Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
 * Copyright (C) 2013 Mark Adler
 * Version 1.1  1 Aug 2013  Mark Adler
 */

/*
  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the author be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  Mark Adler
  madler@alumni.caltech.edu
 */

/* Use hardware CRC instruction on Intel SSE 4.2 processors.  This computes a
   CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc.  A software
   version is provided as a fall-back, as well as for speed comparisons. */

/* Version history:
   1.0  10 Feb 2013  First version
   1.1   1 Aug 2013  Correct comments on why three crc instructions in parallel
 */

/* Srecko Morovic, Apr 02 2015: (crc32.cc) modified to compile in c++
 * and ifdefs to compile and call hw version only with X86_64
 */

#include <cstdio>
#include <cstdlib>
#include <cstdint>
#include <unistd.h>
#include <pthread.h>

/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78

/* Table for a quadword-at-a-time software crc. */
static pthread_once_t crc32c_once_sw = PTHREAD_ONCE_INIT;
static uint32_t crc32c_table[8][256];

/* Construct table for software CRC-32C calculation. */
static void crc32c_init_sw(void) {
  uint32_t n, crc, k;

  for (n = 0; n < 256; n++) {
    crc = n;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
    crc32c_table[0][n] = crc;
  }
  for (n = 0; n < 256; n++) {
    crc = crc32c_table[0][n];
    for (k = 1; k < 8; k++) {
      crc = crc32c_table[0][crc & 0xff] ^ (crc >> 8);
      crc32c_table[k][n] = crc;
    }
  }
}

/* Table-driven software version as a fall-back.  This is about 15 times slower
   than using the hardware instructions.  This assumes little-endian integers,
   as is the case on Intel processors that the assembler code here is for. */
static uint32_t crc32c_sw(uint32_t crci, const unsigned char *buf, size_t len) {
  const unsigned char *next = buf;
  uint64_t crc;

  pthread_once(&crc32c_once_sw, crc32c_init_sw);
  crc = crci ^ 0xffffffff;
  while (len && ((const uintptr_t)next & 7) != 0) {
    crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
    len--;
  }
  while (len >= 8) {
    crc ^= *(uint64_t *)next;
    crc = crc32c_table[7][crc & 0xff] ^ crc32c_table[6][(crc >> 8) & 0xff] ^ crc32c_table[5][(crc >> 16) & 0xff] ^
          crc32c_table[4][(crc >> 24) & 0xff] ^ crc32c_table[3][(crc >> 32) & 0xff] ^
          crc32c_table[2][(crc >> 40) & 0xff] ^ crc32c_table[1][(crc >> 48) & 0xff] ^ crc32c_table[0][crc >> 56];
    next += 8;
    len -= 8;
  }
  while (len) {
    crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
    len--;
  }
  return (uint32_t)crc ^ 0xffffffff;
}

#if defined(__x86_64__)
/* Multiply a matrix times a vector over the Galois field of two elements,
   GF(2).  Each element is a bit in an unsigned integer.  mat must have at
   least as many entries as the power of two for most significant one bit in
   vec. */
static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec) {
  uint32_t sum;

  sum = 0;
  while (vec) {
    if (vec & 1)
      sum ^= *mat;
    vec >>= 1;
    mat++;
  }
  return sum;
}

/* Multiply a matrix by itself over GF(2).  Both mat and square must have 32
   rows. */
static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat) {
  int n;

  for (n = 0; n < 32; n++)
    square[n] = gf2_matrix_times(mat, mat[n]);
}

/* Construct an operator to apply len zeros to a crc.  len must be a power of
   two.  If len is not a power of two, then the result is the same as for the
   largest power of two less than len.  The result for len == 0 is the same as
   for len == 1.  A version of this routine could be easily written for any
   len, but that is not needed for this application. */
static void crc32c_zeros_op(uint32_t *even, size_t len) {
  int n;
  uint32_t row;
  uint32_t odd[32]; /* odd-power-of-two zeros operator */

  /* put operator for one zero bit in odd */
  odd[0] = POLY; /* CRC-32C polynomial */
  row = 1;
  for (n = 1; n < 32; n++) {
    odd[n] = row;
    row <<= 1;
  }

  /* put operator for two zero bits in even */
  gf2_matrix_square(even, odd);

  /* put operator for four zero bits in odd */
  gf2_matrix_square(odd, even);

  /* first square will put the operator for one zero byte (eight zero bits),
       in even -- next square puts operator for two zero bytes in odd, and so
       on, until len has been rotated down to zero */
  do {
    gf2_matrix_square(even, odd);
    len >>= 1;
    if (len == 0)
      return;
    gf2_matrix_square(odd, even);
    len >>= 1;
  } while (len);

  /* answer ended up in odd -- copy to even */
  for (n = 0; n < 32; n++)
    even[n] = odd[n];
}

/* Take a length and build four lookup tables for applying the zeros operator
   for that length, byte-by-byte on the operand. */
static void crc32c_zeros(uint32_t zeros[][256], size_t len) {
  uint32_t n;
  uint32_t op[32];

  crc32c_zeros_op(op, len);
  for (n = 0; n < 256; n++) {
    zeros[0][n] = gf2_matrix_times(op, n);
    zeros[1][n] = gf2_matrix_times(op, n << 8);
    zeros[2][n] = gf2_matrix_times(op, n << 16);
    zeros[3][n] = gf2_matrix_times(op, n << 24);
  }
}

