EcalHitMaker

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
#ifndef FastSimulation_CaloHitMakers_EcalHitMaker_h
#define FastSimulation_CaloHitMakers_EcalHitMaker_h

#include "Geometry/CaloTopology/interface/CaloDirection.h"

//#include "FastSimulation/Event/interface/FSimTrack.h"
#include "FastSimulation/CaloHitMakers/interface/CaloHitMaker.h"
#include "FastSimulation/CaloGeometryTools/interface/CaloPoint.h"
#include "FastSimulation/CaloGeometryTools/interface/CaloSegment.h"
#include "FastSimulation/CaloGeometryTools/interface/CrystalPad.h"
#include "FastSimulation/CaloGeometryTools/interface/Crystal.h"
#include "FastSimulation/Utilities/interface/FamosDebug.h"

//#include <boost/cstdint.hpp>

#include <vector>

class CaloGeometryHelper;
class CrystalWindowMap;
class Histos;
class RandomEngineAndDistribution;
class FSimTrack;

class EcalHitMaker : public CaloHitMaker {
public:
  typedef math::XYZVector XYZVector;
  typedef math::XYZVector XYZPoint;
  typedef math::XYZVector XYZNormal;
  typedef ROOT::Math::Plane3D Plane3D;

  EcalHitMaker(CaloGeometryHelper* calo,
               const XYZPoint& ecalentrance,
               const DetId& cell,
               int onEcal,
               unsigned size,
               unsigned showertype,
               const RandomEngineAndDistribution* engine);

  ~EcalHitMaker() override;

  // This is not part of the constructor but it has to be called very early
  void setTrackParameters(const XYZNormal& normal, double X0depthoffset, const FSimTrack& theTrack);

  // The following methods are related to the path of the particle
  // through the detector.

  // Number of X0 "seen" by the track
  //  inline double totalX0() const {return totalX0_-X0depthoffset_;};
  inline double totalX0() const { return totalX0_; };

  /// Number of interaction length "seen" by the track
  inline double totalL0() const { return totalL0_; };

  /// get the offset (e.g the number of X0 after which the shower starts)
  inline double x0DepthOffset() const { return X0depthoffset_; }

  // total number of X0 in the PS (Layer1).
  inline double ps1TotalX0() const { return X0PS1_; }

  /// total number of X0 in the PS (Layer2).
  inline double ps2TotalX0() const { return X0PS2_; }

  // number of X0 between PS2 and EE
  inline double ps2eeTotalX0() const { return X0PS2EE_; }

  /// in the ECAL
  inline double ecalTotalX0() const { return X0ECAL_; }

  /// ECAL-HCAL transition
  inline double ecalHcalGapTotalX0() const { return X0EHGAP_; }

  /// in the HCAL
  inline double hcalTotalX0() const { return X0HCAL_; }

  /// total number of L0 in the PS (Layer1).
  inline double ps1TotalL0() const { return L0PS1_; }

  /// total number of L0 in the PS (Layer2).
  inline double ps2TotalL0() const { return L0PS2_; }

  // number of X0 between PS2 and EE
  inline double ps2eeTotalL0() const { return L0PS2EE_; }

  /// in the ECAL
  inline double ecalTotalL0() const { return L0ECAL_; }

  /// in the HCAL
  inline double hcalTotalL0() const { return L0HCAL_; }

  /// ECAL-HCAL transition
  inline double ecalHcalGapTotalL0() const { return L0EHGAP_; }

  /// retrieve the segments (the path in the crystal crossed by the extrapolation
  /// of the track. Debugging only
  inline const std::vector<CaloSegment>& getSegments() const { return segments_; };

  // The following methods are EM showers specific

  /// computes the crystals-plan intersection at depth (in X0 or L0 depending on the
  ///shower type)
  /// if it is not possible to go at such a depth, the result is false
  bool getPads(double depth, bool inCm = false);

  inline double getX0back() const { return maxX0_; }

  bool addHitDepth(double r, double phi, double depth = -1);

  bool addHit(double r, double phi, unsigned layer = 0) override;

  unsigned fastInsideCell(const CLHEP::Hep2Vector& point, double& sp, bool debug = false);

  inline void setSpotEnergy(double e) override { spotEnergy = e; }

  /// get the map of the stored hits. Triggers the calculation of the grid if it has
  /// not been done.

  const std::map<CaloHitID, float>& getHits() override;

  /// To retrieve the track
  const FSimTrack* getFSimTrack() const { return myTrack_; }

  ///   used in FamosHcalHitMaker
  inline const XYZPoint& ecalEntrance() const { return EcalEntrance_; };

  inline void setRadiusFactor(double r) { radiusCorrectionFactor_ = r; }

  inline void setPulledPadSurvivalProbability(double val) { pulledPadProbability_ = val; };

  inline void setCrackPadSurvivalProbability(double val) { crackPadProbability_ = val; };

  // set preshower
  inline void setPreshowerPresent(bool ps) { simulatePreshower_ = ps; };

  /// for debugging
  inline const std::vector<Crystal>& getCrystals() const { return regionOfInterest_; }

private:
  // Computes the intersections of a track with the different calorimeters
  void cellLine(std::vector<CaloPoint>& cp);

  void preshowerCellLine(std::vector<CaloPoint>& cp) const;

  void hcalCellLine(std::vector<CaloPoint>& cp) const;

  void ecalCellLine(const XYZPoint&, const XYZPoint&, std::vector<CaloPoint>& cp);

  void buildSegments(const std::vector<CaloPoint>& cp);

