Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
//FastSimulation Headers
#include "FastSimulation/ShowerDevelopment/interface/HDRShower.h"
#include "FastSimulation/Utilities/interface/RandomEngineAndDistribution.h"
#include "FastSimulation/CaloHitMakers/interface/EcalHitMaker.h"
#include "FastSimulation/CaloHitMakers/interface/HcalHitMaker.h"

//CMSSW headers
#include "FWCore/MessageLogger/interface/MessageLogger.h"

using namespace edm;

////////////////////////////////////////////////////////////////////////////////
// What's this? Doesn't seem to be needed. Maybe Geometry/CaloGeometry/interface/CaloCellGeometry.h?
//#include "Calorimetry/CaloDetector/interface/CellGeometry.h"

// number attempts for transverse distribution if exit on a spec. condition
#define infinity 5000
// debugging flag ( 0, 1, 2, 3)
#define debug 0

using namespace std;

HDRShower::HDRShower(const RandomEngineAndDistribution* engine,
                     HDShowerParametrization* myParam,
                     EcalHitMaker* myGrid,
                     HcalHitMaker* myHcalHitMaker,
                     int onECAL,
                     double epart)
    : theParam(myParam), theGrid(myGrid), theHcalHitMaker(myHcalHitMaker), onEcal(onECAL), e(epart), random(engine) {
  eHDspot = 0.2;
  EsCut = 0.050;
  EcalShift = 0.12;
  nthetaStep = 10;
  thetaStep = 0.5 * M_PI / nthetaStep;

  if (e < 0)
    e = 0.;
  setFuncParam();
}

bool HDRShower::computeShower() {
  if (onEcal) {
    depthECAL = theGrid->ecalTotalL0();        // ECAL depth segment
    depthGAP = theGrid->ecalHcalGapTotalL0();  // GAP  depth segment
  } else
    depthECAL = depthGAP = 0;

  float depthHCAL = theGrid->hcalTotalL0();  // HCAL depth segment

  //  maxDepth   = depthECAL + depthGAP + depthHCAL - 1.0;
  maxDepth = depthECAL + depthHCAL - 0.5;
  depthStart = log(1. / random->flatShoot());  // starting point lambda unts

  if (depthStart > maxDepth) {
    depthStart = maxDepth * random->flatShoot();
    if (depthStart < 0.)
      depthStart = 0.;
  }

  if (depthStart < EcalShift)
    depthStart = EcalShift;

  decal = (depthECAL + depthStart) * 0.5;
  qstatus = false;
  if (decal < depthECAL) {
    qstatus = theGrid->getPads(decal);
    //    if(!qstatus)
    //      cout<<" depth rejected by getQuads(decal="<<decal<<") status="<<qstatus
    //	  <<" depthECAL="<<depthECAL<<endl;
  }

  thetaFunction(nthetaStep);
  int maxLoops = 10000;
  for (int itheta = 0; itheta < nthetaStep; itheta++) {
    float theta, es;
    for (int i = 0; i <= thetaSpots[itheta]; i++) {
      if (i == thetaSpots[itheta])
        es = elastspot[itheta];
      else
        es = eHDspot;
      for (int j = 0; j < maxLoops; j++) {
        theta = (itheta + random->flatShoot()) * thetaStep;
        if (setHit(es, theta))
          break;
      }
    }
  }
  return (true);
}

bool HDRShower::setHit(float espot, float theta) {
  float phi = 2. * M_PI * random->flatShoot();  // temporary: 1st approximation
  float rshower = getR();                       // temporary: 1st approximation

  float d = depthStart + rshower * cos(theta);
  if (d + depthGAP > maxDepth)
    return (false);

  // Commented (F.B) to remove a warning. Not used anywhere ?
  //  bool inHcal = !onEcal || d>depthECAL || !qstatus;
  bool result = false;
  if (!onEcal || d > depthECAL || !qstatus) {  // in HCAL (HF or HB, HE)
    d += depthGAP;
    bool setHDdepth = theHcalHitMaker->setDepth(d);
    if (setHDdepth) {
      theHcalHitMaker->setSpotEnergy(espot);
      result = theHcalHitMaker->addHit(rshower * sin(theta), phi, 0);
    } else
      LogWarning("FastCalorimetry") << " setHit in HCAL failed d=" << d << " maxDepth=" << maxDepth << " onEcal'"
                                    << onEcal << endl;
  } else {
    //    bool status = theGrid->getQuads(d);
    theGrid->setSpotEnergy(espot);
    result = theGrid->addHit(rshower * sin(theta), phi, 0);
  }
  return (result);
}

float HDRShower::getR() {
  float p = random->flatShoot();
  unsigned int i = 1;
  while (rpdf[i] < p && i < R_range - 1) {
    i++;
  }
  float r;
  float dr = rpdf[i] - rpdf[i - 1];
  if (dr != 0.0)
    r = (float(i) + (p - rpdf[i - 1]) / dr) / lambdaHD;
  else
    r = float(i) / lambdaHD;
  return (r);
}

void HDRShower::thetaFunction(int nthetaStep) {
  unsigned int i = 0;
  while (EgridTable[i] < e && i < NEnergyScan - 1) {
    i++;
  }

  float amean, asig, lambda1, lambda1sig, lam21, lam21sig;
  amean = Theta1amp[i];
  asig = Theta1ampSig[i];
  lambda1 = Theta1Lambda[i];
  lambda1sig = Theta1LambdaSig[i];
  lam21 = ThetaLam21[i];
  lam21sig = ThetaLam21Sig[i];
  if (i == 0)
    i = 1;  //extrapolation to the left
  float c = (e - EgridTable[i - 1]) / (EgridTable[i] - EgridTable[i - 1]);

