1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
#ifndef EMECALShowerParametrization_H
#define EMECALShowerParametrization_H
#include "FastSimulation/CalorimeterProperties/interface/ECALProperties.h"
#include "FastSimulation/CalorimeterProperties/interface/HCALProperties.h"
#include "FastSimulation/CalorimeterProperties/interface/PreshowerLayer1Properties.h"
#include "FastSimulation/CalorimeterProperties/interface/PreshowerLayer2Properties.h"
/**
* Electromagnetic Shower parametrization utilities according to
* G. Grindhammer and S. Peters, hep-ex/0001020, Appendix A
*
* \author Patrick Janot
* \date: 25-Jan-2004
*/
#include <vector>
#include <cmath>
class EMECALShowerParametrization {
public:
EMECALShowerParametrization(const ECALProperties* ecal,
const HCALProperties* hcal,
const PreshowerLayer1Properties* layer1,
const PreshowerLayer2Properties* layer2,
const std::vector<double>& coreIntervals,
const std::vector<double>& tailIntervals,
double RCFact = 1.,
double RTFact = 1.)
: theECAL(ecal),
theHCAL(hcal),
theLayer1(layer1),
theLayer2(layer2),
theCore(coreIntervals),
theTail(tailIntervals),
theRcfactor(RCFact),
theRtfactor(RTFact) {}
virtual ~EMECALShowerParametrization() {}
//====== Longitudinal profiles =======
// -------- Average -------
inline double meanT(double lny) const {
if (theECAL->isHom())
return meanTHom(lny);
return meanTSam(lny);
}
inline double meanAlpha(double lny) const {
if (theECAL->isHom())
return meanAlphaHom(lny);
return meanAlphaSam(lny);
}
// Average Homogeneous
inline double meanTHom(double lny) const { return lny - 0.858; }
//return lny-1.23; }
inline double meanAlphaHom(double lny) const { return 0.21 + (0.492 + 2.38 / theECAL->theZeff()) * lny; }
// Average sampling
inline double meanTSam(double lny) const {
return meanTHom(lny) - 0.59 / theECAL->theFs() - 0.53 * (1. - theECAL->ehat());
}
inline double meanAlphaSam(double lny) const { return meanAlphaHom(lny) - 0.444 / theECAL->theFs(); }
// ---- Fluctuated longitudinal profiles ----
inline double meanLnT(double lny) const {
if (theECAL->isHom())
return meanLnTHom(lny);
return meanLnTSam(lny);
}
inline double sigmaLnT(double lny) const {
if (theECAL->isHom())
return sigmaLnTHom(lny);
return sigmaLnTSam(lny);
}
inline double meanLnAlpha(double lny) const {
if (theECAL->isHom())
return meanLnAlphaHom(lny);
return meanLnAlphaSam(lny);
}
inline double sigmaLnAlpha(double lny) const {
if (theECAL->isHom())
return sigmaLnAlphaHom(lny);
return sigmaLnAlphaSam(lny);
}
inline double correlationAlphaT(double lny) const {
if (theECAL->isHom())
return correlationAlphaTHom(lny);
return correlationAlphaTSam(lny);
}
// Fluctuated longitudinal profiles homogeneous
inline double meanLnTHom(double lny) const { return std::log(lny - 0.812); }
inline double sigmaLnTHom(double lny) const { return 1. / (-1.4 + 1.26 * lny); }
inline double meanLnAlphaHom(double lny) const { return std::log(0.81 + (0.458 + 2.26 / theECAL->theZeff()) * lny); }
inline double sigmaLnAlphaHom(double lny) const { return 1. / (-0.58 + 0.86 * lny); }
inline double correlationAlphaTHom(double lny) const { return 0.705 - 0.023 * lny; }
// Fluctuated longitudinal profiles sampling
inline double meanLnTSam(double lny) const {
return log(std::exp(meanLnTHom(lny)) - 0.55 / theECAL->theFs() - 0.69 * (1 - theECAL->ehat()));
}
inline double sigmaLnTSam(double lny) const { return 1. / (-2.5 + 1.25 * lny); }
inline double meanLnAlphaSam(double lny) const {
return log(std::exp(meanLnAlphaHom(lny)) - 0.476 / theECAL->theFs());
}
inline double sigmaLnAlphaSam(double lny) const { return 1. / (-0.82 + 0.79 * lny); }
inline double correlationAlphaTSam(double lny) const { return 0.784 - 0.023 * lny; }
//====== Radial profiles =======
