Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
import FWCore.ParameterSet.Config as cms

# Material effects to be simulated in the tracker material and associated cuts
MaterialEffectsBlock = cms.PSet(
    MaterialEffects = cms.PSet(

        use_hardcoded_geometry = cms.bool(True),
    
        # Material Properties (Silicon)
        # A
        A = cms.double(28.0855),
	# Z
        Z = cms.double(14.0),
	# Density in g/cm3
        Density = cms.double(2.329),
	# One radiation length in cm
        RadiationLength = cms.double(9.36),
        # upper energy limit for the Bertini cascade 
        EkinBertiniGeV = cms.double(3.5),
        # Kinetic energy threshold for secondaries 
        EkinLimitGeV = cms.double(0.1),
	# General switches
	# Enable photon pair conversion 
        PairProduction = cms.bool(True),
	# Smallest photon energy allowed for conversion
        photonEnergy = cms.double(0.1),
	# Enable electron Bremsstrahlung
        Bremsstrahlung = cms.bool(True),
        # Enable muon  Bremsstrahlung
        MuonBremsstrahlung = cms.bool(False),
        # Smallest bremstrahlung photon energy
        bremEnergy = cms.double(0.1),
	# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
        bremEnergyFraction = cms.double(0.005),
	# Enable dE/dx
        EnergyLoss = cms.bool(True),
	# Enable Multiple Scattering
        MultipleScattering = cms.bool(True),
	# Smallest pT for the Mutliple Scattering 
        pTmin = cms.double(0.2),
	# Enable Nuclear Interactions
        NuclearInteraction = cms.bool(True), # buggy, should be removed on long term
        #
        G4NuclearInteraction = cms.bool(False), 	
        # The energies of the pions used in the above files (same order)
        hadronEnergies = cms.untracked.vdouble(
            1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 9.0, 12.0, 15.0, 20.0, 
            30.0, 50.0, 100.0, 200.0, 300.0, 500.0, 700.0, 1000.0
        ),
	# The particle types simulated
        hadronTypes = cms.untracked.vint32(
            211, -211, 130, 321, -321, 2212, -2212, 2112, -2112
        ),
	# The corresponding particle names
        hadronNames = cms.untracked.vstring(
            'piplus', 'piminus', 'K0L', 'Kplus', 'Kminus', 'p', 'pbar', 'n', 'nbar'
        ),
	# The corresponding particle masses
        hadronMasses = cms.untracked.vdouble(
            0.13957, 0.13957, 0.497648, 0.493677, 0.493677, 
	    0.93827, 0.93827, 0.939565, 0.939565 
	),
	# The corresponding smallest momenta for which an inleatic interaction may occur
        hadronMinP = cms.untracked.vdouble( 
	    0.7, 0.0, 1.0, 1.0, 0.0, 1.1, 0.0, 1.1, 0.0 
	),