  amean += (Theta1amp[i] - Theta1amp[i - 1]) * c;
  asig += (Theta1ampSig[i] - Theta1ampSig[i - 1]) * c;
  lambda1 += (Theta1Lambda[i] - Theta1Lambda[i - 1]) * c;
  lambda1sig += (Theta1LambdaSig[i] - Theta1LambdaSig[i - 1]) * c;
  lam21 += (ThetaLam21[i] - ThetaLam21[i - 1]) * c;
  lam21sig += (ThetaLam21Sig[i] - ThetaLam21Sig[i - 1]) * c;

  float a = exp(amean + asig * random->gaussShoot());
  float L1 = lambda1 + lambda1sig * random->gaussShoot();
  if (L1 < 0.02)
    L1 = 0.02;
  float L2 = L1 * (lam21 + lam21sig * random->gaussShoot());

  vector<double> pdf;
  pdf.erase(pdf.begin(), pdf.end());
  thetaSpots.erase(thetaSpots.begin(), thetaSpots.end());
  elastspot.erase(elastspot.begin(), elastspot.end());
  double sum = 0;
  for (int it = 0; it < nthetaStep; it++) {
    float theta = it * thetaStep;
    float p = a * exp(L1 * theta) + exp(L2 * theta);
    sum += p;
    pdf.push_back(p);
  }
  float ntot = e / eHDspot;
  float esum = 0;
  for (int it = 0; it < nthetaStep; it++) {
    float fn = ntot * pdf[it] / sum;
    thetaSpots.push_back(int(fn));
    elastspot.push_back((fn - int(fn)) * eHDspot);
  }

  for (int it = 0; it < nthetaStep; it++)
    if (elastspot[it] < EsCut) {
      esum += elastspot[it];
      elastspot[it] = 0;
    }

  float en = esum / EsCut;
  int n = int(en);
  en = esum - n * EsCut;

  for (int ie = 0; ie <= n; ie++) {
    int k = int(nthetaStep * random->flatShoot());
    if (k < 0 || k > nthetaStep - 1)
      k = k % nthetaStep;
    if (ie == n)
      elastspot[k] += en;
    else
      elastspot[k] += EsCut;
  }
}

void HDRShower::setFuncParam() {
  lambdaHD = theParam->hcalProperties()->interactionLength();
  x0HD = theParam->hcalProperties()->radLenIncm();
  if (onEcal)
    lambdaEM = theParam->ecalProperties()->interactionLength();
  else
    lambdaEM = lambdaHD;

  if (debug)
    LogDebug("FastCalorimetry") << "setFuncParam-> lambdaEM=" << lambdaEM << " lambdaHD=" << lambdaHD << endl;

  float _EgridTable[NEnergyScan] = {10, 20, 30, 50, 100, 300, 500};
  float _Theta1amp[NEnergyScan] = {1.57, 2.05, 2.27, 2.52, 2.66, 2.76, 2.76};
  float _Theta1ampSig[NEnergyScan] = {2.40, 1.50, 1.25, 1.0, 0.8, 0.52, 0.52};

  float _Theta1Lambda[NEnergyScan] = {0.086, 0.092, 0.88, 0.80, 0.0713, 0.0536, 0.0536};
  float _Theta1LambdaSig[NEnergyScan] = {0.038, 0.037, 0.027, 0.03, 0.023, 0.018, 0.018};

  float _ThetaLam21[NEnergyScan] = {2.8, 2.44, 2.6, 2.77, 3.16, 3.56, 3.56};
  float _ThetaLam21Sig[NEnergyScan] = {1.8, 0.97, 0.87, 0.77, 0.7, 0.49, 0.49};

  for (int i = 0; i < NEnergyScan; i++) {
    EgridTable[i] = _EgridTable[i];
    Theta1amp[i] = _Theta1amp[i];
    Theta1ampSig[i] = _Theta1ampSig[i];
    Theta1Lambda[i] = _Theta1Lambda[i];
    Theta1LambdaSig[i] = _Theta1LambdaSig[i];
    ThetaLam21[i] = _ThetaLam21[i];
    ThetaLam21Sig[i] = _ThetaLam21Sig[i];
  }

#define lambdafit 15.05
  float R_alfa = -0.0993 + 0.1114 * log(e);
  float R_p = 0.589191 + 0.0463392 * log(e);
  float R_beta_lam = (0.54134 - 0.00011148 * e) / 4.0 * lambdafit;  //was fitted in 4cmbin
  float LamOverX0 = lambdaHD / x0HD;                                // 10.52
  //  int R_range = 100; // 7 lambda
  //  rpdf.erase(rpdf.begin(),rpdf.end());

  rpdf[0] = 0.;
  for (int i = 1; i < R_range; i++) {
    float x = (float(i)) / lambdaHD;
    float r = pow(x, R_alfa) * (R_p * exp(-R_beta_lam * x) + (1 - R_p) * exp(-LamOverX0 * R_beta_lam * x));
    rpdf[i] = r;
    //    rpdf.push_back(r);
  }

  for (int i = 1; i < R_range; i++)
    rpdf[i] += rpdf[i - 1];
  for (int i = 0; i < R_range; i++)
    rpdf[i] /= rpdf[R_range - 1];
}