Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
c.................... hijing1.383_ampt.f
c     Version 1.383
c     The variables isng in HIJSFT and JL in ATTRAD were not initialized.
c     The version initialize them. (as found by Fernando Marroquim)
c
c
c
c     Version 1.382
c     Nuclear distribution for deuteron is taken as the Hulthen wave
c     function as provided by Brian Cole (Columbia)
clin     used my own implementation of impact parameter 
clin     & proton-neutron distance within a deuteron.
c
c
c     Version 1.381
c
c     The parameters for Wood-Saxon distribution for deuteron are
c     constrained to give the right rms ratius 2.116 fm
c     (R=0.0, D=0.5882)
c
c
c     Version 1.38
c
c     The following common block is added to record the number of elastic
c     (NELT, NELP) and inelastic (NINT, NINP) participants
c
c        COMMON/HJGLBR/NELT,NINT,NELP,NINP
c        SAVE /HJGLBR/
c
c     Version 1.37
c
c     A bug in the quenching subroutine is corrected. When calculating the
c     distance between two wounded nucleons, the displacement of the
c     impact parameter was not inculded. This bug was discovered by
c     Dr. V.Uzhinskii JINR, Dubna, Russia
c
c
C     Version 1.36
c
c     Modification Oct. 8, 1998. In hijing, log(ran(nseed)) occasionally
c     causes overfloat. It is modified to log(max(ran(nseed),1.0e-20)).
c
c
C     Nothing important has been changed here. A few 'garbage' has been
C     cleaned up here, like common block HJJET3 for the sea quark strings
C     which were originally created to implement the DPM scheme which
C     later was abadoned in the final version. The lines which operate
C     on these data are also deleted in the program.
C
C
C     Version 1.35
C     There are some changes in the program: subroutine HARDJET is now
C     consolidated with HIJHRD. HARDJET is used to re-initiate PYTHIA
C     for the triggered hard processes. Now that is done  altogether
C     with other normal hard processes in modified JETINI. In the new
C     version one calls JETINI every time one calls HIJHRD. In the new
C     version the effect of the isospin of the nucleon on hard processes,
C     especially direct photons is correctly considered.
C     For A+A collisions, one has to initilize pythia
C     separately for each type of collisions, pp, pn,np and nn,
C     or hp and hn for hA collisions. In JETINI we use the following
C     catalogue for different types of collisions:
C     h+h: h+h (itype=1)
C     h+A: h+p (itype=1), h+n (itype=2)
C     A+h: p+h (itype=1), n+h (itype=2)
C     A+A: p+p (itype=1), p+n (itype=2), n+p (itype=3), n+n (itype=4)
C*****************************************************************
c
C
C     Version 1.34
C     Last modification on January 5, 1998. Two mistakes are corrected in
C     function G. A Mistake in the subroutine Parton is also corrected.
C     (These are pointed out by Ysushi Nara).
C
C
C       Last modifcation on April 10, 1996. To conduct final
C       state radiation, PYTHIA reorganize the two scattered
C       partons and their final momenta will be a little
C       different. The summed total momenta of the partons
C       from the final state radiation are stored in HINT1(26-29)
C       and HINT1(36-39) which are little different from 
C       HINT1(21-24) and HINT1(41-44).
C
C       Version 1.33
C
C       Last modfication  on September 11, 1995. When HIJING and
C       PYTHIA are initialized, the shadowing is evaluated at
C       b=0 which is the maximum. This will cause overestimate
C       of shadowing for peripheral interactions. To correct this
C       problem, shadowing is set to zero when initializing. Then
C       use these maximum  cross section without shadowing as a
C       normalization of the Monte Carlo. This however increase
C       the computing time. IHNT2(16) is used to indicate whether
C       the sturcture function is called for (IHNT2(16)=1) initialization
C       or for (IHNT2(16)=0)normal collisions simulation
C
C       Last modification on Aagust 28, 1994. Two bugs associate
C       with the impact parameter dependence of the shadowing is
C       corrected.
C
C
c       Last modification on October 14, 1994. One bug is corrected
c       in the direct photon production option in subroutine
