Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
#include "EventFilter/SiStripRawToDigi/interface/SiStripFEDBufferGenerator.h"
#include "FWCore/Utilities/interface/Exception.h"
#include <cstring>
#include <stdexcept>
#include <cmath>

namespace sistrip {

  //FEDStripData

  FEDStripData::FEDStripData(bool dataIsAlreadyConvertedTo8Bit, const size_t samplesPerChannel)
      : data_(FEDCH_PER_FED, ChannelData(dataIsAlreadyConvertedTo8Bit, samplesPerChannel)) {
    if (samplesPerChannel > SCOPE_MODE_MAX_SCOPE_LENGTH) {
      std::ostringstream ss;
      ss << "Scope length " << samplesPerChannel << " is too long. "
         << "Max scope length is " << SCOPE_MODE_MAX_SCOPE_LENGTH << ".";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
  }

  const FEDStripData::ChannelData& FEDStripData::channel(const uint8_t internalFEDChannelNum) const {
    try {
      return data_.at(internalFEDChannelNum);
    } catch (const std::out_of_range&) {
      std::ostringstream ss;
      ss << "Channel index out of range. (" << uint16_t(internalFEDChannelNum) << ") "
         << "Index should be in internal numbering scheme (0-95). ";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
  }

  void FEDStripData::ChannelData::setSample(const uint16_t sampleNumber, const uint16_t value) {
    if (value > 0x3FF) {
      std::ostringstream ss;
      ss << "Sample value (" << value << ") is too large. Maximum allowed is 1023. ";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
    try {
      data_.at(sampleNumber) = value;
    } catch (const std::out_of_range&) {
      std::ostringstream ss;
      ss << "Sample index out of range. "
         << "Requesting sample " << sampleNumber << " when channel has only " << data_.size() << " samples.";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
  }

  //FEDBufferPayload

  FEDBufferPayload::FEDBufferPayload(const std::vector<std::vector<uint8_t> >& channelBuffers) {
    //calculate size of buffer and allocate enough memory
    uint32_t totalSize = 0;
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      for (uint8_t iCh = 0; iCh < FEDCH_PER_FEUNIT; iCh++) {
        totalSize += channelBuffers[iFE * FEDCH_PER_FEUNIT + iCh].size();
      }
      //if it does not finish on a 64Bit word boundary then take into account padding
      if (totalSize % 8) {
        totalSize = ((totalSize / 8) + 1) * 8;
      }
    }
    data_.resize(totalSize);
    size_t indexInBuffer = 0;
    feLengths_.reserve(FEUNITS_PER_FED);
    //copy channel data into buffer with padding and update lengths
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      const size_t lengthAtStartOfFEUnit = indexInBuffer;
      //insert data for FE unit
      for (uint8_t iCh = 0; iCh < FEDCH_PER_FEUNIT; iCh++) {
        appendToBuffer(&indexInBuffer,
                       channelBuffers[iFE * FEDCH_PER_FEUNIT + iCh].begin(),
                       channelBuffers[iFE * FEDCH_PER_FEUNIT + iCh].end());
      }
      //store length
      feLengths_.push_back(indexInBuffer - lengthAtStartOfFEUnit);
      //add padding
      while (indexInBuffer % 8)
        appendToBuffer(&indexInBuffer, 0);
    }
  }

  const uint8_t* FEDBufferPayload::data() const {
    //vectors are guarenteed to be contiguous
    if (lengthInBytes())
      return &data_[0];
    //return NULL if there is no data yet
    else
      return nullptr;
  }

  uint16_t FEDBufferPayload::getFELength(const uint8_t internalFEUnitNum) const {
    try {
      return feLengths_.at(internalFEUnitNum);
    } catch (const std::out_of_range&) {
      std::ostringstream ss;
      ss << "Invalid FE unit number " << internalFEUnitNum << ". "
         << "Number should be in internal numbering scheme (0-7). ";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
  }

