE_TEST") ||
(daqEventTypeString == "Test trigger")) {
return DAQ_EVENT_TYPE_TEST;
}
if ((daqEventTypeString == "TECHNICAL") || (daqEventTypeString == "DAQ_EVENT_TYPE_TECHNICAL") ||
(daqEventTypeString == "Technical trigger")) {
return DAQ_EVENT_TYPE_TECHNICAL;
}
if ((daqEventTypeString == "SIMULATED") || (daqEventTypeString == "DAQ_EVENT_TYPE_SIMULATED") ||
(daqEventTypeString == "Simulated trigger")) {
return DAQ_EVENT_TYPE_SIMULATED;
}
if ((daqEventTypeString == "TRACED") || (daqEventTypeString == "DAQ_EVENT_TYPE_TRACED") ||
(daqEventTypeString == "Traced event")) {
return DAQ_EVENT_TYPE_TRACED;
}
if ((daqEventTypeString == "ERROR") || (daqEventTypeString == "DAQ_EVENT_TYPE_ERROR") ||
(daqEventTypeString == "Error")) {
return DAQ_EVENT_TYPE_ERROR;
}
//if it was none of the above then return invalid
return DAQ_EVENT_TYPE_INVALID;
}
void FEDStatusRegister::printFlags(std::ostream& os) const {
if (slinkFullFlag())
os << "SLINK_FULL ";
if (trackerHeaderMonitorDataReadyFlag())
os << "HEADER_MONITOR_READY ";
if (qdrMemoryFullFlag())
os << "QDR_FULL ";
if (qdrMemoryPartialFullFlag())
os << "QDR_PARTIAL_FULL ";
if (qdrMemoryEmptyFlag())
os << "QDR_EMPTY ";
if (l1aBxFIFOFullFlag())
os << "L1A_FULL ";
if (l1aBxFIFOPartialFullFlag())
os << "L1A_PARTIAL_FULL ";
if (l1aBxFIFOEmptyFlag())
os << "L1A_EMPTY ";
for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
if (feDataMissingFlag(iFE))
os << "FEUNIT" << uint16_t(iFE) << "MISSING ";
}
}
FEDBufferState FEDStatusRegister::qdrMemoryState() const {
uint8_t result(0x00);
if (qdrMemoryFullFlag())
result |= BUFFER_STATE_FULL;
if (qdrMemoryPartialFullFlag())
result |= BUFFER_STATE_PARTIAL_FULL;
if (qdrMemoryEmptyFlag())
result |= BUFFER_STATE_EMPTY;
return FEDBufferState(result);
}
FEDBufferState FEDStatusRegister::l1aBxFIFOState() const {
uint8_t result(0x00);
if (l1aBxFIFOFullFlag())
result |= BUFFER_STATE_FULL;
if (l1aBxFIFOPartialFullFlag())
result |= BUFFER_STATE_PARTIAL_FULL;
if (l1aBxFIFOEmptyFlag())
result |= BUFFER_STATE_EMPTY;
return FEDBufferState(result);
}
void FEDStatusRegister::setBit(const uint8_t num, const bool bitSet) {
const uint16_t mask = (0x0001 << num);
if (bitSet)
data_ |= mask;
else
data_ &= (~mask);
}
FEDStatusRegister& FEDStatusRegister::setQDRMemoryBufferState(const FEDBufferState state) {
switch (state) {
case BUFFER_STATE_FULL:
case BUFFER_STATE_PARTIAL_FULL:
case BUFFER_STATE_EMPTY:
case BUFFER_STATE_UNSET:
break;
default:
std::ostringstream ss;
ss << "Invalid buffer state: ";
printHex(&state, 1, ss);
throw cms::Exception("FEDBuffer") << ss.str();
}
setQDRMemoryFullFlag(state & BUFFER_STATE_FULL);
setQDRMemoryPartialFullFlag(state & BUFFER_STATE_PARTIAL_FULL);
setQDRMemoryEmptyFlag(state & BUFFER_STATE_EMPTY);
return *this;
}
FEDStatusRegister& FEDStatusRegister::setL1ABXFIFOBufferState(const FEDBufferState state) {
switch (state) {
case BUFFER_STATE_FULL:
case BUFFER_STATE_PARTIAL_FULL:
case BUFFER_STATE_EMPTY:
case BUFFER_STATE_UNSET:
break;
default:
std::ostringstream ss;
ss << "Invalid buffer state: ";
printHex(&state, 1, ss);
throw cms::Exception("FEDBuffer") << ss.str();
}
setL1ABXFIFOFullFlag(state & BUFFER_STATE_FULL);
setL1ABXFIFOPartialFullFlag(state & BUFFER_STATE_PARTIAL_FULL);
setL1ABXFIFOEmptyFlag(state & BUFFER_STATE_EMPTY);
return *this;
}
void FEDBackendStatusRegister::printFlags(std::ostream& os) const {
if (internalFreezeFlag())
os << "INTERNAL_FREEZE ";
if (slinkDownFlag())
os << "SLINK_DOWN ";
if (slinkFullFlag())
os << "SLINK_FULL ";
if (backpressureFlag())
os << "BACKPRESSURE ";
if (ttcReadyFlag())
os << "TTC_READY ";
if (trackerHeaderMonitorDataReadyFlag())
os << "HEADER_MONITOR_READY ";
printFlagsForBuffer(qdrMemoryState(), "QDR", os);
