1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
import FWCore.ParameterSet.Config as cms
# Material effects to be simulated in the tracker material and associated cuts
MaterialEffectsBlock = cms.PSet(
MaterialEffects = cms.PSet(
use_hardcoded_geometry = cms.bool(True),
# Material Properties (Silicon)
# A
A = cms.double(28.0855),
# Z
Z = cms.double(14.0),
# Density in g/cm3
Density = cms.double(2.329),
# One radiation length in cm
RadiationLength = cms.double(9.36),
# upper energy limit for the Bertini cascade
EkinBertiniGeV = cms.double(3.5),
# Kinetic energy threshold for secondaries
EkinLimitGeV = cms.double(0.1),
# General switches
# Enable photon pair conversion
PairProduction = cms.bool(True),
# Smallest photon energy allowed for conversion
photonEnergy = cms.double(0.1),
# Enable electron Bremsstrahlung
Bremsstrahlung = cms.bool(True),
# Enable muon Bremsstrahlung
MuonBremsstrahlung = cms.bool(False),
# Smallest bremstrahlung photon energy
bremEnergy = cms.double(0.1),
# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
bremEnergyFraction = cms.double(0.005),
# Enable dE/dx
EnergyLoss = cms.bool(True),
# Enable Multiple Scattering
MultipleScattering = cms.bool(True),
# Smallest pT for the Mutliple Scattering
pTmin = cms.double(0.2),
# Enable Nuclear Interactions
NuclearInteraction = cms.bool(True), # buggy, should be removed on long term
#
G4NuclearInteraction = cms.bool(False),
# The energies of the pions used in the above files (same order)
hadronEnergies = cms.untracked.vdouble(
1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 9.0, 12.0, 15.0, 20.0,
30.0, 50.0, 100.0, 200.0, 300.0, 500.0, 700.0, 1000.0
),
# The particle types simulated
hadronTypes = cms.untracked.vint32(
211, -211, 130, 321, -321, 2212, -2212, 2112, -2112
),
# The corresponding particle names
hadronNames = cms.untracked.vstring(
'piplus', 'piminus', 'K0L', 'Kplus', 'Kminus', 'p', 'pbar', 'n', 'nbar'
),
# The corresponding particle masses
hadronMasses = cms.untracked.vdouble(
0.13957, 0.13957, 0.497648, 0.493677, 0.493677,
0.93827, 0.93827, 0.939565, 0.939565
),
# The corresponding smallest momenta for which an inleatic interaction may occur
hadronMinP = cms.untracked.vdouble(
0.7, 0.0, 1.0, 1.0, 0.0, 1.1, 0.0, 1.1, 0.0
),
# The scaling of the inelastic cross section with energy
ratios = cms.untracked.vdouble(
# pi+ (211)
0.031390573,0.531842852,0.819614219,0.951251711,0.986382750,1.000000000,0.985087033,0.982996773,
0.990832192,0.992237923,0.994841580,0.973816742,0.967264815,0.971714258,0.969122824,0.978681792,
0.977312732,0.984255819,
# pi- (-211)
0.035326512,0.577356403,0.857118809,0.965683504,0.989659360,1.000000000,0.989599240,0.980665408,
0.988384816,0.981038152,0.975002104,0.959996152,0.953310808,0.954705592,0.957615400,0.961150456,
0.965022184,0.960573304,
# K0L (130)
0.000000000,0.370261189,0.649793096,0.734342408,0.749079499,0.753360057,0.755790543,0.755872164,
0.751337674,0.746685288,0.747519634,0.739357554,0.735004444,0.803039922,0.832749896,0.890900187,
0.936734805,1.000000000,
# K+ (321)
0.000000000,0.175571717,0.391683394,0.528946472,0.572818635,0.614210280,0.644125538,0.670304050,
0.685144573,0.702870161,0.714708513,0.730805263,0.777711536,0.831090576,0.869267129,0.915747562,
0.953370523,1.000000000,
# K- (-321)
0.000000000,0.365353210,0.611663677,0.715315908,0.733498956,0.738361302,0.745253654,0.751459671,
0.750628335,0.746442657,0.750850669,0.744895986,0.735093960,0.791663444,0.828609543,0.889993040,
0.940897842,1.000000000,
# proton (2212)
0.000000000,0.042849136,0.459103223,0.666165343,0.787930873,0.890397011,0.920999533,0.937832788,
0.950920131,0.966595049,0.979542270,0.988061653,0.983260159,0.988958431,0.991723494,0.995273237,
1.000000000,0.999962634,
# anti-proton (-2212)
1.000000000,0.849956907,0.775625988,0.802018230,0.816207485,0.785899785,0.754998487,0.728977244,
0.710010673,0.670890339,0.665627872,0.652682888,0.613334247,0.647534574,0.667910938,0.689919693,
0.709200185,0.724199928,
# neutron (2112)
0.000000000,0.059216484,0.437844536,0.610370629,0.702090648,0.780076890,0.802143073,0.819570432,
0.825829666,0.840079750,0.838435509,0.837529986,0.835687165,0.885205014,0.912450156,0.951451221,
0.973215562,1.000000000,
# anti-neutron
1.000000000,0.849573257,0.756479495,0.787147094,0.804572414,0.791806302,0.760234588,0.741109531,
0.724118186,0.692829761,0.688465897,0.671806061,0.636461171,0.675314029,0.699134460,0.724305037,
0.742556115,0.758504713
),
# The correspondence between long-lived hadrons/ions and the simulated hadron list
protons = cms.untracked.vint32(2212, 3222, -101, -102, -103, -104),
antiprotons = cms.untracked.vint32(-2212, -3222),
