1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
#include "FastSimulation/SimplifiedGeometryPropagator/interface/HelixTrajectory.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/StraightTrajectory.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/BarrelSimplifiedGeometry.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/ForwardSimplifiedGeometry.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/Particle.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/Constants.h"
#include <cmath>
// helix phi definition
// ranges from 0 to 2PI
// 0 corresponds to the positive x direction
// phi increases counterclockwise
fastsim::HelixTrajectory::HelixTrajectory(const fastsim::Particle& particle, double magneticFieldZ)
: Trajectory(particle)
// exact: r = gamma*beta*m_0*c / (q*e*B) = p_T / (q * e * B)
// momentum in units of GeV/c: r = p_T * 10^9 / (c * q * B)
// in cmssw units: r = p_T / (c * 10^-4 * q * B)
,
radius_(
std::abs(momentum_.Pt() / (fastsim::Constants::speedOfLight * 1e-4 * particle.charge() * magneticFieldZ))),
phi_(std::atan(momentum_.Py() / momentum_.Px()) +
(momentum_.Px() * particle.charge() < 0 ? 3. * M_PI / 2. : M_PI / 2.))
// maybe consider (for -pi/2<x<pi/2)
// cos(atan(x)) = 1 / sqrt(x^2+1)
// -> cos(atan(x) + pi/2) = - x / sqrt(x^2+1)
// -> cos(atan(x) +3*pi/2) = + x / sqrt(x^2+1)
// sin(atan(x)) = x / sqrt(x^2+1)
// -> sin(atan(x) + pi/2) = + 1 / sqrt(x^2+1)
// -> sin(atan(x) +3*pi/2) = - 1 / sqrt(x^2+1)
,
centerX_(position_.X() -
radius_ * (momentum_.Py() / momentum_.Px()) /
std::sqrt((momentum_.Py() / momentum_.Px()) * (momentum_.Py() / momentum_.Px()) + 1) *
(momentum_.Px() * particle.charge() < 0 ? 1. : -1.)),
centerY_(position_.Y() -
radius_ * 1 / std::sqrt((momentum_.Py() / momentum_.Px()) * (momentum_.Py() / momentum_.Px()) + 1) *
(momentum_.Px() * particle.charge() < 0 ? -1. : 1.))
//, centerX_(position_.X() - radius_*std::cos(phi_))
//, centerY_(position_.Y() - radius_*std::sin(phi_))
,
centerR_(std::sqrt(centerX_ * centerX_ + centerY_ * centerY_)),
minR_(std::abs(centerR_ - radius_)),
maxR_(centerR_ + radius_)
// omega = q * e * B / (gamma * m) = q * e *B / (E / c^2) = q * e * B * c^2 / E
// omega: negative for negative q -> seems to be what we want.
// energy in units of GeV: omega = q * B * c^2 / (E * 10^9)
// in cmssw units: omega[1/ns] = q * B * c^2 * 10^-4 / E
,
phiSpeed_(-particle.charge() * magneticFieldZ * fastsim::Constants::speedOfLight *
fastsim::Constants::speedOfLight * 1e-4 / momentum_.E()) {
;
}
bool fastsim::HelixTrajectory::crosses(const BarrelSimplifiedGeometry& layer) const {
return (minR_ < layer.getRadius() && maxR_ > layer.getRadius());
}
double fastsim::HelixTrajectory::nextCrossingTimeC(const BarrelSimplifiedGeometry& layer, bool onLayer) const {
if (!crosses(layer))
return -1;
// solve the following equation for sin(phi)
// (x^2 + y^2 = R_L^2) (1) the layer
// x = x_c + R_H*cos(phi) (2) the helix in the xy plane
// y = y_c + R_H*sin(phi) (3) the helix in the xy plane
// with
// R_L: the radius of the layer
// x_c,y_c the center of the helix in xy plane
// R_H, the radius of the helix
// phi, the phase of the helix
//
// substitute (2) and (3) in (1)
// =>
// x_c^2 + 2*x_c*R_H*cos(phi) + R_H^2*cos^2(phi)
// + y_c^2 + 2*y_c*R_H*sin(phi) + R_H^2*sin^2(phi)
// = R_L^2
// =>
// (x_c^2 + y_c^2 + R_H^2 - R_L^2) + (2*y_c*R_H)*sin(phi) = -(2*x_c*R_H)*cos(phi)
//
// rewrite
// E + F *sin(phi) = G *cos(phi)
// =>
// E^2 + 2*E*F*sin(phi) + F^2*sin^2(phi) = G^2*(1-sin^2(phi))
// rearrange
// sin^2(phi)*(F^2 + G^2) + sin(phi)*(2*E*F) + (E^2 - G^2) = 0
//
// rewrite
// sin^2(phi)* a + sin(phi)* b + c = 0
// => sin(phi) = (-b +/- sqrt(b^2 - 4*ac)) / (2*a)
// with
// a = F^2 + G^2
// b = 2*E*F
// c = E^2 - G^2
double E = centerX_ * centerX_ + centerY_ * centerY_ + radius_ * radius_ - layer.getRadius() * layer.getRadius();
double F = 2 * centerY_ * radius_;
double G = 2 * centerX_ * radius_;
double a = F * F + G * G;
double b = 2 * E * F;
double c = E * E - G * G;