printFlagsForBuffer(frameAddressFIFOState(), "FRAME_ADDRESS", os);
printFlagsForBuffer(totalLengthFIFOState(), "TOTAL_LENGTH", os);
printFlagsForBuffer(trackerHeaderFIFOState(), "TRACKER_HEADER", os);
printFlagsForBuffer(l1aBxFIFOState(), "L1ABX", os);
printFlagsForBuffer(feEventLengthFIFOState(), "FE_LENGTH", os);
printFlagsForBuffer(feFPGABufferState(), "FE", os);
}
void FEDBackendStatusRegister::printFlagsForBuffer(const FEDBufferState bufferState,
const std::string name,
std::ostream& os) const {
if (bufferState & BUFFER_STATE_EMPTY)
os << name << "_EMPTY ";
if (bufferState & BUFFER_STATE_PARTIAL_FULL)
os << name << "_PARTIAL_FULL ";
if (bufferState & BUFFER_STATE_FULL)
os << name << "_FULL ";
if (bufferState == BUFFER_STATE_UNSET)
os << name << "_UNSET ";
}
FEDBufferState FEDBackendStatusRegister::getBufferState(const uint8_t bufferPosition) const {
uint8_t result = 0x00;
if (getBit(bufferPosition + STATE_OFFSET_EMPTY))
result |= BUFFER_STATE_EMPTY;
if (getBit(bufferPosition + STATE_OFFSET_PARTIAL_FULL))
result |= BUFFER_STATE_PARTIAL_FULL;
if (getBit(bufferPosition + STATE_OFFSET_FULL))
result |= BUFFER_STATE_FULL;
return FEDBufferState(result);
}
void FEDBackendStatusRegister::setBufferSate(const uint8_t bufferPosition, const FEDBufferState state) {
switch (state) {
case BUFFER_STATE_FULL:
case BUFFER_STATE_PARTIAL_FULL:
case BUFFER_STATE_EMPTY:
case BUFFER_STATE_UNSET:
break;
default:
std::ostringstream ss;
ss << "Invalid buffer state: ";
printHex(&state, 1, ss);
throw cms::Exception("FEDBuffer") << ss.str();
}
setBit(bufferPosition + STATE_OFFSET_EMPTY, state & BUFFER_STATE_EMPTY);
setBit(bufferPosition + STATE_OFFSET_PARTIAL_FULL, state & BUFFER_STATE_PARTIAL_FULL);
setBit(bufferPosition + STATE_OFFSET_FULL, state & BUFFER_STATE_FULL);
}
void FEDBackendStatusRegister::setBit(const uint8_t num, const bool bitSet) {
const uint32_t mask = (0x00000001 << num);
if (bitSet)
data_ |= mask;
else
data_ &= (~mask);
}
FEDBackendStatusRegister::FEDBackendStatusRegister(const FEDBufferState qdrMemoryBufferState,
const FEDBufferState frameAddressFIFOBufferState,
const FEDBufferState totalLengthFIFOBufferState,
const FEDBufferState trackerHeaderFIFOBufferState,
const FEDBufferState l1aBxFIFOBufferState,
const FEDBufferState feEventLengthFIFOBufferState,
const FEDBufferState feFPGABufferState,
const bool backpressure,
const bool slinkFull,
const bool slinkDown,
const bool internalFreeze,
const bool trackerHeaderMonitorDataReady,
const bool ttcReady)
: data_(0) {
setInternalFreezeFlag(internalFreeze);
setSLinkDownFlag(slinkDown);
setSLinkFullFlag(slinkFull);
setBackpressureFlag(backpressure);
setTTCReadyFlag(ttcReady);
setTrackerHeaderMonitorDataReadyFlag(trackerHeaderMonitorDataReady);
setQDRMemoryState(qdrMemoryBufferState);
setFrameAddressFIFOState(frameAddressFIFOBufferState);
setTotalLengthFIFOState(totalLengthFIFOBufferState);
setTrackerHeaderFIFOState(trackerHeaderFIFOBufferState);
setL1ABXFIFOState(l1aBxFIFOBufferState);
setFEEventLengthFIFOState(feEventLengthFIFOBufferState);
setFEFPGABufferState(feFPGABufferState);
}
TrackerSpecialHeader::TrackerSpecialHeader(const uint8_t* headerPointer) {
//the buffer format byte is one of the valid values if we assume the buffer is not swapped
const bool validFormatByteWhenNotWordSwapped = ((headerPointer[BUFFERFORMAT] == BUFFER_FORMAT_CODE_NEW) ||
(headerPointer[BUFFERFORMAT] == BUFFER_FORMAT_CODE_OLD));
//the buffer format byte is the old value if we assume the buffer is swapped
const bool validFormatByteWhenWordSwapped = (headerPointer[BUFFERFORMAT ^ 4] == BUFFER_FORMAT_CODE_OLD);
//if the buffer format byte is valid if the buffer is not swapped or it is never valid
if (validFormatByteWhenNotWordSwapped || (!validFormatByteWhenNotWordSwapped && !validFormatByteWhenWordSwapped)) {
