Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
// @(#)root/mathcore:$Name: V02-02-29 $:$Id: Transform3DPJ.cc,v 1.2 2008/01/22 20:41:27 muzaffar Exp $
// Authors: W. Brown, M. Fischler, L. Moneta    2005

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
 *                                                                    *
 *                                                                    *
 **********************************************************************/

// implementation file for class Transform3D
//
// Created by: Lorenzo Moneta  October 27 2005
//
//

#include "FastSimulation/CaloGeometryTools/interface/Transform3DPJ.h"

#include <cmath>
#include <algorithm>

namespace ROOT {

  namespace Math {

    typedef Transform3DPJ::Point XYZPoint;
    typedef Transform3DPJ::Vector XYZVector;

    // ========== Constructors and Assignment =====================

    // construct from two ref frames
    Transform3DPJ::Transform3DPJ(const XYZPoint &fr0,
                                 const XYZPoint &fr1,
                                 const XYZPoint &fr2,
                                 const XYZPoint &to0,
                                 const XYZPoint &to1,
                                 const XYZPoint &to2) {
      // takes impl. from CLHEP ( E.Chernyaev). To be checked

      XYZVector x1, y1, z1, x2, y2, z2;
      x1 = (fr1 - fr0).Unit();
      y1 = (fr2 - fr0).Unit();
      x2 = (to1 - to0).Unit();
      y2 = (to2 - to0).Unit();

      //   C H E C K   A N G L E S

      double cos1, cos2;
      cos1 = x1.Dot(y1);
      cos2 = x2.Dot(y2);

      if (std::fabs(1.0 - cos1) <= 0.000001 || std::fabs(1.0 - cos2) <= 0.000001) {
        std::cerr << "Transform3DPJ: Error : zero angle between axes" << std::endl;
        SetIdentity();
      } else {
        if (std::fabs(cos1 - cos2) > 0.000001) {
          std::cerr << "Transform3DPJ: Warning: angles between axes are not equal" << std::endl;
        }

        //   F I N D   R O T A T I O N   M A T R I X

        z1 = (x1.Cross(y1)).Unit();
        y1 = z1.Cross(x1);

        z2 = (x2.Cross(y2)).Unit();
        y2 = z2.Cross(x2);

        double x1x = x1.X(), x1y = x1.Y(), x1z = x1.Z();
        double y1x = y1.X(), y1y = y1.Y(), y1z = y1.Z();
        double z1x = z1.X(), z1y = z1.Y(), z1z = z1.Z();

        double detxx = (y1y * z1z - z1y * y1z);
        double detxy = -(y1x * z1z - z1x * y1z);
        double detxz = (y1x * z1y - z1x * y1y);
        double detyx = -(x1y * z1z - z1y * x1z);
        double detyy = (x1x * z1z - z1x * x1z);
        double detyz = -(x1x * z1y - z1x * x1y);
        double detzx = (x1y * y1z - y1y * x1z);
        double detzy = -(x1x * y1z - y1x * x1z);
        double detzz = (x1x * y1y - y1x * x1y);

        double x2x = x2.X(), x2y = x2.Y(), x2z = x2.Z();
        double y2x = y2.X(), y2y = y2.Y(), y2z = y2.Z();
        double z2x = z2.X(), z2y = z2.Y(), z2z = z2.Z();

        double txx = x2x * detxx + y2x * detyx + z2x * detzx;
        double txy = x2x * detxy + y2x * detyy + z2x * detzy;
        double txz = x2x * detxz + y2x * detyz + z2x * detzz;
        double tyx = x2y * detxx + y2y * detyx + z2y * detzx;
        double tyy = x2y * detxy + y2y * detyy + z2y * detzy;
        double tyz = x2y * detxz + y2y * detyz + z2y * detzz;
        double tzx = x2z * detxx + y2z * detyx + z2z * detzx;
        double tzy = x2z * detxy + y2z * detyy + z2z * detzy;
        double tzz = x2z * detxz + y2z * detyz + z2z * detzz;

        //   S E T    T R A N S F O R M A T I O N

        double dx1 = fr0.X(), dy1 = fr0.Y(), dz1 = fr0.Z();
        double dx2 = to0.X(), dy2 = to0.Y(), dz2 = to0.Z();