  // retrieves the 7x7 crystals and builds the map of neighbours
  void buildGeometry();

  // depth-dependent geometry operations
  void configureGeometry();

  // project fPoint on the plane (origin,normal)
  bool pulled(const XYZPoint& origin, const XYZNormal& normal, XYZPoint& fPoint) const;

  //  the numbering within the grid
  void prepareCrystalNumberArray();

  // find approximately the pad corresponding to (x,y)
  void convertIntegerCoordinates(double x, double y, unsigned& ix, unsigned& iy) const;

  // pads reorganization (to lift the gaps)
  void reorganizePads();

  // retrieves the coordinates of a corner belonging to the neighbour
  typedef std::pair<CaloDirection, unsigned> neighbour;
  CLHEP::Hep2Vector& correspondingEdge(neighbour& myneighbour, CaloDirection dir2);

  // almost the same
  bool diagonalEdge(unsigned myPad, CaloDirection dir, CLHEP::Hep2Vector& point);

  // check if there is an unbalanced direction in the input vertor. If the result is true,
  // the cooresponding directions are returned dir1+dir2=unb
  bool unbalancedDirection(const std::vector<neighbour>& dirs, unsigned& unb, unsigned& dir1, unsigned& dir2);

  // glue the pads together if there is no crack between them
  void gapsLifting(std::vector<neighbour>& gaps, unsigned iq);

  // creates a crack
  void cracksPads(std::vector<neighbour>& cracks, unsigned iq);

private:
  bool inside3D(const std::vector<XYZPoint>&, const XYZPoint& p) const;

  // the numbering of the pads
  std::vector<std::vector<unsigned> > myCrystalNumberArray_;

  // The following quantities are related to the path of the track through the detector
  double totalX0_;
  double totalL0_;
  double X0depthoffset_;
  double X0PS1_;
  double X0PS2_;
  double X0PS2EE_;
  double X0ECAL_;
  double X0EHGAP_;
  double X0HCAL_;
  double L0PS1_;
  double L0PS2_;
  double L0PS2EE_;
  double L0ECAL_;
  double L0HCAL_;
  double L0EHGAP_;

  double maxX0_;
  double rearleakage_;
  double outsideWindowEnergy_;

  // Grid construction
  Crystal pivot_;
  XYZPoint EcalEntrance_;
  XYZNormal normal_;
  int central_;
  int onEcal_;

  bool configuredGeometry_;
  unsigned ncrystals_;
  // size of the grid in the(x,y) plane
  unsigned nx_, ny_;
  double xmin_, xmax_, ymin_, ymax_;

  std::vector<DetId> CellsWindow_;
  std::vector<Crystal> regionOfInterest_;
  std::vector<float> hits_;
  // Validity of the pads. To be valid, the intersection of the crytal with the plane should have 4 corners
  std::vector<bool> validPads_;
  // Get the index of the crystal (in hits_ or regionOfInterest_) when its CellID is known
  // Needed because the navigation uses DetIds.
  std::map<DetId, unsigned> DetIdMap_;

  CrystalWindowMap* myCrystalWindowMap_;

  // First segment in ECAL
  int ecalFirstSegment_;

  // Properties of the crystal window
  unsigned etasize_;
  unsigned phisize_;
  // is the grid complete ?
  bool truncatedGrid_;

  // shower simulation quantities
  // This one is the shower enlargment wrt Grindhammer
  double radiusCorrectionFactor_;
  // moliere radius  * radiuscorrectionfactor OR interactionlength
  double radiusFactor_;
  // is it necessary to trigger the detailed simulation of the shower tail ?
  bool detailedShowerTail_;
  // current depth
  double currentdepth_;
  // magnetic field correction factor
  double bfactor_;
  // simulate preshower
  bool simulatePreshower_;

  // pads-depth specific quantities
  unsigned ncrackpadsatdepth_;
  unsigned npadsatdepth_;
  Plane3D plan_;
  // spot survival probability for a pulled pad - corresponding to the front face of a crystal
  // on the plan located in front of the crystal - Front leaking
  double pulledPadProbability_;
  // spot survival probability for the craks
  double crackPadProbability_;
  // size of the grid in the plane
  double sizex_, sizey_;

  //  int fsimtrack_;
  const FSimTrack* myTrack_;

  // vector of the intersection of the track with the dectectors (PS,ECAL,HCAL)
  std::vector<CaloPoint> intersections_;
  // segments obtained from the intersections
  std::vector<CaloSegment> segments_;
  // should the pads be reorganized (most of the time YES! )
  bool doreorg_;

  // the geometrical objects
  std::vector<CrystalPad> padsatdepth_;
  std::vector<CrystalPad> crackpadsatdepth_;

  bool hitmaphasbeencalculated_;

  // A local vector of corners, to avoid reserving, newing and mallocing
  std::vector<CLHEP::Hep2Vector> mycorners;
  std::vector<XYZPoint> corners;

  const RandomEngineAndDistribution* random;

#ifdef FAMOSDEBUG
  Histos* myHistos;
#endif
};

#endif