	# The scaling of the inelastic cross section with energy 
        ratios = cms.untracked.vdouble(
            # pi+ (211)
	    0.031390573,0.531842852,0.819614219,0.951251711,0.986382750,1.000000000,0.985087033,0.982996773,
	    0.990832192,0.992237923,0.994841580,0.973816742,0.967264815,0.971714258,0.969122824,0.978681792,
	    0.977312732,0.984255819,
	    # pi- (-211)
	    0.035326512,0.577356403,0.857118809,0.965683504,0.989659360,1.000000000,0.989599240,0.980665408,
	    0.988384816,0.981038152,0.975002104,0.959996152,0.953310808,0.954705592,0.957615400,0.961150456,
	    0.965022184,0.960573304,
	    # K0L (130)
	    0.000000000,0.370261189,0.649793096,0.734342408,0.749079499,0.753360057,0.755790543,0.755872164,
	    0.751337674,0.746685288,0.747519634,0.739357554,0.735004444,0.803039922,0.832749896,0.890900187,
	    0.936734805,1.000000000,
	    # K+ (321)
	    0.000000000,0.175571717,0.391683394,0.528946472,0.572818635,0.614210280,0.644125538,0.670304050,
	    0.685144573,0.702870161,0.714708513,0.730805263,0.777711536,0.831090576,0.869267129,0.915747562,
	    0.953370523,1.000000000,
	    # K- (-321)
	    0.000000000,0.365353210,0.611663677,0.715315908,0.733498956,0.738361302,0.745253654,0.751459671,
	    0.750628335,0.746442657,0.750850669,0.744895986,0.735093960,0.791663444,0.828609543,0.889993040,
	    0.940897842,1.000000000,
	    # proton (2212)
	    0.000000000,0.042849136,0.459103223,0.666165343,0.787930873,0.890397011,0.920999533,0.937832788,
	    0.950920131,0.966595049,0.979542270,0.988061653,0.983260159,0.988958431,0.991723494,0.995273237,
	    1.000000000,0.999962634,
	    # anti-proton (-2212)
	    1.000000000,0.849956907,0.775625988,0.802018230,0.816207485,0.785899785,0.754998487,0.728977244, 
	    0.710010673,0.670890339,0.665627872,0.652682888,0.613334247,0.647534574,0.667910938,0.689919693, 
	    0.709200185,0.724199928,
	    # neutron (2112)
	    0.000000000,0.059216484,0.437844536,0.610370629,0.702090648,0.780076890,0.802143073,0.819570432,
	    0.825829666,0.840079750,0.838435509,0.837529986,0.835687165,0.885205014,0.912450156,0.951451221,
	    0.973215562,1.000000000,
	    # anti-neutron
	    1.000000000,0.849573257,0.756479495,0.787147094,0.804572414,0.791806302,0.760234588,0.741109531,
	    0.724118186,0.692829761,0.688465897,0.671806061,0.636461171,0.675314029,0.699134460,0.724305037,
	    0.742556115,0.758504713
	),
	
	# The correspondence between long-lived hadrons/ions and the simulated hadron list
        protons = cms.untracked.vint32(2212, 3222, -101, -102, -103, -104),
        antiprotons = cms.untracked.vint32(-2212, -3222),
        neutrons = cms.untracked.vint32(2112, 3122, 3112, 3312, 3322, 3334, -3334),
        antineutrons = cms.untracked.vint32(-2112, -3122, -3112, -3312, -3322), 
        K0Ls = cms.untracked.vint32(130, 310),
        Kplusses = cms.untracked.vint32(321),
        Kminusses = cms.untracked.vint32(-321),
        Piplusses = cms.untracked.vint32(211),
        Piminusses = cms.untracked.vint32(-211),

        # The smallest pion energy for which nuclear interactions are simulated
        pionEnergy = cms.double(0.2),
	
	# The algorihm to detrmine the distance between the primary and the secondaries
	# 0 = no link
	# 1 = sin(theta12) - ~ ok at all momenta
	# 2 = sin(theta12) * p1/p2 - bad, should not be used
        distAlgo = cms.uint32(1),
        distCut = cms.double(0.020), ## Default is 0.020 for algo 1;
	
	# The ratio between radiation lengths and interation lengths in the tracker at 15 GeV
        lengthRatio = cms.vdouble(
        #        pi+      pi-    K0L      K+      K-      p      pbar     n      nbar
	#   0.2508, 0.2549, 0.3380, 0.2879, 0.3171, 0.3282, 0.5371, 0.3859, 0.5086 # before 170 tuning
	    0.2257, 0.2294, 0.3042, 0.2591, 0.2854, 0.3101, 0.5216, 0.3668, 0.4898 # after 170 tuning
	),

        # and a global fudge factor for TEC Layers to make it fit
        fudgeFactor = cms.double(1.2),
	
        # The file with the last nuclear interaction read in the previous run
        # to be put in the local running directory (if desired)
        inputFile = cms.untracked.string('NuclearInteractionInputFile.txt'),
   )
)

MaterialEffectsForMuonsBlock = cms.PSet(
    MaterialEffectsForMuons = cms.PSet(

        use_hardcoded_geometry = cms.bool(True),
        #print hi
        #print use_hardcoded_geometry