memcpy(specialHeader_, headerPointer, 8);
wordSwapped_ = false;
} else {
memcpy(specialHeader_, headerPointer + 4, 4);
memcpy(specialHeader_ + 4, headerPointer, 4);
wordSwapped_ = true;
}
}
FEDBufferFormat TrackerSpecialHeader::bufferFormat() const {
if (bufferFormatByte() == BUFFER_FORMAT_CODE_NEW)
return BUFFER_FORMAT_NEW;
else if (bufferFormatByte() == BUFFER_FORMAT_CODE_OLD) {
if (wordSwapped_)
return BUFFER_FORMAT_OLD_VME;
else
return BUFFER_FORMAT_OLD_SLINK;
} else
return BUFFER_FORMAT_INVALID;
}
FEDLegacyReadoutMode TrackerSpecialHeader::legacyReadoutMode() const {
const uint8_t eventTypeNibble = trackerEventTypeNibble();
const uint8_t mode = (eventTypeNibble & 0xF);
switch (mode) {
case READOUT_MODE_LEGACY_VIRGIN_RAW_REAL:
case READOUT_MODE_LEGACY_VIRGIN_RAW_FAKE:
case READOUT_MODE_LEGACY_PROC_RAW_REAL:
case READOUT_MODE_LEGACY_PROC_RAW_FAKE:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_REAL:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_FAKE:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_REAL:
case READOUT_MODE_LEGACY_ZERO_SUPPRESSED_LITE_FAKE:
return FEDLegacyReadoutMode(mode);
default:
return READOUT_MODE_LEGACY_INVALID;
}
}
TrackerSpecialHeader& TrackerSpecialHeader::setBufferFormat(const FEDBufferFormat newBufferFormat) {
//check if order in buffer is different
if (((bufferFormat() == BUFFER_FORMAT_OLD_VME) && (newBufferFormat != BUFFER_FORMAT_OLD_VME)) ||
((bufferFormat() != BUFFER_FORMAT_OLD_VME) && (newBufferFormat == BUFFER_FORMAT_OLD_VME))) {
wordSwapped_ = !wordSwapped_;
}
//set appropriate code
setBufferFormatByte(newBufferFormat);
return *this;
}
void TrackerSpecialHeader::setBufferFormatByte(const FEDBufferFormat newBufferFormat) {
switch (newBufferFormat) {
case BUFFER_FORMAT_OLD_VME:
case BUFFER_FORMAT_OLD_SLINK:
specialHeader_[BUFFERFORMAT] = BUFFER_FORMAT_CODE_OLD;
break;
case BUFFER_FORMAT_NEW:
specialHeader_[BUFFERFORMAT] = BUFFER_FORMAT_CODE_NEW;
break;
default:
std::ostringstream ss;
ss << "Invalid buffer format: ";
printHex(&newBufferFormat, 1, ss);
throw cms::Exception("FEDBuffer") << ss.str();
}
}
TrackerSpecialHeader& TrackerSpecialHeader::setHeaderType(const FEDHeaderType headerType) {
switch (headerType) {
case HEADER_TYPE_FULL_DEBUG:
case HEADER_TYPE_APV_ERROR:
case HEADER_TYPE_NONE:
setHeaderTypeNibble(headerType);
return *this;
default:
std::ostringstream ss;
ss << "Invalid header type: ";
printHex(&headerType, 1, ss);
throw cms::Exception("FEDBuffer") << ss.str();
}
}
TrackerSpecialHeader& TrackerSpecialHeader::setReadoutMode(const FEDReadoutMode readoutMode) {
switch (readoutMode) {
case READOUT_MODE_SCOPE:
case READOUT_MODE_VIRGIN_RAW:
case READOUT_MODE_PROC_RAW:
case READOUT_MODE_SPY:
case READOUT_MODE_ZERO_SUPPRESSED:
case READOUT_MODE_ZERO_SUPPRESSED_FAKE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
case READOUT_MODE_PREMIX_RAW:
setReadoutModeBits(readoutMode);
break;
default:
std::ostringstream ss;
ss << "Invalid readout mode: ";
printHex(&readoutMode, 1, ss);
throw cms::Exception("FEDBuffer") << ss.str();
}
return *this;
}
TrackerSpecialHeader& TrackerSpecialHeader::setAPVAddressErrorForFEUnit(const uint8_t internalFEUnitNum,
const bool error) {
const uint8_t mask = 0x1 << internalFEUnitNum;
const uint8_t result = ((apvAddressErrorRegister() & (~mask)) | (error ? mask : 0x00));
setAPVEAddressErrorRegister(result);
return *this;
}
TrackerSpecialHeader& TrackerSpecialHeader::setFEEnableForFEUnit(const uint8_t internalFEUnitNum,
const bool enabled) {
const uint8_t mask = 0x1 << internalFEUnitNum;
const uint8_t result = ((feEnableRegister() & (~mask)) | (enabled ? mask : 0x00));
setFEEnableRegister(result);
return *this;