  FEDBufferPayload FEDBufferPayloadCreator::createPayload(FEDReadoutMode mode,
                                                          uint8_t packetCode,
                                                          const FEDStripData& data) const {
    std::vector<std::vector<uint8_t> > channelBuffers(FEDCH_PER_FED, std::vector<uint8_t>());
    for (size_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
      if (!feUnitsEnabled_[iCh / FEDCH_PER_FEUNIT])
        continue;
      fillChannelBuffer(&channelBuffers[iCh], mode, packetCode, data.channel(iCh), channelsEnabled_[iCh]);
    }
    return FEDBufferPayload(channelBuffers);
  }

  void FEDBufferPayloadCreator::fillChannelBuffer(std::vector<uint8_t>* channelBuffer,
                                                  FEDReadoutMode mode,
                                                  uint8_t packetCode,
                                                  const FEDStripData::ChannelData& data,
                                                  const bool channelEnabled) const {
    switch (mode) {
      case READOUT_MODE_SCOPE:
        fillRawChannelBuffer(channelBuffer, PACKET_CODE_SCOPE, data, channelEnabled, false);
        break;
      case READOUT_MODE_VIRGIN_RAW:
        switch (packetCode) {
          case PACKET_CODE_VIRGIN_RAW:
            fillRawChannelBuffer(channelBuffer, PACKET_CODE_VIRGIN_RAW, data, channelEnabled, true);
            break;
          case PACKET_CODE_VIRGIN_RAW10:
            fillRawChannelBuffer(channelBuffer, PACKET_CODE_VIRGIN_RAW10, data, channelEnabled, true);
            break;
          case PACKET_CODE_VIRGIN_RAW8_BOTBOT:
            fillRawChannelBuffer(channelBuffer, PACKET_CODE_VIRGIN_RAW8_BOTBOT, data, channelEnabled, true);
            break;
          case PACKET_CODE_VIRGIN_RAW8_TOPBOT:
            fillRawChannelBuffer(channelBuffer, PACKET_CODE_VIRGIN_RAW8_TOPBOT, data, channelEnabled, true);
            break;
        }
        break;
      case READOUT_MODE_PROC_RAW:
        fillRawChannelBuffer(channelBuffer, PACKET_CODE_PROC_RAW, data, channelEnabled, false);
        break;
      case READOUT_MODE_ZERO_SUPPRESSED:
        //case READOUT_MODE_ZERO_SUPPRESSED_CMOVERRIDE:
        fillZeroSuppressedChannelBuffer(channelBuffer, packetCode, data, channelEnabled);
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
        fillZeroSuppressedLiteChannelBuffer(channelBuffer, data, channelEnabled, mode);
        break;
      case READOUT_MODE_PREMIX_RAW:
        fillPreMixRawChannelBuffer(channelBuffer, data, channelEnabled);
        break;
      default:
        std::ostringstream ss;
        ss << "Invalid readout mode " << mode;
        throw cms::Exception("FEDBufferGenerator") << ss.str();
        break;
    }
  }

  void FEDBufferPayloadCreator::fillRawChannelBuffer(std::vector<uint8_t>* channelBuffer,
                                                     const uint8_t packetCode,
                                                     const FEDStripData::ChannelData& data,
                                                     const bool channelEnabled,
                                                     const bool reorderData) const {
    const uint16_t nSamples = data.size();
    uint16_t channelLength = 0;
    switch (packetCode) {
      case PACKET_CODE_VIRGIN_RAW:
        channelLength = nSamples * 2 + 3;
        break;
      case PACKET_CODE_VIRGIN_RAW10:
        channelLength = std::ceil(nSamples * 1.25) + 3;
        break;
      case PACKET_CODE_VIRGIN_RAW8_BOTBOT:
      case PACKET_CODE_VIRGIN_RAW8_TOPBOT:
        channelLength = nSamples * 1 + 3;
        break;
    }
    channelBuffer->reserve(channelLength);
    //length (max length is 0xFFF)
    channelBuffer->push_back(channelLength & 0xFF);
    channelBuffer->push_back((channelLength & 0xF00) >> 8);
    //packet code
    channelBuffer->push_back(packetCode);
    //channel samples
    uint16_t sampleValue_pre = 0;
    for (uint16_t sampleNumber = 0; sampleNumber < nSamples; sampleNumber++) {
      const uint16_t sampleIndex =
          (reorderData ? FEDStripOrdering::physicalOrderForStripInChannel(sampleNumber) : sampleNumber);
      const uint16_t sampleValue = (channelEnabled ? data.getSample(sampleIndex) : 0);
      switch (packetCode) {
        case PACKET_CODE_VIRGIN_RAW:
          channelBuffer->push_back(sampleValue & 0xFF);
          channelBuffer->push_back((sampleValue & 0x300) >> 8);
          break;
        case PACKET_CODE_VIRGIN_RAW10:
          if (sampleNumber % 4 == 0) {
            channelBuffer->push_back((sampleValue & 0x3FC) >> 2);
          } else if (sampleNumber % 4 == 1) {
            channelBuffer->push_back(((sampleValue_pre & 0x3) << 6) | ((sampleValue & 0x3F0) >> 4));
          } else if (sampleNumber % 4 == 2) {
            channelBuffer->push_back(((sampleValue_pre & 0xF) << 4) | ((sampleValue & 0x3C0) >> 6));
          } else if (sampleNumber % 4 == 3) {
            channelBuffer->push_back(((sampleValue_pre & 0x3F) << 2) | ((sampleValue & 0x300) >> 8));
            channelBuffer->push_back(sampleValue & 0xFF);
          }
          sampleValue_pre = sampleValue;
          break;
        case PACKET_CODE_VIRGIN_RAW8_BOTBOT:
          channelBuffer->push_back((sampleValue & 0x3FC) >> 2);
          break;
        case PACKET_CODE_VIRGIN_RAW8_TOPBOT:
          channelBuffer->push_back((sampleValue & 0x1FE) >> 1);
          break;
      }
    }
  }

