1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
import FWCore.ParameterSet.Config as cms
# This is used to modify parameters for Run 2 (see bottom of file)
#Global fast calorimetry parameters
from FastSimulation.Calorimetry.HcalResponse_cfi import *
from FastSimulation.Calorimetry.HSParameters_cfi import *
from Geometry.HcalSimData.HFParameters_cff import *
#from FastSimulation.Configuration.CommonInputs_cff import *
from FastSimulation.Calorimetry.ECALResponse_cfi import *
FamosCalorimetryBlock = cms.PSet(
Calorimetry = cms.PSet(
#ECALScaleBlock, # comment out to disable scaling
HSParameterBlock,
HCALResponseBlock,
ECAL = cms.PSet(
# See FastSimulation/CaloRecHitsProducer/python/CaloRecHits_cff.py
Digitizer = cms.untracked.bool(False),
# If set to true the simulation in ECAL would be done 1X0 by 1X0
# this is slow but more adapted to detailed studies.
# Otherwise roughty 5 steps are used.
bFixedLength = cms.bool(False),
# For the core 10% of the spots for
CoreIntervals = cms.vdouble(100.0, 0.1),
# change the radius of the tail of the shower
RTFactor = cms.double(1.0),
# change the radius of the core of the shower
RCFactor = cms.double(1.0),
# For the tail 10% of r<1RM. 100% otherwise
TailIntervals = cms.vdouble(1.0, 0.1, 100.0, 1.0),
FrontLeakageProbability = cms.double(1.0),
GridSize = cms.int32(7),
# change globally the Moliere radius
### changed after tuning - Feb - July - Shilpi Jain
#RadiusFactor = cms.double(1.096),
RadiusFactorEB = cms.double(1.096),
RadiusFactorEE = cms.double(1.25),
### changed after tuning - Feb - July - Shilpi Jain
RadiusPreshowerCorrections = cms.vdouble(0.137, 10.3), # default value for maxshower depth dependence-->works fine
MipsinGeV = cms.vdouble(0.0001421,0.0000812), # increase in mipsinGeV by 75% only in layer1
#SpotFraction < 0 <=> deactivated. In the case, CoreIntervals and
#TailIntervals are used
SpotFraction = cms.double(-1.0),
GapLossProbability = cms.double(0.9),
SimulatePreshower = cms.bool(True)
),
ForwardCalorimeterProperties = cms.PSet(
HadronicCalorimeterProperties= cms.PSet(
HCAL_Sampling = cms.double(0.0035),
# Watch out ! The following two values are defined wrt the electron shower simulation
# There are not directly related to the detector properties
HCAL_PiOverE = cms.double(0.2),
# HCAL_PiOverE = cms.double(0.4)
HCALAeff= cms.double(55.845),
HCALZeff= cms.double(26),
HCALrho= cms.double(7.87),
HCALradiationLengthIncm= cms.double(1.757),
HCALradLenIngcm2= cms.double(13.84),
HCALmoliereRadius= cms.double(1.719),
HCALcriticalEnergy= cms.double(21E-3),
HCALinteractionLength= cms.double(16.77),
HCALetatow=cms.vdouble( 0.000, 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566, 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.853, 3.000, 3.139, 3.314, 3.489, 3.664, 3.839, 4.013, 4.191, 4.363, 4.538, 4.716, 4.889, 5.191),
# HCALDepthLam=cms.vdouble( 8.930, 9.001, 9.132, 8.912, 8.104, 8.571, 8.852, 9.230, 9.732, 10.29, 10.95, 11.68, 12.49, 12.57, 12.63, 6.449, 5.806, 8.973, 8.934, 8.823, 8.727, 8.641, 8.565, 8.496, 8.436, 8.383, 8.346, 8.307, 8.298, 8.281, 9.442, 9.437, 9.432, 9.429, 9.432, 9.433, 9.430, 9.437, 9.442, 9.446, 9.435)
HCALDepthLam=cms.vdouble(8.014, 8.078, 8.195, 7.998, 7.273, 7.692, 7.944, 8.283, 8.734, 9.235, 9.827, 10.482, 11.209, 11.281, 11.335, 5.788, 5.211, 8.053, 8.018, 7.918, 7.832, 7.755, 7.687, 7.625, 7.571, 7.523, 7.490, 7.455, 7.447, 7.432, 8.474, 8.469, 8.465, 8.462, 8.465, 8.466, 8.463, 8.469, 8.474, 8.477, 8.467)