}
TrackerSpecialHeader& TrackerSpecialHeader::setFEOverflowForFEUnit(const uint8_t internalFEUnitNum,
const bool overflow) {
const uint8_t mask = 0x1 << internalFEUnitNum;
const uint8_t result = ((feOverflowRegister() & (~mask)) | (overflow ? mask : 0x00));
setFEEnableRegister(result);
return *this;
}
TrackerSpecialHeader::TrackerSpecialHeader(const FEDBufferFormat bufferFormat,
const FEDReadoutMode readoutMode,
const FEDHeaderType headerType,
const uint8_t address,
const uint8_t addressErrorRegister,
const uint8_t feEnableRegister,
const uint8_t feOverflowRegister,
const FEDStatusRegister fedStatusRegister) {
memset(specialHeader_, 0x00, 8);
//determine if order is swapped in real buffer
wordSwapped_ = (bufferFormat == BUFFER_FORMAT_OLD_VME);
//set fields
setBufferFormatByte(bufferFormat);
setReadoutMode(readoutMode);
setHeaderType(headerType);
setAPVEAddress(address);
setAPVEAddressErrorRegister(addressErrorRegister);
setFEEnableRegister(feEnableRegister);
setFEOverflowRegister(feOverflowRegister);
setFEDStatusRegister(fedStatusRegister);
}
FEDDAQEventType FEDDAQHeader::eventType() const {
switch (eventTypeNibble()) {
case DAQ_EVENT_TYPE_PHYSICS:
case DAQ_EVENT_TYPE_CALIBRATION:
case DAQ_EVENT_TYPE_TEST:
case DAQ_EVENT_TYPE_TECHNICAL:
case DAQ_EVENT_TYPE_SIMULATED:
case DAQ_EVENT_TYPE_TRACED:
case DAQ_EVENT_TYPE_ERROR:
return FEDDAQEventType(eventTypeNibble());
default:
return DAQ_EVENT_TYPE_INVALID;
}
}
FEDDAQHeader& FEDDAQHeader::setEventType(const FEDDAQEventType evtType) {
header_[7] = ((header_[7] & 0xF0) | evtType);
return *this;
}
FEDDAQHeader& FEDDAQHeader::setL1ID(const uint32_t l1ID) {
header_[4] = (l1ID & 0x000000FF);
header_[5] = ((l1ID & 0x0000FF00) >> 8);
header_[6] = ((l1ID & 0x00FF0000) >> 16);
return *this;
}
FEDDAQHeader& FEDDAQHeader::setBXID(const uint16_t bxID) {
header_[3] = ((bxID & 0x0FF0) >> 4);
header_[2] = ((header_[2] & 0x0F) | ((bxID & 0x000F) << 4));
return *this;
}
FEDDAQHeader& FEDDAQHeader::setSourceID(const uint16_t sourceID) {
header_[2] = ((header_[2] & 0xF0) | ((sourceID & 0x0F00) >> 8));
header_[1] = (sourceID & 0x00FF);
return *this;
}
FEDDAQHeader::FEDDAQHeader(const uint32_t l1ID,
const uint16_t bxID,
const uint16_t sourceID,
const FEDDAQEventType evtType) {
//clear everything (FOV,H,x,$ all set to 0)
memset(header_, 0x0, 8);
//set the BoE nibble to indicate this is the last fragment
header_[7] = 0x50;
//set variable fields vith values supplied
setEventType(evtType);
setL1ID(l1ID);
setBXID(bxID);
setSourceID(sourceID);
}
FEDTTSBits FEDDAQTrailer::ttsBits() const {
switch (ttsNibble()) {
case TTS_DISCONNECTED0:
case TTS_WARN_OVERFLOW:
case TTS_OUT_OF_SYNC:
case TTS_BUSY:
case TTS_READY:
case TTS_ERROR:
case TTS_DISCONNECTED1:
return FEDTTSBits(ttsNibble());
default:
return TTS_INVALID;
}
}
FEDDAQTrailer::FEDDAQTrailer(const uint32_t eventLengthIn64BitWords,
const uint16_t crc,
const FEDTTSBits ttsBits,
const bool slinkTransmissionError,
const bool badFEDID,
const bool slinkCRCError,
const uint8_t eventStatusNibble) {
//clear everything (T,x,$ all set to 0)
memset(trailer_, 0x0, 8);
//set the EoE nibble to indicate this is the last fragment
trailer_[7] = 0xA0;
//set variable fields vith values supplied
setEventLengthIn64BitWords(eventLengthIn64BitWords);
setEventStatusNibble(eventStatusNibble);
setTTSBits(ttsBits);
setCRC(crc);
setSLinkTransmissionErrorBit(slinkTransmissionError);
setBadSourceIDBit(badFEDID);
setSLinkCRCErrorBit(slinkCRCError);
}
FEDDAQTrailer& FEDDAQTrailer::setEventLengthIn64BitWords(const uint32_t eventLengthIn64BitWords) {
trailer_[4] = (eventLengthIn64BitWords & 0x000000FF);
trailer_[5] = ((eventLengthIn64BitWords & 0x0000FF00) >> 8);
trailer_[6] = ((eventLengthIn64BitWords & 0x00FF0000) >> 16);
