Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#include "FastSimulation/SimplifiedGeometryPropagator/interface/HelixTrajectory.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/StraightTrajectory.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/BarrelSimplifiedGeometry.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/ForwardSimplifiedGeometry.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/Particle.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FastSimulation/SimplifiedGeometryPropagator/interface/Constants.h"
#include <cmath>

// helix phi definition
// ranges from 0 to 2PI
// 0 corresponds to the positive x direction
// phi increases counterclockwise

fastsim::HelixTrajectory::HelixTrajectory(const fastsim::Particle& particle, double magneticFieldZ)
    : Trajectory(particle)
      // exact: r = gamma*beta*m_0*c / (q*e*B) = p_T / (q * e * B)
      // momentum in units of GeV/c: r = p_T * 10^9 / (c * q * B)
      // in cmssw units: r = p_T / (c * 10^-4 * q * B)
      ,
      radius_(
          std::abs(momentum_.Pt() / (fastsim::Constants::speedOfLight * 1e-4 * particle.charge() * magneticFieldZ))),
      phi_(std::atan(momentum_.Py() / momentum_.Px()) +
           (momentum_.Px() * particle.charge() < 0 ? 3. * M_PI / 2. : M_PI / 2.))
      // maybe consider (for -pi/2<x<pi/2)
      // cos(atan(x)) = 1 / sqrt(x^2+1)
      // -> cos(atan(x) + pi/2)  = - x / sqrt(x^2+1)
      // -> cos(atan(x) +3*pi/2) = + x / sqrt(x^2+1)
      // sin(atan(x)) = x / sqrt(x^2+1)
      // -> sin(atan(x) + pi/2)  = + 1 / sqrt(x^2+1)
      // -> sin(atan(x) +3*pi/2) = - 1 / sqrt(x^2+1)
      ,
      centerX_(position_.X() -
               radius_ * (momentum_.Py() / momentum_.Px()) /
                   std::sqrt((momentum_.Py() / momentum_.Px()) * (momentum_.Py() / momentum_.Px()) + 1) *
                   (momentum_.Px() * particle.charge() < 0 ? 1. : -1.)),
      centerY_(position_.Y() -
               radius_ * 1 / std::sqrt((momentum_.Py() / momentum_.Px()) * (momentum_.Py() / momentum_.Px()) + 1) *
                   (momentum_.Px() * particle.charge() < 0 ? -1. : 1.))
      //, centerX_(position_.X() - radius_*std::cos(phi_))
      //, centerY_(position_.Y() - radius_*std::sin(phi_))
      ,
      centerR_(std::sqrt(centerX_ * centerX_ + centerY_ * centerY_)),
      minR_(std::abs(centerR_ - radius_)),
      maxR_(centerR_ + radius_)
      // omega = q * e * B / (gamma * m) = q * e *B / (E / c^2) = q * e * B * c^2 / E
      // omega: negative for negative q -> seems to be what we want.
      // energy in units of GeV: omega = q * B * c^2 / (E * 10^9)
      // in cmssw units: omega[1/ns] = q * B * c^2 * 10^-4 / E
      ,
      phiSpeed_(-particle.charge() * magneticFieldZ * fastsim::Constants::speedOfLight *
                fastsim::Constants::speedOfLight * 1e-4 / momentum_.E()) {
  ;
}

bool fastsim::HelixTrajectory::crosses(const BarrelSimplifiedGeometry& layer) const {
  return (minR_ < layer.getRadius() && maxR_ > layer.getRadius());
}

double fastsim::HelixTrajectory::nextCrossingTimeC(const BarrelSimplifiedGeometry& layer, bool onLayer) const {
  if (!crosses(layer))
    return -1;

  // solve the following equation for sin(phi)
  // (x^2 + y^2 = R_L^2)     (1)      the layer
  // x = x_c + R_H*cos(phi)  (2)      the helix in the xy plane
  // y = y_c + R_H*sin(phi)  (3)      the helix in the xy plane
  // with
  // R_L: the radius of the layer
  // x_c,y_c the center of the helix in xy plane
  // R_H, the radius of the helix
  // phi, the phase of the helix
  //
  // substitute (2) and (3) in (1)
  // =>
  //   x_c^2 + 2*x_c*R_H*cos(phi) + R_H^2*cos^2(phi)
  // + y_c^2 + 2*y_c*R_H*sin(phi) + R_H^2*sin^2(phi)
  // = R_L^2
  // =>
  // (x_c^2 + y_c^2 + R_H^2 - R_L^2) + (2*y_c*R_H)*sin(phi) = -(2*x_c*R_H)*cos(phi)
  //
  // rewrite
  //               E                 +       F    *sin(phi) =      G     *cos(phi)
  // =>
  // E^2 + 2*E*F*sin(phi) + F^2*sin^2(phi) = G^2*(1-sin^2(phi))
  // rearrange
  // sin^2(phi)*(F^2 + G^2) + sin(phi)*(2*E*F) + (E^2 - G^2) = 0
  //
  // rewrite
  // sin^2(phi)*     a      + sin(phi)*   b    +      c      = 0
  // => sin(phi) = (-b +/- sqrt(b^2 - 4*ac)) / (2*a)
  // with
  // a = F^2 + G^2
  // b = 2*E*F
  // c = E^2 - G^2

  double E = centerX_ * centerX_ + centerY_ * centerY_ + radius_ * radius_ - layer.getRadius() * layer.getRadius();
  double F = 2 * centerY_ * radius_;
  double G = 2 * centerX_ * radius_;

  double a = F * F + G * G;
  double b = 2 * E * F;
  double c = E * E - G * G;

  double delta = b * b - 4 * a * c;