	# Material Properties (Iron - this is for muons)
	# A
        A = cms.double(55.8455),
	# Z
        Z = cms.double(26.0),
	# Density in g/cm3
        Density = cms.double(7.87),
	# One radiation length in cm
        RadiationLength = cms.double(1.76),

	# GEneral switches
	# Enable photon pair conversion 
        PairProduction = cms.bool(False),
	# Smallest photon energy allowed for conversion
        photonEnergy = cms.double(0.1),
	# Enable electron Bremsstrahlung
        Bremsstrahlung = cms.bool(False),
        # Enable muon  Bremsstrahlung
        MuonBremsstrahlung = cms.bool(False),
	# Smallest bremstrahlung photon energy
        bremEnergy = cms.double(0.1),
	# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
        bremEnergyFraction = cms.double(0.005),
	# Enable dE/dx
        EnergyLoss = cms.bool(True),
	# Enable Multiple Scattering
        MultipleScattering = cms.bool(True),
	# Smallest pT for the Mutliple Scattering 
        pTmin = cms.double(0.3),
	# Enable Nuclear Interactions
        G4NuclearInteraction = cms.bool(False), 	
        NuclearInteraction = cms.bool(False)

    )
)

MaterialEffectsForMuonsInECALBlock = cms.PSet(
    MaterialEffectsForMuonsInECAL = cms.PSet(

        use_hardcoded_geometry = cms.bool(True),

	# Material Properties (PbW04 - this is for muons)
	# A
        A = cms.double(55.8455),
	# Z
        Z = cms.double(26.0),
	# Density in g/cm3
        Density = cms.double(8.280),
	# One radiation length in cm
        RadiationLength = cms.double(0.89),

	# GEneral switches
	# Enable photon pair conversion 
        PairProduction = cms.bool(False),
	# Smallest photon energy allowed for conversion
        photonEnergy = cms.double(0.1),
	# Enable electron Bremsstrahlung
        Bremsstrahlung = cms.bool(False),
        # Enable muon  Bremsstrahlung
        MuonBremsstrahlung = cms.bool(False),
        # Smallest bremstrahlung photon energy
        bremEnergy = cms.double(0.1),
	# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
        bremEnergyFraction = cms.double(0.005),
	# Enable dE/dx
        EnergyLoss = cms.bool(False),
	# Enable Multiple Scattering
        MultipleScattering = cms.bool(False),
	# Smallest pT for the Mutliple Scattering 
        pTmin = cms.double(0.3),
	# Enable Nuclear Interactions
        G4NuclearInteraction = cms.bool(False), 	
        NuclearInteraction = cms.bool(False)
    )
)

MaterialEffectsForMuonsInHCALBlock = cms.PSet(
    MaterialEffectsForMuonsInHCAL = cms.PSet(

        use_hardcoded_geometry = cms.bool(True),

	# Material Properties (BRASS - this is for muons)
	# A
        A = cms.double(64.0),
	# Z
        Z = cms.double(29.0),
	# Density in g/cm3
        Density = cms.double(8.5),
	# One radiation length in cm
        RadiationLength = cms.double(1.44),

	# GEneral switches
	# Enable photon pair conversion 
        PairProduction = cms.bool(False),
	# Smallest photon energy allowed for conversion
        photonEnergy = cms.double(0.1),
	# Enable electron Bremsstrahlung
        Bremsstrahlung = cms.bool(False),
        # Enable muon  Bremsstrahlung
        MuonBremsstrahlung = cms.bool(False),
        # Smallest bremstrahlung photon energy
        bremEnergy = cms.double(0.1),
	# Smallest bremsstrahlung energy fraction (wrt to the electron energy)
        bremEnergyFraction = cms.double(0.005),
	# Enable dE/dx
        EnergyLoss = cms.bool(False),
	# Enable Multiple Scattering
        MultipleScattering = cms.bool(False),
	# Smallest pT for the Mutliple Scattering 
        pTmin = cms.double(0.3),
	# Enable Nuclear Interactions
        G4NuclearInteraction = cms.bool(False), 	
        NuclearInteraction = cms.bool(False)

    )
)