        SetComponents(txx,
                      txy,
                      txz,
                      dx2 - txx * dx1 - txy * dy1 - txz * dz1,
                      tyx,
                      tyy,
                      tyz,
                      dy2 - tyx * dx1 - tyy * dy1 - tyz * dz1,
                      tzx,
                      tzy,
                      tzz,
                      dz2 - tzx * dx1 - tzy * dy1 - tzz * dz1);
      }
    }

    // inversion (from CLHEP)
    void Transform3DPJ::Invert() {
      //
      // Name: Transform3DPJ::inverse                     Date:    24.09.96
      // Author: E.Chernyaev (IHEP/Protvino)            Revised:
      //
      // Function: Find inverse affine transformation.

      double detxx = fM[kYY] * fM[kZZ] - fM[kYZ] * fM[kZY];
      double detxy = fM[kYX] * fM[kZZ] - fM[kYZ] * fM[kZX];
      double detxz = fM[kYX] * fM[kZY] - fM[kYY] * fM[kZX];
      double det = fM[kXX] * detxx - fM[kXY] * detxy + fM[kXZ] * detxz;
      if (det == 0) {
        std::cerr << "Transform3DPJ::inverse error: zero determinant" << std::endl;
        return;
      }
      det = 1. / det;
      detxx *= det;
      detxy *= det;
      detxz *= det;
      double detyx = (fM[kXY] * fM[kZZ] - fM[kXZ] * fM[kZY]) * det;
      double detyy = (fM[kXX] * fM[kZZ] - fM[kXZ] * fM[kZX]) * det;
      double detyz = (fM[kXX] * fM[kZY] - fM[kXY] * fM[kZX]) * det;
      double detzx = (fM[kXY] * fM[kYZ] - fM[kXZ] * fM[kYY]) * det;
      double detzy = (fM[kXX] * fM[kYZ] - fM[kXZ] * fM[kYX]) * det;
      double detzz = (fM[kXX] * fM[kYY] - fM[kXY] * fM[kYX]) * det;
      SetComponents(detxx,
                    -detyx,
                    detzx,
                    -detxx * fM[kDX] + detyx * fM[kDY] - detzx * fM[kDZ],
                    -detxy,
                    detyy,
                    -detzy,
                    detxy * fM[kDX] - detyy * fM[kDY] + detzy * fM[kDZ],
                    detxz,
                    -detyz,
                    detzz,
                    -detxz * fM[kDX] + detyz * fM[kDY] - detzz * fM[kDZ]);
    }

    // get rotations and translations
    void Transform3DPJ::GetDecomposition(Rotation3D &r, XYZVector &v) const {
      // decompose a trasfomation in a 3D rotation and in a 3D vector (cartesian coordinates)
      r.SetComponents(fM[kXX], fM[kXY], fM[kXZ], fM[kYX], fM[kYY], fM[kYZ], fM[kZX], fM[kZY], fM[kZZ]);

      v.SetCoordinates(fM[kDX], fM[kDY], fM[kDZ]);
    }

    // transformation on Position Vector (rotation + translations)
    XYZPoint Transform3DPJ::operator()(const XYZPoint &p) const {
      // pass through rotation class (could be implemented directly to be faster)

      Rotation3D r;
      XYZVector t;
      GetDecomposition(r, t);
      XYZPoint pnew = r(p);
      pnew += t;
      return pnew;
    }

    // transformation on Displacement Vector (only rotation)
    XYZVector Transform3DPJ::operator()(const XYZVector &v) const {
      // pass through rotation class ( could be implemented directly to be faster)

      Rotation3D r;
      XYZVector t;
      GetDecomposition(r, t);
      // only rotation
      return r(v);
    }

    Transform3DPJ &Transform3DPJ::operator*=(const Transform3DPJ &t) {
      // combination of transformations

      SetComponents(fM[kXX] * t.fM[kXX] + fM[kXY] * t.fM[kYX] + fM[kXZ] * t.fM[kZX],
                    fM[kXX] * t.fM[kXY] + fM[kXY] * t.fM[kYY] + fM[kXZ] * t.fM[kZY],
                    fM[kXX] * t.fM[kXZ] + fM[kXY] * t.fM[kYZ] + fM[kXZ] * t.fM[kZZ],
                    fM[kXX] * t.fM[kDX] + fM[kXY] * t.fM[kDY] + fM[kXZ] * t.fM[kDZ] + fM[kDX],