double delta = b * b - 4 * a * c;
// case of no solution
if (delta < 0) {
// Should not be reached: Full Propagation does always have a solution "if(crosses(layer)) == -1"
// Even if particle is outside all layers -> can turn around in magnetic field
return -1;
}
// Uses a numerically more stable procedure:
// https://people.csail.mit.edu/bkph/articles/Quadratics.pdf
double sqrtDelta = sqrt(delta);
double phi1 = 0, phi2 = 0;
if (b < 0) {
phi1 = std::asin((2. * c) / (-b + sqrtDelta));
phi2 = std::asin((-b + sqrtDelta) / (2. * a));
} else {
phi1 = std::asin((-b - sqrtDelta) / (2. * a));
phi2 = std::asin((2. * c) / (-b - sqrtDelta));
}
// asin is ambiguous, make sure to have the right solution
if (std::abs(layer.getRadius() - getRadParticle(phi1)) > 1.0e-2) {
phi1 = -phi1 + M_PI;
}
if (std::abs(layer.getRadius() - getRadParticle(phi2)) > 1.0e-2) {
phi2 = -phi2 + M_PI;
}
// another ambiguity
if (phi1 < 0) {
phi1 += 2. * M_PI;
}
if (phi2 < 0) {
phi2 += 2. * M_PI;
}
// find the corresponding times when the intersection occurs
// make sure they are positive
double t1 = (phi1 - phi_) / phiSpeed_;
while (t1 < 0) {
t1 += 2 * M_PI / std::abs(phiSpeed_);
}
double t2 = (phi2 - phi_) / phiSpeed_;
while (t2 < 0) {
t2 += 2 * M_PI / std::abs(phiSpeed_);
}
// Check if propagation successful (numerical reasons): both solutions (phi1, phi2) have to be on the layer (same radius)
// Can happen due to numerical instabilities of geometrical function (if momentum is almost parallel to x/y axis)
// Get crossingTimeC from StraightTrajectory as good approximation
if (std::abs(layer.getRadius() - getRadParticle(phi1)) > 1.0e-2 ||
std::abs(layer.getRadius() - getRadParticle(phi2)) > 1.0e-2) {
StraightTrajectory traj(*this);
return traj.nextCrossingTimeC(layer, onLayer);
}
// if the particle is already on the layer, we need to make sure the 2nd solution is picked.
// happens if particle turns around in the magnetic field instead of hitting the next layer
if (onLayer) {
bool particleMovesInwards = momentum_.X() * position_.X() + momentum_.Y() * position_.Y() < 0;
double posX1 = centerX_ + radius_ * std::cos(phi1);
double posY1 = centerY_ + radius_ * std::sin(phi1);
double momX1 = momentum_.X() * std::cos(phi1 - phi_) - momentum_.Y() * std::sin(phi1 - phi_);
double momY1 = momentum_.X() * std::sin(phi1 - phi_) + momentum_.Y() * std::cos(phi1 - phi_);
bool particleMovesInwards1 = momX1 * posX1 + momY1 * posY1 < 0;
double posX2 = centerX_ + radius_ * std::cos(phi2);
double posY2 = centerY_ + radius_ * std::sin(phi2);
double momX2 = momentum_.X() * std::cos(phi2 - phi_) - momentum_.Y() * std::sin(phi2 - phi_);
double momY2 = momentum_.X() * std::sin(phi2 - phi_) + momentum_.Y() * std::cos(phi2 - phi_);
bool particleMovesInwards2 = momX2 * posX2 + momY2 * posY2 < 0;
if (particleMovesInwards1 != particleMovesInwards) {
return t1 * fastsim::Constants::speedOfLight;
} else if (particleMovesInwards2 != particleMovesInwards) {
return t2 * fastsim::Constants::speedOfLight;
}
// try to catch numerical issues again..
else {
return -1;
}
}
return std::min(t1, t2) * fastsim::Constants::speedOfLight;
}
void fastsim::HelixTrajectory::move(double deltaTimeC) {
double deltaT = deltaTimeC / fastsim::Constants::speedOfLight;
double deltaPhi = phiSpeed_ * deltaT;
position_.SetXYZT(centerX_ + radius_ * std::cos(phi_ + deltaPhi),
centerY_ + radius_ * std::sin(phi_ + deltaPhi),
position_.Z() + momentum_.Z() / momentum_.E() * deltaTimeC,
position_.T() + deltaT);
// Rotation defined by
// x' = x cos θ - y sin θ
// y' = x sin θ + y cos θ
momentum_.SetXYZT(momentum_.X() * std::cos(deltaPhi) - momentum_.Y() * std::sin(deltaPhi),
momentum_.X() * std::sin(deltaPhi) + momentum_.Y() * std::cos(deltaPhi),
momentum_.Z(),
momentum_.E());
}
double fastsim::HelixTrajectory::getRadParticle(double phi) const {
return sqrt((centerX_ + radius_ * std::cos(phi)) * (centerX_ + radius_ * std::cos(phi)) +
(centerY_ + radius_ * std::sin(phi)) * (centerY_ + radius_ * std::sin(phi)));
}
|