  void FEDBufferPayloadCreator::fillZeroSuppressedChannelBuffer(std::vector<uint8_t>* channelBuffer,
                                                                const uint8_t packetCode,
                                                                const FEDStripData::ChannelData& data,
                                                                const bool channelEnabled) const {
    channelBuffer->reserve(50);
    //if channel is disabled then create empty channel header and return
    if (!channelEnabled) {
      //min length 7
      channelBuffer->push_back(7);
      channelBuffer->push_back(0);
      //packet code
      channelBuffer->push_back(packetCode);
      //4 bytes of medians
      channelBuffer->insert(channelBuffer->end(), 4, 0);
      return;
    }
    //if channel is not empty
    //add space for channel length
    channelBuffer->push_back(0xFF);
    channelBuffer->push_back(0xFF);
    //packet code
    channelBuffer->push_back(packetCode);
    //add medians
    const std::pair<uint16_t, uint16_t> medians = data.getMedians();
    channelBuffer->push_back(medians.first & 0xFF);
    channelBuffer->push_back((medians.first & 0x300) >> 8);
    channelBuffer->push_back(medians.second & 0xFF);
    channelBuffer->push_back((medians.second & 0x300) >> 8);
    //clusters
    fillClusterData(channelBuffer, packetCode, data, READOUT_MODE_ZERO_SUPPRESSED);
    //set length
    const uint16_t length = channelBuffer->size();
    (*channelBuffer)[0] = (length & 0xFF);
    (*channelBuffer)[1] = ((length & 0x300) >> 8);
  }

  void FEDBufferPayloadCreator::fillZeroSuppressedLiteChannelBuffer(std::vector<uint8_t>* channelBuffer,
                                                                    const FEDStripData::ChannelData& data,
                                                                    const bool channelEnabled,
                                                                    const FEDReadoutMode mode) const {
    channelBuffer->reserve(50);
    //if channel is disabled then create empty channel header and return
    if (!channelEnabled) {
      //min length 2
      channelBuffer->push_back(2);
      channelBuffer->push_back(0);
      return;
    }
    //if channel is not empty
    //add space for channel length
    channelBuffer->push_back(0xFF);
    channelBuffer->push_back(0xFF);
    //clusters
    fillClusterData(channelBuffer, 0, data, mode);
    //set fibre length
    const uint16_t length = channelBuffer->size();
    (*channelBuffer)[0] = (length & 0xFF);
    (*channelBuffer)[1] = ((length & 0x300) >> 8);
  }