/* Apply the zeros operator table to crc. */
static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc) {
  return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^ zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}

/* Block sizes for three-way parallel crc computation.  LONG and SHORT must
   both be powers of two.  The associated string constants must be set
   accordingly, for use in constructing the assembler instructions. */
#define LONG 8192
#define LONGx1 "8192"
#define LONGx2 "16384"
#define SHORT 256
#define SHORTx1 "256"
#define SHORTx2 "512"

/* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
static pthread_once_t crc32c_once_hw = PTHREAD_ONCE_INIT;
static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];

/* Initialize tables for shifting crcs. */
static void crc32c_init_hw(void) {
  crc32c_zeros(crc32c_long, LONG);
  crc32c_zeros(crc32c_short, SHORT);
}

/* Compute CRC-32C using the Intel hardware instruction. */
static uint32_t crc32c_hw(uint32_t crc, const unsigned char *buf, size_t len) {
  const unsigned char *next = buf;
  const unsigned char *end;
  uint64_t crc0, crc1, crc2; /* need to be 64 bits for crc32q */

  /* populate shift tables the first time through */
  pthread_once(&crc32c_once_hw, crc32c_init_hw);

  /* pre-process the crc */
  crc0 = crc ^ 0xffffffff;

  /* compute the crc for up to seven leading bytes to bring the data pointer
       to an eight-byte boundary */
  while (len && ((const uintptr_t)next & 7) != 0) {
    __asm__(
        "crc32b\t"
        "(%1), %0"
        : "=r"(crc0)
        : "r"(next), "0"(crc0));
    next++;
    len--;
  }

  /* compute the crc on sets of LONG*3 bytes, executing three independent crc
       instructions, each on LONG bytes -- this is optimized for the Nehalem,
       Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
       throughput of one crc per cycle, but a latency of three cycles */
  while (len >= LONG * 3) {
    crc1 = 0;
    crc2 = 0;
    end = next + LONG;
    do {
      __asm__(
          "crc32q\t"
          "(%3), %0\n\t"
          "crc32q\t" LONGx1
          "(%3), %1\n\t"
          "crc32q\t" LONGx2 "(%3), %2"
          : "=r"(crc0), "=r"(crc1), "=r"(crc2)
          : "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
      next += 8;
    } while (next < end);
    crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
    crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
    next += LONG * 2;
    len -= LONG * 3;
  }

  /* do the same thing, but now on SHORT*3 blocks for the remaining data less
       than a LONG*3 block */
  while (len >= SHORT * 3) {
    crc1 = 0;
    crc2 = 0;
    end = next + SHORT;
    do {
      __asm__(
          "crc32q\t"
          "(%3), %0\n\t"
          "crc32q\t" SHORTx1
          "(%3), %1\n\t"
          "crc32q\t" SHORTx2 "(%3), %2"
          : "=r"(crc0), "=r"(crc1), "=r"(crc2)
          : "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
      next += 8;
    } while (next < end);
    crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
    crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
    next += SHORT * 2;
    len -= SHORT * 3;
  }

  /* compute the crc on the remaining eight-byte units less than a SHORT*3
       block */
  end = next + (len - (len & 7));
  while (next < end) {
    __asm__(
        "crc32q\t"
        "(%1), %0"
        : "=r"(crc0)
        : "r"(next), "0"(crc0));
    next += 8;
  }
  len &= 7;

  /* compute the crc for up to seven trailing bytes */
  while (len) {
    __asm__(
        "crc32b\t"
        "(%1), %0"
        : "=r"(crc0)
        : "r"(next), "0"(crc0));
    next++;
    len--;
  }

  /* return a post-processed crc */
  return (uint32_t)crc0 ^ 0xffffffff;
}

/* Check for SSE 4.2.  SSE 4.2 was first supported in Nehalem processors
   introduced in November, 2008.  This does not check for the existence of the
   cpuid instruction itself, which was introduced on the 486SL in 1992, so this
   will fail on earlier x86 processors.  cpuid works on all Pentium and later
   processors. */
#define SSE42(have)                                           \
  do {                                                        \
    uint32_t eax, ecx;                                        \
    eax = 1;                                                  \
    __asm__("cpuid" : "=c"(ecx) : "a"(eax) : "%ebx", "%edx"); \
    (have) = (ecx >> 20) & 1;                                 \
  } while (0)

#endif  //defined(__x86_64__)

/* Compute a CRC-32C.  If the crc32 instruction is available, use the hardware
   version.  Otherwise, use the software version. */
uint32_t crc32c(uint32_t crc, const unsigned char *buf, size_t len) {
#if defined(__x86_64__)
  int sse42;

  SSE42(sse42);
  return sse42 ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
#else
  return crc32c_sw(crc, buf, len);
#endif
}

bool crc32c_hw_test() {
#if defined(__x86_64__)
  int sse42;

  SSE42(sse42);
  return sse42;
#else
  return 0;
#endif
}