C       HIJHRD.( this problem was reported by Jim Carroll and Mike Beddo).
C       Another bug associated with keeping the decay history
C       in the particle information is also corrected.(this problem
C       was reported by Matt Bloomer)
C
C
C       Last modification on July 15, 1994. The option to trig on
C       heavy quark production (charm IHPR2(18)=0 or beauty IHPR2(18)=1) 
C       is added. To do this, set IHPR2(3)=3. For inclusive production,
C       one should reset HIPR1(10)=0.0. One can also trig larger pt
C       QQbar production by giving HIPR1(10) a nonvanishing value.
C       The mass of the heavy quark in the calculation of the cross
C       section (HINT1(59)--HINT1(65)) is given by HIPR1(7) (the
C       default is the charm mass D=1.5). We also include a separate
C       K-factor for heavy quark and direct photon production by
C       HIPR1(23)(D=2.0).
C
C       Last modification on May 24, 1994.  The option to
C       retain the information of all particles including those
C       who have decayed is IHPR(21)=1 (default=0). KATT(I,3) is 
C       added to contain the line number of the parent particle 
C       of the current line which is produced via a decay. 
C       KATT(I,4) is the status number of the particle: 11=particle
C       which has decayed; 1=finally produced particle.
C
C
C       Last modification on May 24, 1994( in HIJSFT when valence quark
C       is quenched, the following error is corrected. 1.2*IHNT2(1) --> 
C       1.2*IHNT2(1)**0.333333, 1.2*IHNT2(3) -->1.2*IHNT(3)**0.333333)
C
C
C       Last modification on March 16, 1994 (heavy flavor production
C       processes MSUB(81)=1 MSUB(82)=1 have been switched on,
C       charm production is the default, B-quark option is
C       IHPR2(18), when it is switched on, charm quark is 
C       automatically off)
C
C
C       Last modification on March 23, 1994 (an error is corrected
C       in the impact parameter dependence of the jet cross section)
C
C       Last modification Oct. 1993 to comply with non-vax
C       machines' compiler 
C
C*********************************************
C	LAST MODIFICATION April 5, 1991
CQUARK DISTRIBUTIOIN (1-X)**A/(X**2+C**2/S)**B 
C(A=HIPR1(44),B=HIPR1(46),C=HIPR1(45))
C STRING FLIP, VENUS OPTION IHPR2(15)=1,IN WHICH ONE CAN HAVE ONE AND
C TWO COLOR CHANGES, (1-W)**2,W*(1-W),W*(1-W),AND W*2, W=HIPR1(18), 
C AMONG PT DISTRIBUTION OF SEA QUARKS IS CONTROLLED BY HIPR1(42)
C
C	gluon jets can form a single string system
C
C	initial state radiation is included
C	
C	all QCD subprocesses are included
c
c	direct particles production is included(currently only direct
C		photon)
c
C	Effect of high P_T trigger bias on multiple jets distribution
c
C******************************************************************
C	                        HIJING.10                         *
C	          Heavy Ion Jet INteraction Generator        	  *
C	                           by                       	  *
C		   X. N. Wang      and   M. Gyulassy           	  *
C	 	      Lawrence Berkeley Laboratory		  *
C								  *
C******************************************************************
C
C******************************************************************
C NFP(K,1),NFP(K,2)=flavor of q and di-q, NFP(K,3)=present ID of  *
C proj, NFP(K,4) original ID of proj.  NFP(K,5)=colli status(0=no,*
C 1=elastic,2=the diffrac one in single-diffrac,3= excited string.*
C |NFP(K,6)| is the total # of jet production, if NFP(K,6)<0 it   *
C can not produce jet anymore. NFP(K,10)=valence quarks scattering*
C (0=has not been,1=is going to be, -1=has already been scattered *
C NFP(k,11) total number of interactions this proj has suffered   *
C PP(K,1)=PX,PP(K,2)=PY,PP(K,3)=PZ,PP(K,4)=E,PP(K,5)=M(invariant  *
C mass), PP(K,6,7),PP(K,8,9)=transverse momentum of quark and     *
C diquark,PP(K,10)=PT of the hard scattering between the valence  *
C quarks; PP(K,14,15)=the mass of quark,diquark.       		  * 
C******************************************************************
C
C****************************************************************
C
C	SUBROUTINE HIJING
C
C****************************************************************
        SUBROUTINE HIJING(FRAME,BMIN0,BMAX0)