return *this;
}
FEDDAQTrailer& FEDDAQTrailer::setCRC(const uint16_t crc) {
trailer_[2] = (crc & 0x00FF);
trailer_[3] = ((crc >> 8) & 0x00FF);
return *this;
}
FEDDAQTrailer& FEDDAQTrailer::setSLinkTransmissionErrorBit(const bool bitSet) {
if (bitSet)
trailer_[1] |= 0x80;
else
trailer_[1] &= (~0x80);
return *this;
}
FEDDAQTrailer& FEDDAQTrailer::setBadSourceIDBit(const bool bitSet) {
if (bitSet)
trailer_[1] |= 0x40;
else
trailer_[1] &= (~0x40);
return *this;
}
FEDDAQTrailer& FEDDAQTrailer::setSLinkCRCErrorBit(const bool bitSet) {
if (bitSet)
trailer_[0] |= 0x04;
else
trailer_[0] &= (~0x40);
return *this;
}
FEDDAQTrailer& FEDDAQTrailer::setEventStatusNibble(const uint8_t eventStatusNibble) {
trailer_[1] = ((trailer_[1] & 0xF0) | (eventStatusNibble & 0x0F));
return *this;
}
FEDDAQTrailer& FEDDAQTrailer::setTTSBits(const FEDTTSBits ttsBits) {
trailer_[0] = ((trailer_[0] & 0x0F) | (ttsBits & 0xF0));
return *this;
}
FEDAPVErrorHeader::~FEDAPVErrorHeader() {}
size_t FEDAPVErrorHeader::lengthInBytes() const { return APV_ERROR_HEADER_SIZE_IN_BYTES; }
void FEDAPVErrorHeader::print(std::ostream& os) const { printHex(header_, APV_ERROR_HEADER_SIZE_IN_BYTES, os); }
FEDAPVErrorHeader* FEDAPVErrorHeader::clone() const { return new FEDAPVErrorHeader(*this); }
bool FEDAPVErrorHeader::checkStatusBits(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const {
//3 bytes per FE unit, channel order is reversed in FE unit data, 2 bits per channel
const uint16_t bitNumber = (internalFEDChannelNum / FEDCH_PER_FEUNIT) * 24 +
(FEDCH_PER_FEUNIT - 1 - (internalFEDChannelNum % FEDCH_PER_FEUNIT)) * 2 + apvNum;
//bit high means no error
return (header_[bitNumber / 8] & (0x01 << (bitNumber % 8)));
}
bool FEDAPVErrorHeader::checkChannelStatusBits(const uint8_t internalFEDChannelNum) const {
return (checkStatusBits(internalFEDChannelNum, 0) && checkStatusBits(internalFEDChannelNum, 1));
}
const uint8_t* FEDAPVErrorHeader::data() const { return header_; }
FEDAPVErrorHeader::FEDAPVErrorHeader(const std::vector<bool>& apvsGood) {
memset(header_, 0x00, APV_ERROR_HEADER_SIZE_IN_BYTES);
for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
setAPVStatusBit(iCh, 0, apvsGood[iCh * 2]);
setAPVStatusBit(iCh, 1, apvsGood[iCh * 2 + 1]);
}
}
FEDAPVErrorHeader& FEDAPVErrorHeader::setAPVStatusBit(const uint8_t internalFEDChannelNum,
const uint8_t apvNum,
const bool apvGood) {
//3 bytes per FE unit, channel order is reversed in FE unit data, 2 bits per channel
const uint16_t bitNumber = (internalFEDChannelNum / FEDCH_PER_FED) * 24 +
(FEDCH_PER_FED - 1 - (internalFEDChannelNum % FEDCH_PER_FED)) * 2 + apvNum;
const uint8_t byteNumber = bitNumber / 8;
const uint8_t bitInByte = bitNumber % 8;
const uint8_t mask = (0x01 << bitInByte);
header_[byteNumber] = ((header_[byteNumber] & (~mask)) | (apvGood ? mask : 0x00));
return *this;
}
void FEDAPVErrorHeader::setChannelStatus(const uint8_t internalFEDChannelNum, const FEDChannelStatus status) {
//if channel is unlocked then set both APV bits bad
if ((!(status & CHANNEL_STATUS_LOCKED)) || (!(status & CHANNEL_STATUS_IN_SYNC))) {
setAPVStatusBit(internalFEDChannelNum, 0, false);
setAPVStatusBit(internalFEDChannelNum, 1, false);
return;
} else {
if ((status & CHANNEL_STATUS_APV0_ADDRESS_GOOD) && (status & CHANNEL_STATUS_APV0_NO_ERROR_BIT)) {
setAPVStatusBit(internalFEDChannelNum, 0, true);
} else {
setAPVStatusBit(internalFEDChannelNum, 0, false);
}
if ((status & CHANNEL_STATUS_APV1_ADDRESS_GOOD) && (status & CHANNEL_STATUS_APV1_NO_ERROR_BIT)) {
setAPVStatusBit(internalFEDChannelNum, 1, true);
} else {
setAPVStatusBit(internalFEDChannelNum, 1, false);
}
}
}
//These methods do nothing as the values in question are in present in the APV Error header.
