ETransform3DMatrixIndex

Transform3DPJ

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
// @(#)root/mathcore:$Name: V02-02-29 $:$Id: Transform3DPJ.h,v 1.1 2007/05/27 20:12:30 pjanot Exp $
// Authors: W. Brown, M. Fischler, L. Moneta    2005

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
 *                                                                    *
 *                                                                    *
 **********************************************************************/

// Header file for class Transform3DPJ
//
// Created by: Lorenzo Moneta  October 21 2005
//
//
#ifndef ROOT_Math_GenVector_Transform3DPJ
#define ROOT_Math_GenVector_Transform3DPJ 1

#include "Math/GenVector/Cartesian3D.h"
#include "Math/GenVector/DisplacementVector3D.h"
#include "Math/GenVector/PositionVector3D.h"
#include "Math/GenVector/LorentzVector.h"
#include "Math/GenVector/Rotation3D.h"
#include "Math/GenVector/AxisAnglefwd.h"
#include "Math/GenVector/EulerAnglesfwd.h"
#include "Math/GenVector/Quaternionfwd.h"
#include "Math/GenVector/RotationXfwd.h"
#include "Math/GenVector/RotationYfwd.h"
#include "Math/GenVector/RotationZfwd.h"
#include "Math/GenVector/Plane3D.h"

#include <iostream>

//#include "Math/Vector3Dfwd.h"

namespace ROOT {

  namespace Math {

    using ROOT::Math::Plane3D;

    /** 
     Basic 3D Transformation class describing  a rotation and then a translation
     The internal data are a rotation data and a 3D vector data and they can be represented 
     like a 3x4 matrix
     The class has a template parameter the coordinate system tag of the reference system 
     to which the transformatioon will be applied. For example for transforming from 
     global to local coordinate systems, the transfrom3D has to be instantiated with the 
     coordinate of the traget system

     @ingroup GenVector

  */

    class Transform3DPJ {
    public:
      typedef DisplacementVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag> Vector;
      typedef PositionVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag> Point;

      enum ETransform3DMatrixIndex {
        kXX = 0,
        kXY = 1,
        kXZ = 2,
        kDX = 3,
        kYX = 4,
        kYY = 5,
        kYZ = 6,
        kDY = 7,
        kZX = 8,
        kZY = 9,
        kZZ = 10,
        kDZ = 11
      };

      /** 
	Default constructor (identy rotation) + zero translation
    */
      Transform3DPJ() { SetIdentity(); }

      /**
       Construct given a pair of pointers or iterators defining the
       beginning and end of an array of 12 Scalars
    */
      template <class IT>
      Transform3DPJ(IT begin, IT end) {
        SetComponents(begin, end);
      }

      /**
       Construct from a rotation and then a translation described by a Vector 
    */
      Transform3DPJ(const Rotation3D &r, const Vector &v) { AssignFrom(r, v); }
      /**
       Construct from a translation and then a rotation (inverse assignment) 
    */
      Transform3DPJ(const Vector &v, const Rotation3D &r) {
        // is equivalent from having first the rotation and then the translation vector rotated
        AssignFrom(r, r(v));
      }

      /**
       Construct from a 3D Rotation only with zero translation
    */
      explicit Transform3DPJ(const Rotation3D &r) { AssignFrom(r); }
      // convenience methods for the other rotations (cannot use templates for conflict with LA)
      explicit Transform3DPJ(const AxisAngle &r) { AssignFrom(Rotation3D(r)); }
      explicit Transform3DPJ(const EulerAngles &r) { AssignFrom(Rotation3D(r)); }
      explicit Transform3DPJ(const Quaternion &r) { AssignFrom(Rotation3D(r)); }
      // TO DO: implement direct methods for axial rotations without going through Rotation3D
      explicit Transform3DPJ(const RotationX &r) { AssignFrom(Rotation3D(r)); }
      explicit Transform3DPJ(const RotationY &r) { AssignFrom(Rotation3D(r)); }
      explicit Transform3DPJ(const RotationZ &r) { AssignFrom(Rotation3D(r)); }

