1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
#include "FastSimulation/CaloGeometryTools/interface/CrystalPad.h"
#include <iostream>
std::vector<CLHEP::Hep2Vector> CrystalPad::aVector(4);
CrystalPad::CrystalPad(const CrystalPad& right) {
corners_ = right.corners_;
dir_ = right.dir_;
number_ = right.number_;
survivalProbability_ = right.survivalProbability_;
center_ = right.center_;
epsilon_ = right.epsilon_;
dummy_ = right.dummy_;
}
CrystalPad& CrystalPad::operator=(const CrystalPad& right) {
if (this != &right) { // don't copy into yourself
corners_ = right.corners_;
dir_ = right.dir_;
number_ = right.number_;
survivalProbability_ = right.survivalProbability_;
center_ = right.center_;
epsilon_ = right.epsilon_;
dummy_ = right.dummy_;
}
return *this;
}
CrystalPad::CrystalPad(unsigned number, const std::vector<CLHEP::Hep2Vector>& corners)
: corners_(corners), dir_(aVector), number_(number), survivalProbability_(1.), center_(0., 0.), epsilon_(0.001) {
// std::cout << " Hello " << std::endl;
if (corners.size() != 4) {
std::cout << " Try to construct a quadrilateral with " << corners.size() << " points ! " << std::endl;
dummy_ = true;
} else {
dummy_ = false;
// Set explicity the z to 0 !
for (unsigned ic = 0; ic < 4; ++ic) {
dir_[ic] = (corners[(ic + 1) % 4] - corners[ic]).unit();
center_ += corners_[ic];
}
center_ *= 0.25;
}
// std::cout << " End of 1 constructor " << std::endl;
// std::cout << " Ncorners " << corners_.size() << std::endl;
// std::cout << " Ndirs " << dir_.size() << std::endl;
}
CrystalPad::CrystalPad(unsigned number,
int onEcal,
const std::vector<XYZPoint>& corners,
const XYZPoint& origin,
const XYZVector& vec1,
const XYZVector& vec2)
: corners_(aVector), dir_(aVector), number_(number), survivalProbability_(1.), center_(0., 0.), epsilon_(0.001) {
// std::cout << " We are in the 2nd constructor " << std::endl;
if (corners.size() != 4) {
std::cout << " Try to construct a quadrilateral with " << corners.size() << " points ! " << std::endl;
dummy_ = true;
} else {
dummy_ = false;
double sign = (onEcal == 1) ? -1. : 1.;
// the good one in the central
trans_ = Transform3D((Point)origin,
(Point)(origin + vec1),
(Point)(origin + vec2),
Point(0., 0., 0.),
Point(0., 0., sign),
Point(0., 1., 0.));
trans_.GetDecomposition(rotation_, translation_);
// std::cout << " Constructor 2; input corners " << std::endl;
for (unsigned ic = 0; ic < 4; ++ic) {
// std::cout << corners[ic]<< " " ;
XYZPoint corner = rotation_(corners[ic]) + translation_;
// std::cout << corner << std::endl ;
corners_[ic] = CLHEP::Hep2Vector(corner.X(), corner.Y());
center_ += corners_[ic];
}
for (unsigned ic = 0; ic < 4; ++ic) {
dir_[ic] = (corners_[(ic + 1) % 4] - corners_[ic]).unit();
}
center_ *= 0.25;
}
// std::cout << " End of 2 constructor " << std::endl;
// std::cout << " Corners(constructor) " ;
// std::cout << corners_[0] << std::endl;
// std::cout << corners_[1] << std::endl;
// std::cout << corners_[2] << std::endl;
// std::cout << corners_[3] << std::endl;
}
CrystalPad::CrystalPad(
unsigned number, const std::vector<XYZPoint>& corners, const Transform3D& trans, double scaf, bool bothdirections)
: corners_(aVector),
dir_(aVector),
number_(number),
survivalProbability_(1.),
center_(0., 0.),
epsilon_(0.001),
yscalefactor_(scaf) {
// std::cout << " We are in the 2nd constructor " << std::endl;
if (corners.size() != 4) {
std::cout << " Try to construct a quadrilateral with " << corners.size() << " points ! " << std::endl;
dummy_ = true;
} else {
dummy_ = false;
// the good one in the central
trans_ = trans;
// std::cout << " Constructor 2; input corners " << std::endl;
trans_.GetDecomposition(rotation_, translation_);
for (unsigned ic = 0; ic < 4; ++ic) {
XYZPoint corner = rotation_(corners[ic]) + translation_;
// std::cout << corner << std::endl ;
double xscalefactor = (bothdirections) ? yscalefactor_ : 1.;
corners_[ic] = CLHEP::Hep2Vector(corner.X() * xscalefactor, corner.Y() * yscalefactor_);
center_ += corners_[ic];
}
for (unsigned ic = 0; ic < 4; ++ic) {
dir_[ic] = (corners_[(ic + 1) % 4] - corners_[ic]).unit();
}
center_ *= 0.25;
}
}
bool CrystalPad::inside(const CLHEP::Hep2Vector& ppoint, bool debug) const {
// std::cout << "Inside " << ppoint <<std::endl;
// std::cout << "Corners " << corners_.size() << std::endl;
// std::cout << corners_[0] << std::endl;
// std::cout << corners_[1] << std::endl;
// std::cout << corners_[2] << std::endl;