//The methods exist so that users of the base class can set the values without caring which type of header they have and so if they are needed.
void FEDAPVErrorHeader::setFEUnitMajorityAddress(const uint8_t internalFEUnitNum, const uint8_t address) { return; }
void FEDAPVErrorHeader::setBEStatusRegister(const FEDBackendStatusRegister beStatusRegister) { return; }
void FEDAPVErrorHeader::setDAQRegister(const uint32_t daqRegister) { return; }
void FEDAPVErrorHeader::setDAQRegister2(const uint32_t daqRegister2) { return; }
void FEDAPVErrorHeader::set32BitReservedRegister(const uint8_t internalFEUnitNum, const uint32_t reservedRegister) {
return;
}
void FEDAPVErrorHeader::setFEUnitLength(const uint8_t internalFEUnitNum, const uint16_t length) { return; }
FEDFullDebugHeader::~FEDFullDebugHeader() {}
size_t FEDFullDebugHeader::lengthInBytes() const { return FULL_DEBUG_HEADER_SIZE_IN_BYTES; }
void FEDFullDebugHeader::print(std::ostream& os) const { printHex(header_, FULL_DEBUG_HEADER_SIZE_IN_BYTES, os); }
FEDFullDebugHeader* FEDFullDebugHeader::clone() const { return new FEDFullDebugHeader(*this); }
bool FEDFullDebugHeader::checkStatusBits(const uint8_t internalFEDChannelNum, const uint8_t apvNum) const {
return (!unlockedFromBit(internalFEDChannelNum) && !outOfSyncFromBit(internalFEDChannelNum) &&
!apvError(internalFEDChannelNum, apvNum) && !apvAddressError(internalFEDChannelNum, apvNum));
}
bool FEDFullDebugHeader::checkChannelStatusBits(const uint8_t internalFEDChannelNum) const {
//return ( !unlockedFromBit(internalFEDChannelNum) &&
// !outOfSyncFromBit(internalFEDChannelNum) &&
// !apvErrorFromBit(internalFEDChannelNum,0) &&
// !apvAddressErrorFromBit(internalFEDChannelNum,0) &&
// !apvErrorFromBit(internalFEDChannelNum,1) &&
// !apvAddressErrorFromBit(internalFEDChannelNum,1) );
return (getChannelStatus(internalFEDChannelNum) == CHANNEL_STATUS_NO_PROBLEMS);
}
FEDChannelStatus FEDFullDebugHeader::getChannelStatus(const uint8_t internalFEDChannelNum) const {
const uint8_t* pFEWord = feWord(internalFEDChannelNum / FEDCH_PER_FEUNIT);
const uint8_t feUnitChanNum = internalFEDChannelNum % FEDCH_PER_FEUNIT;
const uint8_t startByteInFEWord = (FEDCH_PER_FEUNIT - 1 - feUnitChanNum) * 6 / 8;
switch ((FEDCH_PER_FEUNIT - 1 - feUnitChanNum) % 4) {
case 0:
return FEDChannelStatus(pFEWord[startByteInFEWord] & 0x3F);
case 1:
return FEDChannelStatus(((pFEWord[startByteInFEWord] & 0xC0) >> 6) |
((pFEWord[startByteInFEWord + 1] & 0x0F) << 2));
case 2:
return FEDChannelStatus(((pFEWord[startByteInFEWord] & 0xF0) >> 4) |
((pFEWord[startByteInFEWord + 1] & 0x03) << 4));
case 3:
return FEDChannelStatus((pFEWord[startByteInFEWord] & 0xFC) >> 2);
//stop compiler warning
default:
return FEDChannelStatus(0);
}
/*const uint8_t feUnitChanNum = internalFEDChannelNum / FEDCH_PER_FEUNIT;
const uint8_t* pFEWord = feWord(feUnitChanNum);
const uint8_t startByteInFEWord = feUnitChanNum * 3 / 4;
//const uint8_t shift = ( 6 - ((feUnitChanNum-1)%4) );
//const uint16_t mask = ( 0x003F << shift );
//uint8_t result = ( (pFEWord[startByteInFEWord] & (mask&0x00FF)) >> shift );
//result |= ( (pFEWord[startByteInFEWord+1] & (mask>>8)) << (8-shift) );
switch (feUnitChanNum % 4) {
case 0:
return FEDChannelStatus( pFEWord[startByteInFEWord] & 0x3F );
case 1:
return FEDChannelStatus( ((pFEWord[startByteInFEWord] & 0xC0) >> 6) | ((pFEWord[startByteInFEWord+1] & 0x0F) << 2) );
case 2:
return FEDChannelStatus( ((pFEWord[startByteInFEWord] & 0xF0) >> 4) | ((pFEWord[startByteInFEWord+1] & 0x03) << 4) );
case 3:
return FEDChannelStatus( (pFEWord[startByteInFEWord] & 0xFC) >> 2 );
//stop compiler warning
default:
return FEDChannelStatus(0);
}*/
}
const uint8_t* FEDFullDebugHeader::data() const { return header_; }
FEDFullDebugHeader::FEDFullDebugHeader(const std::vector<uint16_t>& feUnitLengths,
const std::vector<uint8_t>& feMajorityAddresses,
const std::vector<FEDChannelStatus>& channelStatus,
const FEDBackendStatusRegister beStatusRegister,
const uint32_t daqRegister,
const uint32_t daqRegister2) {
memset(header_, 0x00, FULL_DEBUG_HEADER_SIZE_IN_BYTES);
setBEStatusRegister(beStatusRegister);
setDAQRegister(daqRegister);