      /**
       Construct from a translation only, represented by any DisplacementVector3D 
       and with an identity rotation
    */
      template <class CoordSystem, class Tag>
      explicit Transform3DPJ(const DisplacementVector3D<CoordSystem, Tag> &v) {
        AssignFrom(Vector(v.X(), v.Y(), v.Z()));
      }
      /**
       Construct from a translation only, represented by a Cartesian 3D Vector,  
       and with an identity rotation
    */
      explicit Transform3DPJ(const Vector &v) { AssignFrom(v); }

      //#if !defined(__MAKECINT__) && !defined(G__DICTIONARY)  // this is ambigous with double * , double *
      /**
       Construct from a rotation (any rotation object)  and then a translation 
       (represented by any DisplacementVector)
       The requirements on the rotation and vector objects are that they can be transformed in a 
       Rotation3D class and in a Vector
    */
      // to do : change to displacement vector3D
      template <class ARotation, class CoordSystem, class Tag>
      Transform3DPJ(const ARotation &r, const DisplacementVector3D<CoordSystem, Tag> &v) {
        AssignFrom(Rotation3D(r), Vector(v.X(), v.Y(), v.Z()));
      }
      /**
       Construct from a translation (using any type of DisplacementVector ) 
       and then a rotation (any rotation object). 
       Requirement on the rotation and vector objects are that they can be transformed in a 
       Rotation3D class and in a Vector 
    */
      template <class ARotation, class CoordSystem, class Tag>
      Transform3DPJ(const DisplacementVector3D<CoordSystem, Tag> &v, const ARotation &r) {
        // is equivalent from having first the rotation and then the translation vector rotated
        Rotation3D r3d(r);
        AssignFrom(r3d, r3d(Vector(v.X(), v.Y(), v.Z())));
      }

      //#endif

      /**
       Construct transformation from one coordinate system defined by three 
       points (origin + two axis) to 
       a new coordinate system defined by other three points (origin + axis) 
       @param fr0  point defining origin of original reference system 
       @param fr1  point defining first axis of original reference system 
       @param fr2  point defining second axis of original reference system 
       @param to0  point defining origin of transformed reference system 
       @param to1  point defining first axis transformed reference system 
       @param to2  point defining second axis transformed reference system 

     */
      Transform3DPJ(
          const Point &fr0, const Point &fr1, const Point &fr2, const Point &to0, const Point &to1, const Point &to2);

      // use compiler generated copy ctor, copy assignmet and dtor

      /**
       Construct from a linear algebra matrix of size at least 3x4,
       which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
       The 3x3 sub-block is assumed to be the rotation part and the translations vector 
       are described by the 4-th column
    */
      template <class ForeignMatrix>
      explicit Transform3DPJ(const ForeignMatrix &m) {
        SetComponents(m);
      }

      /**
       Raw constructor from 12 Scalar components
    */
      Transform3DPJ(double xx,
                    double xy,
                    double xz,
                    double dx,
                    double yx,
                    double yy,
                    double yz,
                    double dy,
                    double zx,
                    double zy,
                    double zz,
                    double dz) {
        SetComponents(xx, xy, xz, dx, yx, yy, yz, dy, zx, zy, zz, dz);
      }

      /**
       Construct from a linear algebra matrix of size at least 3x4,
       which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
       The 3x3 sub-block is assumed to be the rotation part and the translations vector 
       are described by the 4-th column
    */
      template <class ForeignMatrix>
      Transform3DPJ &operator=(const ForeignMatrix &m) {
        SetComponents(m);
        return *this;
      }

      // ======== Components ==============

      /**
       Set the 12 matrix components given an iterator to the start of
       the desired data, and another to the end (12 past start).
    */
      template <class IT>
      void SetComponents(IT begin, IT end) {
        for (int i = 0; i < 12; ++i) {
          fM[i] = *begin;
          ++begin;
        }
        assert(end == begin);
      }

      /**
       Get the 12 matrix components into data specified by an iterator begin
       and another to the end of the desired data (12 past start).
    */
      template <class IT>
      void GetComponents(IT begin, IT end) const {
        for (int i = 0; i < 12; ++i) {
          *begin = fM[i];
          ++begin;
        }
        assert(end == begin);
      }

      /**
       Get the 12 matrix components into data specified by an iterator begin
    */
      template <class IT>
      void GetComponents(IT begin) const {
        std::copy(fM, fM + 12, begin);
      }