// ---- Radial Profiles ----
inline double rC(double tau, double E) const {
if (theECAL->isHom())
return rCHom(tau, E);
return rCSam(tau, E);
}
inline double rT(double tau, double E) const {
if (theECAL->isHom())
return rTHom(tau, E);
return rTSam(tau, E);
}
inline double p(double tau, double E) const {
if (theECAL->isHom())
return pHom(tau, E);
return pSam(tau, E);
}
// Radial Profiles
inline double rCHom(double tau, double E) const { return theRcfactor * (z1(E) + z2() * tau); }
inline double rTHom(double tau, double E) const {
return theRtfactor * k1() * (std::exp(k3() * (tau - k2())) + std::exp(k4(E) * (tau - k2())));
}
inline double pHom(double tau, double E) const {
double arg = (p2() - tau) / p3(E);
return p1() * std::exp(arg - std::exp(arg));
}
// Radial Profiles Sampling
inline double rCSam(double tau, double E) const {
return rCHom(tau, E) - 0.0203 * (1 - theECAL->ehat()) + 0.0397 / theECAL->theFs() * std::exp(-1. * tau);
}
inline double rTSam(double tau, double E) const {
return rTHom(tau, E) - 0.14 * (1 - theECAL->ehat()) - 0.495 / theECAL->theFs() * std::exp(-1. * tau);
}
inline double pSam(double tau, double E) const {
return pHom(tau, E) +
(1 - theECAL->ehat()) * (0.348 - 0.642 / theECAL->theFs() * std::exp(-1. * std::pow((tau - 1), 2)));
}
// ---- Fluctuations of the radial profiles ----
inline double nSpots(double E) const {
if (theECAL->isHom())
return nSpotsHom(E);
return nSpotsSam(E);
}
inline double meanTSpot(double T) const {
if (theECAL->isHom())
return meanTSpotHom(T);
return meanTSpotSam(T);
}
inline double meanAlphaSpot(double alpha) const {
if (theECAL->isHom())
return meanAlphaSpotHom(alpha);
return meanAlphaSpotSam(alpha);
}
// Fluctuations of the radial profiles
inline double nSpotsHom(double E) const { return 93. * std::log(theECAL->theZeff()) * std::pow(E, 0.876); }
inline double meanTSpotHom(double T) const { return T * (0.698 + 0.00212 * theECAL->theZeff()); }
inline double meanAlphaSpotHom(double alpha) const { return alpha * (0.639 + 0.00334 * theECAL->theZeff()); }
// Fluctuations of the radial profiles Sampling
inline double nSpotsSam(double E) const { return 10.3 / theECAL->resE() * std::pow(E, 0.959); }
inline double meanTSpotSam(double T) const { return meanTSpotHom(T) * (0.813 + 0.0019 * theECAL->theZeff()); }
inline double meanAlphaSpotSam(double alpha) const {
return meanAlphaSpotHom(alpha) * (0.844 + 0.0026 * theECAL->theZeff());
}
inline const ECALProperties* ecalProperties() const { return theECAL; }
inline const HCALProperties* hcalProperties() const { return theHCAL; }
inline const PreshowerLayer1Properties* layer1Properties() const { return theLayer1; }
inline const PreshowerLayer2Properties* layer2Properties() const { return theLayer2; }
inline const std::vector<double>& getCoreIntervals() const { return theCore; }
inline const std::vector<double>& getTailIntervals() const { return theTail; }
private:
const ECALProperties* theECAL;
const HCALProperties* theHCAL;
const PreshowerLayer1Properties* theLayer1;
const PreshowerLayer2Properties* theLayer2;
const std::vector<double>& theCore;
const std::vector<double>& theTail;
double theRcfactor;
double theRtfactor;
double p1() const { return 2.632 - 0.00094 * theECAL->theZeff(); }
double p2() const { return 0.401 + 0.00187 * theECAL->theZeff(); }
double p3(double E) const { return 1.313 - 0.0686 * std::log(E); }
double z1(double E) const { return 0.0251 + 0.00319 * std::log(E); }
double z2() const { return 0.1162 - 0.000381 * theECAL->theZeff(); }
double k1() const { return 0.6590 - 0.00309 * theECAL->theZeff(); }
double k2() const { return 0.6450; }
double k3() const { return -2.59; }
double k4(double E) const { return 0.3585 + 0.0421 * std::log(E); }
};
#endif
|