  void FEDBufferPayloadCreator::fillPreMixRawChannelBuffer(std::vector<uint8_t>* channelBuffer,
                                                           const FEDStripData::ChannelData& data,
                                                           const bool channelEnabled) const {
    channelBuffer->reserve(50);
    //if channel is disabled then create empty channel header and return
    if (!channelEnabled) {
      //min length 7
      channelBuffer->push_back(7);
      channelBuffer->push_back(0);
      //packet code
      channelBuffer->push_back(PACKET_CODE_ZERO_SUPPRESSED);
      //4 bytes of medians
      channelBuffer->insert(channelBuffer->end(), 4, 0);
      return;
    }
    //if channel is not empty
    //add space for channel length
    channelBuffer->push_back(0xFF);
    channelBuffer->push_back(0xFF);
    //packet code
    channelBuffer->push_back(PACKET_CODE_ZERO_SUPPRESSED);
    //add medians
    const std::pair<uint16_t, uint16_t> medians = data.getMedians();
    channelBuffer->push_back(medians.first & 0xFF);
    channelBuffer->push_back((medians.first & 0x300) >> 8);
    channelBuffer->push_back(medians.second & 0xFF);
    channelBuffer->push_back((medians.second & 0x300) >> 8);
    //clusters
    fillClusterDataPreMixMode(channelBuffer, data);
    //set length
    const uint16_t length = channelBuffer->size();
    (*channelBuffer)[0] = (length & 0xFF);
    (*channelBuffer)[1] = ((length & 0x300) >> 8);
  }

  void FEDBufferPayloadCreator::fillClusterData(std::vector<uint8_t>* channelBuffer,
                                                uint8_t packetCode,
                                                const FEDStripData::ChannelData& data,
                                                const FEDReadoutMode mode) const {
    // ZS lite: retrieve "packet code"
    switch (mode) {
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8:
        packetCode = PACKET_CODE_ZERO_SUPPRESSED;
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_TOPBOT_CMOVERRIDE:
        packetCode = PACKET_CODE_ZERO_SUPPRESSED8_TOPBOT;
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE8_BOTBOT_CMOVERRIDE:
        packetCode = PACKET_CODE_ZERO_SUPPRESSED8_BOTBOT;
        break;
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10:
      case READOUT_MODE_ZERO_SUPPRESSED_LITE10_CMOVERRIDE:
        packetCode = PACKET_CODE_ZERO_SUPPRESSED10;
        break;
      default:;
    }
    const bool is10Bit = (packetCode == PACKET_CODE_ZERO_SUPPRESSED10);
    const uint16_t bShift = (packetCode == PACKET_CODE_ZERO_SUPPRESSED8_BOTBOT
                                 ? 2
                                 : (packetCode == PACKET_CODE_ZERO_SUPPRESSED8_TOPBOT ? 1 : 0));

    uint16_t clusterSize = 0;  // counter
    std::size_t size_pos = 0;  // index of cluster size
    uint16_t adc_pre = 0;
    const uint16_t nSamples = data.size();
    for (uint16_t strip = 0; strip < nSamples; ++strip) {
      const uint16_t adc = is10Bit ? data.get10BitSample(strip) : data.get8BitSample(strip, bShift);
      if (adc) {
        if (clusterSize == 0 || strip == STRIPS_PER_APV) {
          if (clusterSize) {
            if (is10Bit && (clusterSize % 4)) {
              channelBuffer->push_back(adc_pre);
            }
            (*channelBuffer)[size_pos] = clusterSize;
            clusterSize = 0;
          }
          // cluster header: first strip and size
          channelBuffer->push_back(strip);
          size_pos = channelBuffer->size();
          channelBuffer->push_back(0);  // for clustersize
        }
        if (!is10Bit) {
          channelBuffer->push_back(adc & 0xFF);
        } else {
          if (clusterSize % 4 == 0) {
            channelBuffer->push_back((adc & 0x3FC) >> 2);
            adc_pre = ((adc & 0x3) << 6);
          } else if (clusterSize % 4 == 1) {
            channelBuffer->push_back(adc_pre | ((adc & 0x3F0) >> 4));
            adc_pre = ((adc & 0xF) << 4);
          } else if (clusterSize % 4 == 2) {
            channelBuffer->push_back(adc_pre | ((adc & 0x3C0) >> 6));
            adc_pre = ((adc & 0x3F) << 2);
          } else if (clusterSize % 4 == 3) {
            channelBuffer->push_back(adc_pre | ((adc & 0x300) >> 8));
            channelBuffer->push_back(adc & 0xFF);
            adc_pre = 0;
          }
        }
        ++clusterSize;
      } else if (clusterSize) {
        if (is10Bit && (clusterSize % 4)) {
          channelBuffer->push_back(adc_pre);
        }
        (*channelBuffer)[size_pos] = clusterSize;
        clusterSize = 0;
      }
    }
    if (clusterSize) {
      (*channelBuffer)[size_pos] = clusterSize;
      if (is10Bit && (clusterSize % 4)) {
        channelBuffer->push_back(adc_pre);
      }
    }
  }