      /**
       Set components from a linear algebra matrix of size at least 3x4,
       which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
       The 3x3 sub-block is assumed to be the rotation part and the translations vector 
       are described by the 4-th column
    */
      template <class ForeignMatrix>
      void SetTransformMatrix(const ForeignMatrix &m) {
        fM[kXX] = m(0, 0);
        fM[kXY] = m(0, 1);
        fM[kXZ] = m(0, 2);
        fM[kDX] = m(0, 3);
        fM[kYX] = m(1, 0);
        fM[kYY] = m(1, 1);
        fM[kYZ] = m(1, 2);
        fM[kDY] = m(1, 3);
        fM[kZX] = m(2, 0);
        fM[kZY] = m(2, 1);
        fM[kZZ] = m(2, 2);
        fM[kDZ] = m(2, 3);
      }

      /**
       Get components into a linear algebra matrix of size at least 3x4,
       which must support operator()(i,j) for write access to elements
       (0,0) thru (2,3).
    */
      template <class ForeignMatrix>
      void GetTransformMatrix(ForeignMatrix &m) const {
        m(0, 0) = fM[kXX];
        m(0, 1) = fM[kXY];
        m(0, 2) = fM[kXZ];
        m(0, 3) = fM[kDX];
        m(1, 0) = fM[kYX];
        m(1, 1) = fM[kYY];
        m(1, 2) = fM[kYZ];
        m(1, 3) = fM[kDY];
        m(2, 0) = fM[kZX];
        m(2, 1) = fM[kZY];
        m(2, 2) = fM[kZZ];
        m(2, 3) = fM[kDZ];
      }

      /**
       Set the components from 12 scalars 
    */
      void SetComponents(double xx,
                         double xy,
                         double xz,
                         double dx,
                         double yx,
                         double yy,
                         double yz,
                         double dy,
                         double zx,
                         double zy,
                         double zz,
                         double dz) {
        fM[kXX] = xx;
        fM[kXY] = xy;
        fM[kXZ] = xz;
        fM[kDX] = dx;
        fM[kYX] = yx;
        fM[kYY] = yy;
        fM[kYZ] = yz;
        fM[kDY] = dy;
        fM[kZX] = zx;
        fM[kZY] = zy;
        fM[kZZ] = zz;
        fM[kDZ] = dz;
      }

      /**
       Get the nine components into 12 scalars
    */
      void GetComponents(double &xx,
                         double &xy,
                         double &xz,
                         double &dx,
                         double &yx,
                         double &yy,
                         double &yz,
                         double &dy,
                         double &zx,
                         double &zy,
                         double &zz,
                         double &dz) const {
        xx = fM[kXX];
        xy = fM[kXY];
        xz = fM[kXZ];
        dx = fM[kDX];
        yx = fM[kYX];
        yy = fM[kYY];
        yz = fM[kYZ];
        dy = fM[kDY];
        zx = fM[kZX];
        zy = fM[kZY];
        zz = fM[kZZ];
        dz = fM[kDZ];
      }

      /**
       Get the rotation and translation vector representing the 3D transformation
    */
      void GetDecomposition(Rotation3D &r, Vector &v) const;

      // operations on points and vectors

      /**
       Transformation operation for Position Vector in Cartesian coordinate 
    */
      Point operator()(const Point &p) const;

      /**
       Transformation operation for Displacement Vectors in Cartesian coordinate 
       For the Displacement Vectors only the rotation applies - no translations
    */
      Vector operator()(const Vector &v) const;

      /**
       Transformation operation for Position Vector in any coordinate system 
    */
      template <class CoordSystem>
      PositionVector3D<CoordSystem> operator()(const PositionVector3D<CoordSystem> &p) const {
        Point xyzNew = operator()(Point(p));
        return PositionVector3D<CoordSystem>(xyzNew);
      }

      /**
       Transformation operation for Displacement Vector in any coordinate system 
    */
      template <class CoordSystem>
      DisplacementVector3D<CoordSystem> operator()(const DisplacementVector3D<CoordSystem> &v) const {
        Vector xyzNew = operator()(Vector(v));
        return DisplacementVector3D<CoordSystem>(xyzNew);
      }