setDAQRegister2(daqRegister2);
for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
setFEUnitLength(iFE, feUnitLengths[iFE]);
setFEUnitMajorityAddress(iFE, feMajorityAddresses[iFE]);
}
for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
setChannelStatus(iCh, channelStatus[iCh]);
}
}
void FEDFullDebugHeader::setChannelStatus(const uint8_t internalFEDChannelNum, const FEDChannelStatus status) {
setUnlocked(internalFEDChannelNum, !(status & CHANNEL_STATUS_LOCKED));
setOutOfSync(internalFEDChannelNum, !(status & CHANNEL_STATUS_IN_SYNC));
setAPVAddressError(internalFEDChannelNum, 1, !(status & CHANNEL_STATUS_APV1_ADDRESS_GOOD));
setAPVAddressError(internalFEDChannelNum, 0, !(status & CHANNEL_STATUS_APV0_ADDRESS_GOOD));
setAPVError(internalFEDChannelNum, 1, !(status & CHANNEL_STATUS_APV1_NO_ERROR_BIT));
setAPVError(internalFEDChannelNum, 0, !(status & CHANNEL_STATUS_APV0_NO_ERROR_BIT));
}
void FEDFullDebugHeader::setFEUnitMajorityAddress(const uint8_t internalFEUnitNum, const uint8_t address) {
feWord(internalFEUnitNum)[9] = address;
}
void FEDFullDebugHeader::setBEStatusRegister(const FEDBackendStatusRegister beStatusRegister) {
set32BitWordAt(feWord(0) + 10, beStatusRegister);
}
void FEDFullDebugHeader::setDAQRegister(const uint32_t daqRegister) { set32BitWordAt(feWord(7) + 10, daqRegister); }
void FEDFullDebugHeader::setDAQRegister2(const uint32_t daqRegister2) {
set32BitWordAt(feWord(6) + 10, daqRegister2);
}
//used by DigiToRaw to copy reserved registers in internalFEUnit buffers 1 through 5
void FEDFullDebugHeader::set32BitReservedRegister(const uint8_t internalFEUnitNum, const uint32_t reservedRegister) {
set32BitWordAt(feWord(internalFEUnitNum) + 10, reservedRegister);
}
void FEDFullDebugHeader::setFEUnitLength(const uint8_t internalFEUnitNum, const uint16_t length) {
feWord(internalFEUnitNum)[15] = ((length & 0xFF00) >> 8);
feWord(internalFEUnitNum)[14] = (length & 0x00FF);
}
void FEDFullDebugHeader::setBit(const uint8_t internalFEDChannelNum, const uint8_t bit, const bool value) {
const uint8_t bitInFeWord = (FEDCH_PER_FEUNIT - 1 - (internalFEDChannelNum % FEDCH_PER_FEUNIT)) * 6 + bit;
uint8_t& byte = *(feWord(internalFEDChannelNum / FEDCH_PER_FEUNIT) + (bitInFeWord / 8));
const uint8_t mask = (0x1 << bitInFeWord % 8);
byte = ((byte & (~mask)) | (value ? mask : 0x0));
}
FEDFEHeader::~FEDFEHeader() {}
FEDBufferBase::FEDBufferBase(const FEDRawData& fedBuffer)
: channels_(FEDCH_PER_FED, FEDChannel(nullptr, 0, 0)),
originalBuffer_(fedBuffer.data()),
bufferSize_(fedBuffer.size()) {
init();
}
FEDBufferBase::FEDBufferBase(const FEDRawData& fedBuffer, const bool fillChannelVector)
: originalBuffer_(fedBuffer.data()), bufferSize_(fedBuffer.size()) {
init();
if (fillChannelVector)
channels_.assign(FEDCH_PER_FED, FEDChannel(nullptr, 0, 0));
}
void FEDBufferBase::init() {
//construct tracker special header using second 64 bit word
specialHeader_ = TrackerSpecialHeader(originalBuffer_ + 8);
//check the buffer format
const FEDBufferFormat bufferFormat = specialHeader_.bufferFormat();
//swap the buffer words so that the whole buffer is in slink ordering
if ((bufferFormat == BUFFER_FORMAT_OLD_VME) || (bufferFormat == BUFFER_FORMAT_NEW)) {
uint8_t* newBuffer = new uint8_t[bufferSize_];
const uint32_t* originalU32 = reinterpret_cast<const uint32_t*>(originalBuffer_);
const size_t sizeU32 = bufferSize_ / 4;
uint32_t* newU32 = reinterpret_cast<uint32_t*>(newBuffer);
if (bufferFormat == BUFFER_FORMAT_OLD_VME) {
//swap whole buffer
for (size_t i = 0; i < sizeU32; i += 2) {
newU32[i] = originalU32[i + 1];
newU32[i + 1] = originalU32[i];
}
}
if (bufferFormat == BUFFER_FORMAT_NEW) {
//copy DAQ header
memcpy(newU32, originalU32, 8);
//copy DAQ trailer
memcpy(newU32 + sizeU32 - 2, originalU32 + sizeU32 - 2, 8);
//swap the payload
for (size_t i = 2; i < sizeU32 - 2; i += 2) {
newU32[i] = originalU32[i + 1];
newU32[i + 1] = originalU32[i];
}
}
orderedBuffer_ = newBuffer;
} //if ( (bufferFormat == BUFFER_FORMAT_OLD_VME) || (bufferFormat == BUFFER_FORMAT_NEW) )
else {
orderedBuffer_ = originalBuffer_;
}
//construct header object at begining of buffer