),
),
CalorimeterProperties = cms.PSet(
# triplet for each p value: p, k_e(p), k_h(p) ...
RespCorrP = cms.vdouble(1.0, 1.0, 1.0, 1000.0, 1.0, 1.0),
PreshowerLayer2_thickness = cms.double(0.38), # layer2 thickness back to original
ECALEndcap_LightCollection = cms.double(0.023),
PreshowerLayer1_thickness = cms.double(1.65), # increase in thickness of layer 1 by 3%
PreshowerLayer1_mipsPerGeV = cms.double(17.85), # 50% decrease in mipsperGeV
PreshowerLayer2_mipsPerGeV = cms.double(59.5),
ECALBarrel_LightCollection = cms.double(0.03),
HadronicCalorimeterProperties= cms.PSet(
HCAL_Sampling = cms.double(0.0035),
# Watch out ! The following two values are defined wrt the electron shower simulation
# There are not directly related to the detector properties
HCAL_PiOverE = cms.double(0.2),
# HCAL_PiOverE = cms.double(0.4)
HCALAeff= cms.double(63.546),
HCALZeff= cms.double(29.),
HCALrho= cms.double(8.960),
HCALradiationLengthIncm= cms.double(1.43),
HCALradLenIngcm2= cms.double(12.86),
HCALmoliereRadius= cms.double(1.712),
HCALcriticalEnergy= cms.double(18.63E-3),
HCALinteractionLength= cms.double(15.05),
HCALetatow=cms.vdouble( 0.000, 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566, 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.853, 3.000, 3.139, 3.314, 3.489, 3.664, 3.839, 4.013, 4.191, 4.363, 4.538, 4.716, 4.889, 5.191),
HCALDepthLam=cms.vdouble( 8.930, 9.001, 9.132, 8.912, 8.104, 8.571, 8.852, 9.230, 9.732, 10.29, 10.95, 11.68, 12.49, 12.57, 12.63, 6.449, 5.806, 8.973, 8.934, 8.823, 8.727, 8.641, 8.565, 8.496, 8.436, 8.383, 8.346, 8.307, 8.298, 8.281, 9.442, 9.437, 9.432, 9.429, 9.432, 9.433, 9.430, 9.437, 9.442, 9.446, 9.435)