  // case of no solution
  if (delta < 0) {
    // Should not be reached: Full Propagation does always have a solution "if(crosses(layer)) == -1"
    // Even if particle is outside all layers -> can turn around in magnetic field
    return -1;
  }

  // Uses a numerically more stable procedure:
  // https://people.csail.mit.edu/bkph/articles/Quadratics.pdf
  double sqrtDelta = sqrt(delta);
  double phi1 = 0, phi2 = 0;
  if (b < 0) {
    phi1 = std::asin((2. * c) / (-b + sqrtDelta));
    phi2 = std::asin((-b + sqrtDelta) / (2. * a));
  } else {
    phi1 = std::asin((-b - sqrtDelta) / (2. * a));
    phi2 = std::asin((2. * c) / (-b - sqrtDelta));
  }

  // asin is ambiguous, make sure to have the right solution
  if (std::abs(layer.getRadius() - getRadParticle(phi1)) > 1.0e-2) {
    phi1 = -phi1 + M_PI;
  }
  if (std::abs(layer.getRadius() - getRadParticle(phi2)) > 1.0e-2) {
    phi2 = -phi2 + M_PI;
  }

  // another ambiguity
  if (phi1 < 0) {
    phi1 += 2. * M_PI;
  }
  if (phi2 < 0) {
    phi2 += 2. * M_PI;
  }

  // find the corresponding times when the intersection occurs
  // make sure they are positive
  double t1 = (phi1 - phi_) / phiSpeed_;
  while (t1 < 0) {
    t1 += 2 * M_PI / std::abs(phiSpeed_);
  }
  double t2 = (phi2 - phi_) / phiSpeed_;
  while (t2 < 0) {
    t2 += 2 * M_PI / std::abs(phiSpeed_);
  }

  // Check if propagation successful (numerical reasons): both solutions (phi1, phi2) have to be on the layer (same radius)
  // Can happen due to numerical instabilities of geometrical function (if momentum is almost parallel to x/y axis)
  // Get crossingTimeC from StraightTrajectory as good approximation
  if (std::abs(layer.getRadius() - getRadParticle(phi1)) > 1.0e-2 ||
      std::abs(layer.getRadius() - getRadParticle(phi2)) > 1.0e-2) {
    StraightTrajectory traj(*this);
    return traj.nextCrossingTimeC(layer, onLayer);
  }

  // if the particle is already on the layer, we need to make sure the 2nd solution is picked.
  // happens if particle turns around in the magnetic field instead of hitting the next layer
  if (onLayer) {
    bool particleMovesInwards = momentum_.X() * position_.X() + momentum_.Y() * position_.Y() < 0;

    double posX1 = centerX_ + radius_ * std::cos(phi1);
    double posY1 = centerY_ + radius_ * std::sin(phi1);
    double momX1 = momentum_.X() * std::cos(phi1 - phi_) - momentum_.Y() * std::sin(phi1 - phi_);
    double momY1 = momentum_.X() * std::sin(phi1 - phi_) + momentum_.Y() * std::cos(phi1 - phi_);
    bool particleMovesInwards1 = momX1 * posX1 + momY1 * posY1 < 0;

    double posX2 = centerX_ + radius_ * std::cos(phi2);
    double posY2 = centerY_ + radius_ * std::sin(phi2);
    double momX2 = momentum_.X() * std::cos(phi2 - phi_) - momentum_.Y() * std::sin(phi2 - phi_);
    double momY2 = momentum_.X() * std::sin(phi2 - phi_) + momentum_.Y() * std::cos(phi2 - phi_);
    bool particleMovesInwards2 = momX2 * posX2 + momY2 * posY2 < 0;

    if (particleMovesInwards1 != particleMovesInwards) {
      return t1 * fastsim::Constants::speedOfLight;
    } else if (particleMovesInwards2 != particleMovesInwards) {
      return t2 * fastsim::Constants::speedOfLight;
    }
    // try to catch numerical issues again..
    else {
      return -1;
    }
  }

  return std::min(t1, t2) * fastsim::Constants::speedOfLight;
}

void fastsim::HelixTrajectory::move(double deltaTimeC) {
  double deltaT = deltaTimeC / fastsim::Constants::speedOfLight;
  double deltaPhi = phiSpeed_ * deltaT;
  position_.SetXYZT(centerX_ + radius_ * std::cos(phi_ + deltaPhi),
                    centerY_ + radius_ * std::sin(phi_ + deltaPhi),
                    position_.Z() + momentum_.Z() / momentum_.E() * deltaTimeC,
                    position_.T() + deltaT);
  // Rotation defined by
  // x' = x cos θ - y sin θ
  // y' = x sin θ + y cos θ
  momentum_.SetXYZT(momentum_.X() * std::cos(deltaPhi) - momentum_.Y() * std::sin(deltaPhi),
                    momentum_.X() * std::sin(deltaPhi) + momentum_.Y() * std::cos(deltaPhi),
                    momentum_.Z(),
                    momentum_.E());
}

double fastsim::HelixTrajectory::getRadParticle(double phi) const {
  return sqrt((centerX_ + radius_ * std::cos(phi)) * (centerX_ + radius_ * std::cos(phi)) +
              (centerY_ + radius_ * std::sin(phi)) * (centerY_ + radius_ * std::sin(phi)));
}