daqHeader_ = FEDDAQHeader(orderedBuffer_);
//construct trailer object using last 64 bit word of buffer
daqTrailer_ = FEDDAQTrailer(orderedBuffer_ + bufferSize_ - 8);
}
FEDBufferBase::~FEDBufferBase() {
//if the buffer was coppied and swapped then delete the copy
if (orderedBuffer_ != originalBuffer_)
delete[] orderedBuffer_;
}
void FEDBufferBase::print(std::ostream& os) const {
os << "buffer format: " << bufferFormat() << std::endl;
os << "Buffer size: " << bufferSize() << " bytes" << std::endl;
os << "Event length from DAQ trailer: " << daqEventLengthInBytes() << " bytes" << std::endl;
os << "Source ID: " << daqSourceID() << std::endl;
os << "Header type: " << headerType() << std::endl;
os << "Readout mode: " << readoutMode() << std::endl;
os << "DAQ event type: " << daqEventType() << std::endl;
os << "TTS state: " << daqTTSState() << std::endl;
os << "L1 ID: " << daqLvl1ID() << std::endl;
os << "BX ID: " << daqBXID() << std::endl;
os << "FED status register flags: ";
fedStatusRegister().printFlags(os);
os << std::endl;
os << "APVe Address: " << uint16_t(apveAddress()) << std::endl;
os << "Enabled FE units: " << uint16_t(nFEUnitsEnabled()) << std::endl;
}
uint8_t FEDBufferBase::nFEUnitsEnabled() const {
uint8_t result = 0;
for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
if (feEnabled(iFE))
result++;
}
return result;
}
bool FEDBufferBase::checkSourceIDs() const {
return ((daqSourceID() >= FED_ID_MIN) && (daqSourceID() <= FED_ID_MAX));
}
bool FEDBufferBase::checkMajorityAddresses() const {
for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
if (!feEnabled(iFE))
continue;
if (majorityAddressErrorForFEUnit(iFE))
return false;
}
return true;
}
bool FEDBufferBase::channelGood(const uint8_t internalFEDChannelNum) const {
const uint8_t feUnit = internalFEDChannelNum / FEDCH_PER_FEUNIT;
return (!majorityAddressErrorForFEUnit(feUnit) && feEnabled(feUnit) && !feOverflow(feUnit));
}
std::string FEDBufferBase::checkSummary() const {
std::ostringstream summary;
summary << "Check buffer type valid: " << (checkBufferFormat() ? "passed" : "FAILED") << std::endl;
summary << "Check header format valid: " << (checkHeaderType() ? "passed" : "FAILED") << std::endl;
summary << "Check readout mode valid: " << (checkReadoutMode() ? "passed" : "FAILED") << std::endl;
//summary << "Check APVe address valid: " << ( checkAPVEAddressValid() ? "passed" : "FAILED" ) << std::endl;
summary << "Check FE unit majority addresses: " << (checkMajorityAddresses() ? "passed" : "FAILED") << std::endl;
if (!checkMajorityAddresses()) {
summary << "FEs with majority address error: ";
unsigned int badFEs = 0;
for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
if (!feEnabled(iFE))
continue;
if (majorityAddressErrorForFEUnit(iFE)) {
summary << uint16_t(iFE) << " ";
badFEs++;
}
}
summary << std::endl;
summary << "Number of FE Units with bad addresses: " << badFEs << std::endl;
}
summary << "Check for FE unit buffer overflows: " << (checkNoFEOverflows() ? "passed" : "FAILED") << std::endl;
if (!checkNoFEOverflows()) {
summary << "FEs which overflowed: ";
unsigned int badFEs = 0;
for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
if (feOverflow(iFE)) {
summary << uint16_t(iFE) << " ";
badFEs++;
}
}
summary << std::endl;
summary << "Number of FE Units which overflowed: " << badFEs << std::endl;
}
summary << "Check for S-Link CRC errors: " << (checkNoSlinkCRCError() ? "passed" : "FAILED") << std::endl;
summary << "Check for S-Link transmission error: " << (checkNoSLinkTransmissionError() ? "passed" : "FAILED")
<< std::endl;
summary << "Check CRC: " << (checkCRC() ? "passed" : "FAILED") << std::endl;
summary << "Check source ID is FED ID: " << (checkSourceIDs() ? "passed" : "FAILED") << std::endl;
summary << "Check for unexpected source ID at FRL: " << (checkNoUnexpectedSourceID() ? "passed" : "FAILED")
<< std::endl;
summary << "Check there are no extra headers or trailers: "
<< (checkNoExtraHeadersOrTrailers() ? "passed" : "FAILED") << std::endl;
summary << "Check length from trailer: " << (checkLengthFromTrailer() ? "passed" : "FAILED") << std::endl;
return summary.str();
}
} // namespace sistrip
|