),
BarrelCalorimeterProperties = cms.PSet(
#====== Geometrical material properties ========
# Light Collection efficiency
lightColl = cms.double(0.03),
# Light Collection uniformity
lightCollUnif = cms.double(0.003),
# Photostatistics (photons/GeV) in the homegeneous material
photoStatistics = cms.double(50.E3),
# Thickness of the detector in cm
thickness = cms.double(23.0),
#====== Global parameters of the material ========
# Interaction length in cm
interactionLength = cms.double(18.5),
Aeff = cms.double(170.87),
Zeff = cms.double(68.36),
rho = cms.double(8.280),
# Radiation length in g/cm^2
radLenIngcm2 = cms.double(7.37),
# ===== Those parameters might be entered by hand
# or calculated out of the previous ones
# Radiation length in cm. If value set to -1, FastSim uses internally the
# formula radLenIngcm2/rho
radLenIncm = cms.double(0.89),
# Critical energy in GeV. If value set to -1, FastSim uses internally the
# formula (2.66E-3*(x0*Z/A)^1.1): 8.74E-3 for ECAL EndCap
criticalEnergy = cms.double(8.74E-3),
# Moliere Radius in cm.If value set to -1, FastSim uses internally the
# formula : Es/criticalEnergy*X0 with Es=sqrt(4*Pi/alphaEM)*me*c^2=0.0212 GeV
# This value is known to be 2.190 cm for ECAL Endcap, but the formula gives 2.159 cm
moliereRadius = cms.double(2.190),
#====== Parameters for sampling ECAL ========
# Sampling Fraction: Fs = X0eff/(da+dp) where X0eff is the average X0
# of the active and passive media and da/dp their thicknesses
Fs = cms.double(0.0),
# e/mip for the calorimeter. May be estimated by 1./(1+0.007*(Zp-Za))
ehat = cms.double(0.0),
# a rough estimate of ECAL resolution sigma/E = resE/sqrt(E)
# it is used to generate Nspots in radial profiles.
resE = cms.double(1.),
# the width in cm of the active layer
da = cms.double(0.2),
# the width in cm of the passive layer
dp = cms.double(0.8),
# Is a homogenious detector?
bHom = cms.bool(True),
# Activate the LogDebug
debug = cms.bool(False)
),
EndcapCalorimeterProperties = cms.PSet(
#====== Geometrical material properties ========
# Light Collection efficiency
lightColl = cms.double(0.023),
# Light Collection uniformity
lightCollUnif = cms.double(0.003),
# Photostatistics (photons/GeV) in the homegeneous material
photoStatistics = cms.double(50.E3),
# Thickness of the detector in cm
thickness = cms.double(22.0),
#====== Global parameters of the material ========
# Interaction length in cm
interactionLength = cms.double(18.5),
Aeff = cms.double(170.87),
Zeff = cms.double(68.36),
rho = cms.double(8.280),
# Radiation length in g/cm^2
radLenIngcm2 = cms.double(7.37),
# ===== Those parameters might be entered by hand
# or calculated out of the previous ones
# Radiation length in cm. If value set to -1, FastSim uses internally the
# formula radLenIngcm2/rho
radLenIncm = cms.double(0.89),
# Critical energy in GeV. If value set to -1, FastSim uses internally the
# formula (2.66E-3*(x0*Z/A)^1.1): 8.74E-3 for ECAL EndCap
criticalEnergy = cms.double(8.74E-3),
# Moliere Radius in cm.If value set to -1, FastSim uses internally the
# formula : Es/criticalEnergy*X0 with Es=sqrt(4*Pi/alphaEM)*me*c^2=0.0212 GeV
# This value is known to be 2.190 cm for ECAL Endcap, but the formula gives 2.159 cm
moliereRadius = cms.double(2.190),
#====== Parameters for sampling ECAL ========
# Sampling Fraction: Fs = X0eff/(da+dp) where X0eff is the average X0
# of the active and passive media and da/dp their thicknesses
Fs = cms.double(0.0),
# e/mip for the calorimeter. May be estimated by 1./(1+0.007*(Zp-Za))
ehat = cms.double(0.0),
# a rough estimate of ECAL resolution sigma/E = resE/sqrt(E)
# it is used to generate Nspots in radial profiles.
resE = cms.double(1.),
# the width in cm of the active layer
da = cms.double(0.2),
# the width in cm of the passive layer
dp = cms.double(0.8),
# Is a homogenious detector?
bHom = cms.bool(True),
# Activate the LogDebug
debug = cms.bool(False)
)
),
Debug = cms.untracked.bool(False),
useDQM = cms.untracked.bool(False),
# EvtsToDebug = cms.untracked.vuint32(487),
HCAL = cms.PSet(
SimMethod = cms.int32(0), ## 0 - use HDShower, 1 - use HDRShower, 2 - GFLASH
GridSize = cms.int32(7),
#-- 0 - simple response, 1 - parametrized response + showering, 2 - tabulated response + showering
SimOption = cms.int32(2),
Digitizer = cms.untracked.bool(False),
samplingHBHE = cms.vdouble(125.44, 125.54, 125.32, 125.13, 124.46,
125.01, 125.22, 125.48, 124.45, 125.90,
125.83, 127.01, 126.82, 129.73, 131.83,
143.52, # HB
210.55, 197.93, 186.12, 189.64, 189.63,
190.28, 189.61, 189.60, 190.12, 191.22,
190.90, 193.06, 188.42, 188.42), #HE
samplingHF = cms.vdouble(0.383, 0.368),
samplingHO = cms.vdouble(231.0, 231.0, 231.0, 231.0, 360.0,
360.0, 360.0, 360.0, 360.0, 360.0,
360.0, 360.0, 360.0, 360.0, 360.0),
ietaShiftHB = cms.int32(1),
timeShiftHB = cms.vdouble(6.9, 6.9, 7.1, 7.1, 7.3, 7.5, 7.9, 8.3, 8.7, 9.1, 9.5, 10.3, 10.9, 11.5, 12.3, 14.1),
ietaShiftHE = cms.int32(16),
timeShiftHE = cms.vdouble(16.9, 15.7, 15.3, 15.3, 15.1, 14.9, 14.7, 14.7, 14.5, 14.5, 14.3, 14.3, 14.5, 13.9),
ietaShiftHO = cms.int32(1),
timeShiftHO = cms.vdouble(13.7, 13.7, 13.9, 14.1, 15.1, 15.7, 16.5, 17.3, 18.1, 19.1, 20.3, 21.9, 23.3, 25.5, 26.1),
ietaShiftHF = cms.int32(29),
timeShiftHF = cms.vdouble(50.7, 52.5, 52.9, 53.9, 54.5, 55.1, 55.1, 55.7, 55.9, 56.1, 56.1, 56.1, 56.5),
),
HFShower = cms.PSet(
HFShowerBlock = cms.PSet(refToPSet_ = cms.string("HFShowerBlock"))
),
HFShowerLibrary = cms.PSet(
useShowerLibrary = cms.untracked.bool(True),
useCorrectionSL = cms.untracked.bool(True),
ApplyFiducialCut = cms.bool(True),
HFLibraryFileBlock = cms.PSet(refToPSet_ = cms.string("HFLibraryFileBlock"))
)
),
GFlash = cms.PSet(
GflashExportToFastSim = cms.bool(True),
GflashHadronPhysics = cms.string('QGSP_BERT'),
GflashEMShowerModel = cms.bool(False),
GflashHadronShowerModel = cms.bool(True),
GflashHcalOuter = cms.bool(False),
GflashHistogram = cms.bool(False),
GflashHistogramName = cms.string('gflash_histogram.root'),
Verbosity = cms.untracked.int32(0),
bField = cms.double(3.8),
watcherOn = cms.bool(False),
tuning_pList = cms.vdouble()
)
)
FamosCalorimetryBlock.Calorimetry.ECAL.Digitizer = True
FamosCalorimetryBlock.Calorimetry.HCAL.Digitizer = True
from Configuration.Eras.Modifier_run2_common_cff import run2_common
|