neutrons = cms.untracked.vint32(2112, 3122, 3112, 3312, 3322, 3334, -3334),
antineutrons = cms.untracked.vint32(-2112, -3122, -3112, -3312, -3322),
K0Ls = cms.untracked.vint32(130, 310),
Kplusses = cms.untracked.vint32(321),
Kminusses = cms.untracked.vint32(-321),
Piplusses = cms.untracked.vint32(211),
Piminusses = cms.untracked.vint32(-211),
# The smallest pion energy for which nuclear interactions are simulated
pionEnergy = cms.double(0.2),
# The algorihm to detrmine the distance between the primary and the secondaries
# 0 = no link
# 1 = sin(theta12) - ~ ok at all momenta
# 2 = sin(theta12) * p1/p2 - bad, should not be used
distAlgo = cms.uint32(1),
distCut = cms.double(0.020), ## Default is 0.020 for algo 1;
# The ratio between radiation lengths and interation lengths in the tracker at 15 GeV
lengthRatio = cms.vdouble(
# pi+ pi- K0L K+ K- p pbar n nbar
# 0.2508, 0.2549, 0.3380, 0.2879, 0.3171, 0.3282, 0.5371, 0.3859, 0.5086 # before 170 tuning
0.2257, 0.2294, 0.3042, 0.2591, 0.2854, 0.3101, 0.5216, 0.3668, 0.4898 # after 170 tuning
),
# and a global fudge factor for TEC Layers to make it fit
fudgeFactor = cms.double(1.2),
# The file with the last nuclear interaction read in the previous run
# to be put in the local running directory (if desired)
inputFile = cms.untracked.string('NuclearInteractionInputFile.txt'),
)
)
MaterialEffectsForMuonsBlock = cms.PSet(
MaterialEffectsForMuons = cms.PSet(
use_hardcoded_geometry = cms.bool(True),
#print hi
#print use_hardcoded_geometry
# Material Properties (Iron - this is for muons)
# A
A = cms.double(55.8455),
# Z
Z = cms.double(26.0),
# Density in g/cm3
Density = cms.double(7.87),
# One radiation length in cm
RadiationLength = cms.double(1.76),
# GEneral switches
# Enable photon pair conversion
PairProduction = cms.bool(False),
# Smallest photon energy allowed for conversion
photonEnergy = cms.double(0.1),
# Enable electron Bremsstrahlung
Bremsstrahlung = cms.bool(False),
# Enable muon Bremsstrahlung
MuonBremsstrahlung = cms.bool(False),
# Smallest bremstrahlung photon energy
bremEnergy = cms.double(0.1),
# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
bremEnergyFraction = cms.double(0.005),
# Enable dE/dx
EnergyLoss = cms.bool(True),
# Enable Multiple Scattering
MultipleScattering = cms.bool(True),
# Smallest pT for the Mutliple Scattering
pTmin = cms.double(0.3),
# Enable Nuclear Interactions
G4NuclearInteraction = cms.bool(False),
NuclearInteraction = cms.bool(False)
)
)
MaterialEffectsForMuonsInECALBlock = cms.PSet(
MaterialEffectsForMuonsInECAL = cms.PSet(
use_hardcoded_geometry = cms.bool(True),
# Material Properties (PbW04 - this is for muons)
# A
A = cms.double(55.8455),
# Z
Z = cms.double(26.0),
# Density in g/cm3
Density = cms.double(8.280),
# One radiation length in cm
RadiationLength = cms.double(0.89),
# GEneral switches
# Enable photon pair conversion
PairProduction = cms.bool(False),
# Smallest photon energy allowed for conversion
photonEnergy = cms.double(0.1),
# Enable electron Bremsstrahlung
Bremsstrahlung = cms.bool(False),
# Enable muon Bremsstrahlung
MuonBremsstrahlung = cms.bool(False),
# Smallest bremstrahlung photon energy
bremEnergy = cms.double(0.1),
# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
bremEnergyFraction = cms.double(0.005),
# Enable dE/dx
EnergyLoss = cms.bool(False),
# Enable Multiple Scattering
MultipleScattering = cms.bool(False),
# Smallest pT for the Mutliple Scattering
pTmin = cms.double(0.3),
# Enable Nuclear Interactions
G4NuclearInteraction = cms.bool(False),
NuclearInteraction = cms.bool(False)
)
)
MaterialEffectsForMuonsInHCALBlock = cms.PSet(
MaterialEffectsForMuonsInHCAL = cms.PSet(
use_hardcoded_geometry = cms.bool(True),
# Material Properties (BRASS - this is for muons)
# A
A = cms.double(64.0),
# Z
Z = cms.double(29.0),
# Density in g/cm3
Density = cms.double(8.5),
# One radiation length in cm
RadiationLength = cms.double(1.44),
# GEneral switches
# Enable photon pair conversion
PairProduction = cms.bool(False),
# Smallest photon energy allowed for conversion
photonEnergy = cms.double(0.1),
# Enable electron Bremsstrahlung
Bremsstrahlung = cms.bool(False),
# Enable muon Bremsstrahlung
MuonBremsstrahlung = cms.bool(False),
# Smallest bremstrahlung photon energy
bremEnergy = cms.double(0.1),
# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
bremEnergyFraction = cms.double(0.005),
# Enable dE/dx
EnergyLoss = cms.bool(False),
# Enable Multiple Scattering
MultipleScattering = cms.bool(False),
# Smallest pT for the Mutliple Scattering
pTmin = cms.double(0.3),
# Enable Nuclear Interactions
G4NuclearInteraction = cms.bool(False),
NuclearInteraction = cms.bool(False)
)
)
|