      /**
       Transformation operation for points between different coordinate system tags 
    */
      template <class CoordSystem, class Tag1, class Tag2>
      void Transform(const PositionVector3D<CoordSystem, Tag1> &p1, PositionVector3D<CoordSystem, Tag2> &p2) const {
        Point xyzNew = operator()(Point(p1.X(), p1.Y(), p1.Z()));
        p2.SetXYZ(xyzNew.X(), xyzNew.Y(), xyzNew.Z());
      }

      /**
       Transformation operation for Displacement Vector of different coordinate systems 
    */
      template <class CoordSystem, class Tag1, class Tag2>
      void Transform(const DisplacementVector3D<CoordSystem, Tag1> &v1,
                     DisplacementVector3D<CoordSystem, Tag2> &v2) const {
        Vector xyzNew = operator()(Vector(v1.X(), v1.Y(), v1.Z()));
        v2.SetXYZ(xyzNew.X(), xyzNew.Y(), xyzNew.Z());
      }

      /**
       Transformation operation for a Lorentz Vector in any  coordinate system 
    */
      template <class CoordSystem>
      LorentzVector<CoordSystem> operator()(const LorentzVector<CoordSystem> &q) const {
        Vector xyzNew = operator()(Vector(q.Vect()));
        return LorentzVector<CoordSystem>(xyzNew.X(), xyzNew.Y(), xyzNew.Z(), q.E());
      }

      /**
       Transformation on a 3D plane
    */
      Plane3D operator()(const Plane3D &plane) const;

      // skip transformation for arbitrary vectors - not really defined if point or displacement vectors

      // same but with operator *
      /**
       Transformation operation for Vectors. Apply same rules as operator() 
       depending on type of vector. 
       Will work only for DisplacementVector3D, PositionVector3D and LorentzVector
    */
      template <class AVector>
      AVector operator*(const AVector &v) const {
        return operator()(v);
      }

      /**
       multiply (combine) with another transformation in place
     */
      Transform3DPJ &operator*=(const Transform3DPJ &t);

      /**
       multiply (combine) two transformations
     */
      Transform3DPJ operator*(const Transform3DPJ &t) const {
        Transform3DPJ tmp(*this);
        tmp *= t;
        return tmp;
      }

      /** 
	Invert the transformation in place
    */
      void Invert();

      /**
       Return the inverse of the transformation.
    */
      Transform3DPJ Inverse() const {
        Transform3DPJ t(*this);
        t.Invert();
        return t;
      }

      /**
       Equality/inequality operators
    */
      bool operator==(const Transform3DPJ &rhs) const {
        if (fM[0] != rhs.fM[0])
          return false;
        if (fM[1] != rhs.fM[1])
          return false;
        if (fM[2] != rhs.fM[2])
          return false;
        if (fM[3] != rhs.fM[3])
          return false;
        if (fM[4] != rhs.fM[4])
          return false;
        if (fM[5] != rhs.fM[5])
          return false;
        if (fM[6] != rhs.fM[6])
          return false;
        if (fM[7] != rhs.fM[7])
          return false;
        if (fM[8] != rhs.fM[8])
          return false;
        if (fM[9] != rhs.fM[9])
          return false;
        if (fM[10] != rhs.fM[10])
          return false;
        if (fM[11] != rhs.fM[11])
          return false;
        return true;
      }

      bool operator!=(const Transform3DPJ &rhs) const { return !operator==(rhs); }

    protected:
      /**
       make transformation from first a rotation then a translation
     */
      void AssignFrom(const Rotation3D &r, const Vector &v);

      /**
       make transformation from only rotations (zero translation)
     */
      void AssignFrom(const Rotation3D &r);

      /**
       make transformation from only translation (identity rotations)
     */
      void AssignFrom(const Vector &v);

      /**
       Set identity transformation (identity rotation , zero translation)
     */
      void SetIdentity();

    private:
      double fM[12];
    };

    // global functions

    // TODO - I/O should be put in the manipulator form

    std::ostream &operator<<(std::ostream &os, const Transform3DPJ &t);

    // need a function Transform = Translation * Rotation ???

  }  // end namespace Math

}  // end namespace ROOT

#endif /* MATHCORE_BASIC3DTRANSFORMATION */