cbz1/25/99
        PARAMETER (MAXPTN=400001)
clin-4/20/01        PARAMETER (MAXSTR = 1600)
        PARAMETER (MAXSTR=150001)
cbz1/25/99end
clin-4/26/01:
        PARAMETER (MAXIDL=4001)

cbz1/31/99
        DOUBLE PRECISION  GX0, GY0, GZ0, FT0, PX0, PY0, PZ0, E0, XMASS0
        DOUBLE PRECISION  GX5, GY5, GZ5, FT5, PX5, PY5, PZ5, E5, XMASS5
        DOUBLE PRECISION  ATAUI, ZT1, ZT2, ZT3
        DOUBLE PRECISION  xnprod,etprod,xnfrz,etfrz,
     & dnprod,detpro,dnfrz,detfrz

cbz1/31/99end

        CHARACTER FRAME*8
        DIMENSION SCIP(300,300),RNIP(300,300),SJIP(300,300),JTP(3),
     &                        IPCOL(90000),ITCOL(90000)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
C
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
clin-7/16/03 NINT is a intrinsic fortran function, rename it to NINTHJ
c        COMMON/HJGLBR/NELT,NINT,NELP,NINP
        COMMON/HJGLBR/NELT,NINTHJ,NELP,NINP
cc      SAVE /HJGLBR/
        COMMON/HMAIN1/EATT,JATT,NATT,NT,NP,N0,N01,N10,N11
cc      SAVE /HMAIN1/
clin-4/26/01
c        COMMON/HMAIN2/KATT(130000,4),PATT(130000,4)
        COMMON/HMAIN2/KATT(MAXSTR,4),PATT(MAXSTR,4)
cc      SAVE /HMAIN2/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/HJJET1/NPJ(300),KFPJ(300,500),PJPX(300,500),
     &                PJPY(300,500),PJPZ(300,500),PJPE(300,500),
     &                PJPM(300,500),NTJ(300),KFTJ(300,500),
     &                PJTX(300,500),PJTY(300,500),PJTZ(300,500),
     &                PJTE(300,500),PJTM(300,500)
cc      SAVE /HJJET1/
clin-4/2008
c        COMMON/HJJET2/NSG,NJSG(900),IASG(900,3),K1SG(900,100),
c     &       K2SG(900,100),PXSG(900,100),PYSG(900,100),
c     &       PZSG(900,100),PESG(900,100),PMSG(900,100)
        COMMON/HJJET2/NSG,NJSG(MAXSTR),IASG(MAXSTR,3),K1SG(MAXSTR,100),
     &       K2SG(MAXSTR,100),PXSG(MAXSTR,100),PYSG(MAXSTR,100),
     &       PZSG(MAXSTR,100),PESG(MAXSTR,100),PMSG(MAXSTR,100)
cc      SAVE /HJJET2/
        COMMON/HJJET4/NDR,IADR(MAXSTR,2),KFDR(MAXSTR),PDR(MAXSTR,5)
clin-4/2008:
c        common/xydr/rtdr(900,2)
        common/xydr/rtdr(MAXSTR,2)
cc      SAVE /HJJET4/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
C
        COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5)   
cc      SAVE /LUJETS/
        COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
cc      SAVE /LUDAT1/

clin-9/29/03 changed name in order to distinguish from /prec2/
        COMMON /ARPRC/ ITYPAR(MAXSTR),
     &       GXAR(MAXSTR), GYAR(MAXSTR), GZAR(MAXSTR), FTAR(MAXSTR),
     &       PXAR(MAXSTR), PYAR(MAXSTR), PZAR(MAXSTR), PEAR(MAXSTR),
     &       XMAR(MAXSTR)
ccbz11/11/98
c        COMMON /ARPRC/ ITYP(MAXSTR),
c     &     GX(MAXSTR), GY(MAXSTR), GZ(MAXSTR), FT(MAXSTR),
c     &     PX(MAXSTR), PY(MAXSTR), PZ(MAXSTR), EE(MAXSTR),
c     &     XM(MAXSTR)
cc      SAVE /ARPRC/
ccbz11/11/98end