                    fM[kYX] * t.fM[kXX] + fM[kYY] * t.fM[kYX] + fM[kYZ] * t.fM[kZX],
                    fM[kYX] * t.fM[kXY] + fM[kYY] * t.fM[kYY] + fM[kYZ] * t.fM[kZY],
                    fM[kYX] * t.fM[kXZ] + fM[kYY] * t.fM[kYZ] + fM[kYZ] * t.fM[kZZ],
                    fM[kYX] * t.fM[kDX] + fM[kYY] * t.fM[kDY] + fM[kYZ] * t.fM[kDZ] + fM[kDY],

                    fM[kZX] * t.fM[kXX] + fM[kZY] * t.fM[kYX] + fM[kZZ] * t.fM[kZX],
                    fM[kZX] * t.fM[kXY] + fM[kZY] * t.fM[kYY] + fM[kZZ] * t.fM[kZY],
                    fM[kZX] * t.fM[kXZ] + fM[kZY] * t.fM[kYZ] + fM[kZZ] * t.fM[kZZ],
                    fM[kZX] * t.fM[kDX] + fM[kZY] * t.fM[kDY] + fM[kZZ] * t.fM[kDZ] + fM[kDZ]);

      return *this;
    }

    void Transform3DPJ::SetIdentity() {
      //set identity ( identity rotation and zero translation)
      fM[kXX] = 1.0;
      fM[kXY] = 0.0;
      fM[kXZ] = 0.0;
      fM[kDX] = 0.0;
      fM[kYX] = 0.0;
      fM[kYY] = 1.0;
      fM[kYZ] = 0.0;
      fM[kDY] = 0.0;
      fM[kZX] = 0.0;
      fM[kZY] = 0.0;
      fM[kZZ] = 1.0;
      fM[kDZ] = 0.0;
    }

    void Transform3DPJ::AssignFrom(const Rotation3D &r, const XYZVector &v) {
      // assignment  from rotation + translation

      double rotData[9];
      r.GetComponents(rotData, rotData + 9);
      // first raw
      for (int i = 0; i < 3; ++i)
        fM[i] = rotData[i];
      // second raw
      for (int i = 0; i < 3; ++i)
        fM[kYX + i] = rotData[3 + i];
      // third raw
      for (int i = 0; i < 3; ++i)
        fM[kZX + i] = rotData[6 + i];

      // translation data
      double vecData[3];
      v.GetCoordinates(vecData, vecData + 3);
      fM[kDX] = vecData[0];
      fM[kDY] = vecData[1];
      fM[kDZ] = vecData[2];
    }

    void Transform3DPJ::AssignFrom(const Rotation3D &r) {
      // assign from only a rotation  (null translation)
      double rotData[9];
      r.GetComponents(rotData, rotData + 9);
      for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < 3; ++j)
          fM[4 * i + j] = rotData[3 * i + j];
        // empty vector data
        fM[4 * i + 3] = 0;
      }
    }

    void Transform3DPJ::AssignFrom(const XYZVector &v) {
      // assign from a translation only (identity rotations)
      fM[kXX] = 1.0;
      fM[kXY] = 0.0;
      fM[kXZ] = 0.0;
      fM[kDX] = v.X();
      fM[kYX] = 0.0;
      fM[kYY] = 1.0;
      fM[kYZ] = 0.0;
      fM[kDY] = v.Y();
      fM[kZX] = 0.0;
      fM[kZY] = 0.0;
      fM[kZZ] = 1.0;
      fM[kDZ] = v.Z();
    }

    Plane3D Transform3DPJ::operator()(const Plane3D &plane) const {
      // transformations on a 3D plane
      XYZVector n = plane.Normal();
      // take a point on the plane. Use origin projection on the plane
      // ( -ad, -bd, -cd) if (a**2 + b**2 + c**2 ) = 1
      double d = plane.HesseDistance();
      XYZPoint p(-d * n.X(), -d * n.Y(), -d * n.Z());
      return Plane3D(operator()(n), operator()(p));
    }

    std::ostream &operator<<(std::ostream &os, const Transform3DPJ &t) {
      // TODO - this will need changing for machine-readable issues
      //        and even the human readable form needs formatiing improvements

      double m[12];
      t.GetComponents(m, m + 12);
      os << "\n" << m[0] << "  " << m[1] << "  " << m[2] << "  " << m[3];
      os << "\n" << m[4] << "  " << m[5] << "  " << m[6] << "  " << m[7];
      os << "\n" << m[8] << "  " << m[9] << "  " << m[10] << "  " << m[11] << "\n";
      return os;
    }

  }  // end namespace Math
}  // end namespace ROOT