  void FEDBufferPayloadCreator::fillClusterDataPreMixMode(std::vector<uint8_t>* channelBuffer,
                                                          const FEDStripData::ChannelData& data) const {
    uint16_t clusterSize = 0;
    const uint16_t nSamples = data.size();
    for (uint16_t strip = 0; strip < nSamples; ++strip) {
      const uint16_t adc = data.get10BitSample(strip);

      if (adc) {
        if (clusterSize == 0 || strip == STRIPS_PER_APV) {
          if (clusterSize) {
            *(channelBuffer->end() - 2 * clusterSize - 1) = clusterSize;
            clusterSize = 0;
          }
          channelBuffer->push_back(strip);
          channelBuffer->push_back(0);  //clustersize
        }
        channelBuffer->push_back(adc & 0xFF);
        channelBuffer->push_back((adc & 0x0300) >> 8);

        ++clusterSize;
      }

      else if (clusterSize) {
        *(channelBuffer->end() - 2 * clusterSize - 1) = clusterSize;
        clusterSize = 0;
      }
    }
    if (clusterSize) {
      *(channelBuffer->end() - 2 * clusterSize - 1) = clusterSize;
    }
  }

  //FEDBufferGenerator

  FEDBufferGenerator::FEDBufferGenerator(const uint32_t l1ID,
                                         const uint16_t bxID,
                                         const std::vector<bool>& feUnitsEnabled,
                                         const std::vector<bool>& channelsEnabled,
                                         const FEDReadoutMode readoutMode,
                                         const FEDHeaderType headerType,
                                         const FEDBufferFormat bufferFormat,
                                         const FEDDAQEventType evtType)
      : defaultDAQHeader_(l1ID, bxID, 0, evtType),
        defaultDAQTrailer_(0, 0),
        defaultTrackerSpecialHeader_(bufferFormat, readoutMode, headerType),
        defaultFEHeader_(FEDFEHeader::newFEHeader(headerType)),
        feUnitsEnabled_(feUnitsEnabled),
        channelsEnabled_(channelsEnabled) {
    if (!defaultFEHeader_.get()) {
      std::ostringstream ss;
      ss << "Bad header format: " << headerType;
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
  }

  bool FEDBufferGenerator::getFEUnitEnabled(const uint8_t internalFEUnitNumber) const {
    try {
      return feUnitsEnabled_.at(internalFEUnitNumber);
    } catch (const std::out_of_range&) {
      std::ostringstream ss;
      ss << "Invalid FE unit number " << internalFEUnitNumber << ". Should be in internal numbering scheme (0-7)";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
  }

  bool FEDBufferGenerator::getChannelEnabled(const uint8_t internalFEDChannelNumber) const {
    try {
      return channelsEnabled_.at(internalFEDChannelNumber);
    } catch (const std::out_of_range&) {
      std::ostringstream ss;
      ss << "Invalid channel number " << internalFEDChannelNumber << ". "
         << "Should be in internal numbering scheme (0-95)";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
  }

  FEDBufferGenerator& FEDBufferGenerator::setFEUnitEnable(const uint8_t internalFEUnitNumber, const bool enabled) {
    try {
      feUnitsEnabled_.at(internalFEUnitNumber) = enabled;
    } catch (const std::out_of_range&) {
      std::ostringstream ss;
      ss << "Invalid FE unit number " << internalFEUnitNumber << ". "
         << "Should be in internal numbering scheme (0-7)";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
    return *this;
  }

  FEDBufferGenerator& FEDBufferGenerator::setChannelEnable(const uint8_t internalFEDChannelNumber, const bool enabled) {
    try {
      channelsEnabled_.at(internalFEDChannelNumber) = enabled;
    } catch (const std::out_of_range&) {
      std::ostringstream ss;
      ss << "Invalid channel number " << internalFEDChannelNumber << ". "
         << "Should be in internal numbering scheme (0-95)";
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
    return *this;
  }

  FEDBufferGenerator& FEDBufferGenerator::setFEUnitEnables(const std::vector<bool>& feUnitEnables) {
    if (feUnitEnables.size() != FEUNITS_PER_FED) {
      std::ostringstream ss;
      ss << "Setting FE enable vector with vector which is the wrong size. Size is " << feUnitEnables.size()
         << " it must be " << FEUNITS_PER_FED << "." << std::endl;
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
    feUnitsEnabled_ = feUnitEnables;
    return *this;
  }