// std::cout << corners_[3] << std::endl;
// std::cout << " Got the 2D point " << std::endl;
CLHEP::Hep2Vector pv0(ppoint - corners_[0]);
CLHEP::Hep2Vector pv2(ppoint - corners_[2]);
CLHEP::Hep2Vector n1(pv0 - (pv0 * dir_[0]) * dir_[0]);
CLHEP::Hep2Vector n2(pv2 - (pv2 * dir_[2]) * dir_[2]);
// double N1(n1.mag());
// double N2(n2.mag());
double r1(n1 * n2);
bool inside1(r1 <= 0.);
if (!inside1)
return false;
// if(debug)
// {
// std::cout << n1 << std::endl;
// std::cout << n2 << std::endl;
// std::cout << r1 << std::endl;
// std::cout << inside1 << std::endl;
// }
// bool close1=(N1<epsilon_||N2<epsilon_);
//
// if(!close1&&!inside1) return false;
// std::cout << " First calculation " << std::endl;
CLHEP::Hep2Vector pv1(ppoint - corners_[1]);
CLHEP::Hep2Vector pv3(ppoint - corners_[3]);
CLHEP::Hep2Vector n3(pv1 - (pv1 * dir_[1]) * dir_[1]);
CLHEP::Hep2Vector n4(pv3 - (pv3 * dir_[3]) * dir_[3]);
// double N3(n3.mag());
// double N4(n4.mag());
// bool close2=(N3<epsilon_||N4<epsilon_);
double r2(n3 * n4);
bool inside2(r2 <= 0.);
// // std::cout << " pv1 & pv3 " << pv1.mag() << " " << pv3.mag() << std::endl;
// // double tmp=(pv1-(pv1*dir_[1])*dir_[1])*(pv3-(pv3*dir_[3])*dir_[3]);
// // std::cout << " Computed tmp " << tmp << std::endl;
// if(debug)
// {
// std::cout << n3 << std::endl;
// std::cout << n4 << std::endl;
// std::cout << r2 << std::endl;
// std::cout << inside2 << std::endl;
// }
// if(!close2&&!inside2) return false;
// std::cout << " Second calculation " << std::endl;
// std::cout << " True " << std::endl;
// return (!close1&&!close2||(close2&&inside1||close1&&inside2));
return inside2;
}
/*
bool
CrystalPad::globalinside(XYZPoint point) const
{
// std::cout << " Global inside " << std::endl;
// std::cout << point << " " ;
ROOT::Math::Rotation3D r;
XYZVector t;
point = rotation_(point)+translation_;
// std::cout << point << std::endl;
// print();
CLHEP::Hep2Vector ppoint(point.X(),point.Y());
bool result=inside(ppoint);
// std::cout << " Result " << result << std::endl;
return result;
}
*/
void CrystalPad::print() const {
std::cout << " Corners " << std::endl;
std::cout << corners_[0] << std::endl;
std::cout << corners_[1] << std::endl;
std::cout << corners_[2] << std::endl;
std::cout << corners_[3] << std::endl;
}
/*
CLHEP::Hep2Vector
CrystalPad::localPoint(XYZPoint point) const
{
point = rotation_(point)+translation_;
return CLHEP::Hep2Vector(point.X(),point.Y());
}
*/
CLHEP::Hep2Vector& CrystalPad::edge(unsigned iside, int n) { return corners_[(iside + n) % 4]; }
CLHEP::Hep2Vector& CrystalPad::edge(CaloDirection dir) {
switch (dir) {
case NORTHWEST:
return corners_[0];
break;
case NORTHEAST:
return corners_[1];
break;
case SOUTHEAST:
return corners_[2];
break;
case SOUTHWEST:
return corners_[3];
break;
default: {
std::cout << " Serious problem in CrystalPad ! " << dir << std::endl;
return corners_[0];
}
}
return corners_[0];
}
void CrystalPad::extrems(double& xmin, double& xmax, double& ymin, double& ymax) const {
xmin = ymin = 999;
xmax = ymax = -999;
for (unsigned ic = 0; ic < 4; ++ic) {
if (corners_[ic].x() < xmin)
xmin = corners_[ic].x();
if (corners_[ic].x() > xmax)
xmax = corners_[ic].x();
if (corners_[ic].y() < ymin)
ymin = corners_[ic].y();
if (corners_[ic].y() > ymax)
ymax = corners_[ic].y();
}
}
void CrystalPad::resetCorners() {
// Find the centre-of-gravity of the Quad (after re-organization)
center_ = CLHEP::Hep2Vector(0., 0.);
for (unsigned ic = 0; ic < 4; ++ic)
center_ += corners_[ic];
center_ *= 0.25;
// Rescale the corners to allow for some inaccuracies in
// in the inside test
for (unsigned ic = 0; ic < 4; ++ic)
corners_[ic] += 0.001 * (corners_[ic] - center_);
}
std::ostream& operator<<(std::ostream& ost, CrystalPad& quad) {
ost << " Number " << quad.getNumber() << std::endl;
ost << NORTHWEST << quad.edge(NORTHWEST) << std::endl;
ost << NORTHEAST << quad.edge(NORTHEAST) << std::endl;
ost << SOUTHEAST << quad.edge(SOUTHEAST) << std::endl;
ost << SOUTHWEST << quad.edge(SOUTHWEST) << std::endl;
return ost;
}
void CrystalPad::getDrawingCoordinates(std::vector<float>& x, std::vector<float>& y) const {
x.clear();
y.clear();
x.push_back(corners_[0].x());
x.push_back(corners_[1].x());
x.push_back(corners_[2].x());
x.push_back(corners_[3].x());
x.push_back(corners_[0].x());
y.push_back(corners_[0].y());
y.push_back(corners_[1].y());
y.push_back(corners_[2].y());
y.push_back(corners_[3].y());
y.push_back(corners_[0].y());
}
|