cbz1/25/99
        COMMON /PARA1/ MUL
cc      SAVE /PARA1/
        COMMON /prec1/GX0(MAXPTN),GY0(MAXPTN),GZ0(MAXPTN),FT0(MAXPTN),
     &     PX0(MAXPTN), PY0(MAXPTN), PZ0(MAXPTN), E0(MAXPTN),
     &     XMASS0(MAXPTN), ITYP0(MAXPTN)
cc      SAVE /prec1/
        COMMON /prec2/GX5(MAXPTN),GY5(MAXPTN),GZ5(MAXPTN),FT5(MAXPTN),
     &       PX5(MAXPTN), PY5(MAXPTN), PZ5(MAXPTN), E5(MAXPTN),
     &       XMASS5(MAXPTN), ITYP5(MAXPTN)
cc      SAVE /prec2/
        COMMON /ilist7/ LSTRG0(MAXPTN), LPART0(MAXPTN)
cc      SAVE /ilist7/
        COMMON /ilist8/ LSTRG1(MAXPTN), LPART1(MAXPTN)
cc      SAVE /ilist8/
        COMMON /SREC1/ NSP, NST, NSI
cc      SAVE /SREC1/
        COMMON /SREC2/ATAUI(MAXSTR),ZT1(MAXSTR),ZT2(MAXSTR),ZT3(MAXSTR)
cc      SAVE /SREC2/
cbz1/25/99end

clin-2/25/00
        COMMON /frzout/ xnprod(30),etprod(30),xnfrz(30),etfrz(30),
     & dnprod(30),detpro(30),dnfrz(30),detfrz(30)
cc      SAVE /frzout/ 
clin-4/11/01 soft:
      common/anim/nevent,isoft,isflag,izpc
cc      SAVE /anim/
clin-4/25/01 soft3:
      DOUBLE PRECISION PXSGS,PYSGS,PZSGS,PESGS,PMSGS,
     1     GXSGS,GYSGS,GZSGS,FTSGS
      COMMON/SOFT/PXSGS(MAXSTR,3),PYSGS(MAXSTR,3),PZSGS(MAXSTR,3),
     &     PESGS(MAXSTR,3),PMSGS(MAXSTR,3),GXSGS(MAXSTR,3),
     &     GYSGS(MAXSTR,3),GZSGS(MAXSTR,3),FTSGS(MAXSTR,3),
     &     K1SGS(MAXSTR,3),K2SGS(MAXSTR,3),NJSGS(MAXSTR)
cc      SAVE /SOFT/
clin-4/26/01 lepton and photon info:
        COMMON /NOPREC/ NNOZPC, ITYPN(MAXIDL),
     &       GXN(MAXIDL), GYN(MAXIDL), GZN(MAXIDL), FTN(MAXIDL),
     &       PXN(MAXIDL), PYN(MAXIDL), PZN(MAXIDL), EEN(MAXIDL),
     &       XMN(MAXIDL)
cc      SAVE /NOPREC/
clin-6/22/01:
        common /lastt/itimeh,bimp
cc      SAVE /lastt/
        COMMON /AREVT/ IAEVT, IARUN, MISS
        common/phidcy/iphidcy,pttrig,ntrig,maxmiss,ipi0dcy
clin-7/2011 ioscar value is needed:
        common /para7/ ioscar,nsmbbbar,nsmmeson
clin-2/2012 allow random orientation of reaction plane:
        common /phiHJ/iphirp,phiRP
        SAVE   

ctuos-Need this line for correct b range-06/2015
      DOUBLE PRECISION BMIN0,BMAX0

        BMAX=MIN(BMAX0,HIPR1(34)+HIPR1(35))
        BMIN=MIN(BMIN0,BMAX)
        IF(IHNT2(1).LE.1 .AND. IHNT2(3).LE.1) THEN
                BMIN=0.0
                BMAX=2.5*SQRT(HIPR1(31)*0.1/HIPR1(40))
        ENDIF
C                        ********HIPR1(31) is in mb =0.1fm**2
C*******THE FOLLOWING IS TO SELECT THE COORDINATIONS OF NUCLEONS 
C       BOTH IN PROJECTILE AND TARGET NUCLEAR( in fm)
C
        YP(1,1)=0.0
        YP(2,1)=0.0
        YP(3,1)=0.0
        IF(IHNT2(1).LE.1) GO TO 14
        DO 10 KP=1,IHNT2(1)
5        R=HIRND(1)
        X=RANART(NSEED)
        CX=2.0*X-1.0
        SX=SQRT(1.0-CX*CX)
C                ********choose theta from uniform cos(theta) distr
        PHI=RANART(NSEED)*2.0*HIPR1(40)
C                ********choose phi form uniform phi distr 0 to 2*pi
        YP(1,KP)=R*SX*COS(PHI)
        YP(2,KP)=R*SX*SIN(PHI)
        YP(3,KP)=R*CX
        IF(HIPR1(29).EQ.0.0) GO TO 10
        DO 8  KP2=1,KP-1
                DNBP1=(YP(1,KP)-YP(1,KP2))**2
                DNBP2=(YP(2,KP)-YP(2,KP2))**2
                DNBP3=(YP(3,KP)-YP(3,KP2))**2
                DNBP=DNBP1+DNBP2+DNBP3
                IF(DNBP.LT.HIPR1(29)*HIPR1(29)) GO TO 5
C                        ********two neighbors cannot be closer than 
C                                HIPR1(29)
8        CONTINUE
10        CONTINUE