  FEDBufferGenerator& FEDBufferGenerator::setChannelEnables(const std::vector<bool>& channelEnables) {
    if (channelEnables.size() != FEDCH_PER_FED) {
      std::ostringstream ss;
      ss << "Setting FED channel enable vector with vector which is the wrong size. Size is " << channelEnables.size()
         << " it must be " << FEDCH_PER_FED << "." << std::endl;
      throw cms::Exception("FEDBufferGenerator") << ss.str();
    }
    channelsEnabled_ = channelEnables;
    return *this;
  }

  void FEDBufferGenerator::generateBuffer(FEDRawData* rawDataObject,
                                          const FEDStripData& data,
                                          uint16_t sourceID,
                                          uint8_t packetCode) const {
    //deal with disabled FE units and channels properly (FE enables, status bits)
    TrackerSpecialHeader tkSpecialHeader(defaultTrackerSpecialHeader_);
    std::unique_ptr<FEDFEHeader> fedFeHeader(defaultFEHeader_->clone());
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      const bool enabled = feUnitsEnabled_[iFE];
      tkSpecialHeader.setFEEnableForFEUnit(iFE, enabled);
      if (!enabled) {
        for (uint8_t iFEUnitChannel = 0; iFEUnitChannel < FEDCH_PER_FEUNIT; iFEUnitChannel++) {
          fedFeHeader->setChannelStatus(iFE, iFEUnitChannel, FEDChannelStatus(0));
        }
      }
    }
    for (uint8_t iCh = 0; iCh < FEDCH_PER_FED; iCh++) {
      if (!channelsEnabled_[iCh]) {
        fedFeHeader->setChannelStatus(iCh, FEDChannelStatus(0));
      }
    }
    //set the source ID
    FEDDAQHeader daqHeader(defaultDAQHeader_);
    daqHeader.setSourceID(sourceID);
    //build payload
    const FEDBufferPayloadCreator payloadPacker(feUnitsEnabled_, channelsEnabled_);
    const FEDBufferPayload payload = payloadPacker(getReadoutMode(), packetCode, data);
    //fill FE lengths
    for (uint8_t iFE = 0; iFE < FEUNITS_PER_FED; iFE++) {
      fedFeHeader->setFEUnitLength(iFE, payload.getFELength(iFE));
    }
    //resize buffer
    rawDataObject->resize(bufferSizeInBytes(*fedFeHeader, payload));
    //fill buffer
    fillBuffer(rawDataObject->data(), daqHeader, defaultDAQTrailer_, tkSpecialHeader, *fedFeHeader, payload);
  }

  void FEDBufferGenerator::fillBuffer(uint8_t* pointerToStartOfBuffer,
                                      const FEDDAQHeader& daqHeader,
                                      const FEDDAQTrailer& daqTrailer,
                                      const TrackerSpecialHeader& tkSpecialHeader,
                                      const FEDFEHeader& feHeader,
                                      const FEDBufferPayload& payload) {
    //set the length in the DAQ trailer
    const size_t lengthInBytes = bufferSizeInBytes(feHeader, payload);
    FEDDAQTrailer updatedDAQTrailer(daqTrailer);
    updatedDAQTrailer.setEventLengthIn64BitWords(lengthInBytes / 8);
    //copy pieces into buffer in order
    uint8_t* bufferPointer = pointerToStartOfBuffer;
    memcpy(bufferPointer, daqHeader.data(), 8);
    bufferPointer += 8;
    memcpy(bufferPointer, tkSpecialHeader.data(), 8);
    bufferPointer += 8;
    memcpy(bufferPointer, feHeader.data(), feHeader.lengthInBytes());
    bufferPointer += feHeader.lengthInBytes();
    memcpy(bufferPointer, payload.data(), payload.lengthInBytes());
    bufferPointer += payload.lengthInBytes();
    memcpy(bufferPointer, updatedDAQTrailer.data(), 8);
    //update CRC
    const uint16_t crc = calculateFEDBufferCRC(pointerToStartOfBuffer, lengthInBytes);
    updatedDAQTrailer.setCRC(crc);
    memcpy(bufferPointer, updatedDAQTrailer.data(), 8);
    //word swap if necessary
    if (tkSpecialHeader.wasSwapped()) {
      for (size_t i = 0; i < 8; i++) {
        bufferPointer[i] = bufferPointer[i ^ 4];
      }
    }
  }

}  // namespace sistrip