clin-1/27/03 Hulthen wavefn for deuteron borrowed from hijing1.382.f, 
c     but modified [divide by 2, & x(p)=-x(n)]: 
c     (Note: hijing1.383.f has corrected this bug in hijing1.382.f)
        if(IHNT2(1).EQ.2) then
           rnd1=max(RANART(NSEED),1.0e-20)
           rnd2=max(RANART(NSEED),1.0e-20)
           rnd3=max(RANART(NSEED),1.0e-20)
           R=-(log(rnd1)*4.38/2.0+log(rnd2)*0.85/2.0
     &          +4.38*0.85*log(rnd3)/(4.38+0.85))
           X=RANART(NSEED)
           CX=2.0*X-1.0
           SX=SQRT(1.0-CX*CX)
           PHI=RANART(NSEED)*2.0*HIPR1(40)
c     R above is the relative distance between p & n in a deuteron:
           R=R/2.
           YP(1,1)=R*SX*COS(PHI)
           YP(2,1)=R*SX*SIN(PHI)
           YP(3,1)=R*CX
c     p & n has opposite coordinates in the deuteron frame:
           YP(1,2)=-YP(1,1)
           YP(2,2)=-YP(2,1)
           YP(3,2)=-YP(3,1)
        endif

        DO 12 I=1,IHNT2(1)-1
        DO 12 J=I+1,IHNT2(1)
        IF(YP(3,I).GT.YP(3,J)) GO TO 12
        Y1=YP(1,I)
        Y2=YP(2,I)
        Y3=YP(3,I)
        YP(1,I)=YP(1,J)
        YP(2,I)=YP(2,J)
        YP(3,I)=YP(3,J)
        YP(1,J)=Y1
        YP(2,J)=Y2
        YP(3,J)=Y3
12        CONTINUE
C
C******************************
14        YT(1,1)=0.0
        YT(2,1)=0.0
        YT(3,1)=0.0
        IF(IHNT2(3).LE.1) GO TO 24
        DO 20 KT=1,IHNT2(3)
15        R=HIRND(2)
        X=RANART(NSEED)
        CX=2.0*X-1.0
        SX=SQRT(1.0-CX*CX)
C                ********choose theta from uniform cos(theta) distr
        PHI=RANART(NSEED)*2.0*HIPR1(40)
C                ********chose phi form uniform phi distr 0 to 2*pi
        YT(1,KT)=R*SX*COS(PHI)
        YT(2,KT)=R*SX*SIN(PHI)
        YT(3,KT)=R*CX
        IF(HIPR1(29).EQ.0.0) GO TO 20
        DO 18  KT2=1,KT-1
                DNBT1=(YT(1,KT)-YT(1,KT2))**2
                DNBT2=(YT(2,KT)-YT(2,KT2))**2
                DNBT3=(YT(3,KT)-YT(3,KT2))**2
                DNBT=DNBT1+DNBT2+DNBT3
                IF(DNBT.LT.HIPR1(29)*HIPR1(29)) GO TO 15
C                        ********two neighbors cannot be closer than 
C                                HIPR1(29)
18        CONTINUE
20        CONTINUE
c
clin-1/27/03 Hulthen wavefn for deuteron borrowed from hijing1.382.f, 
c     but modified [divide by 2, & x(p)=-x(n)]:
        if(IHNT2(3).EQ.2) then
           rnd1=max(RANART(NSEED),1.0e-20)
           rnd2=max(RANART(NSEED),1.0e-20)
           rnd3=max(RANART(NSEED),1.0e-20)
           R=-(log(rnd1)*4.38/2.0+log(rnd2)*0.85/2.0
     &          +4.38*0.85*log(rnd3)/(4.38+0.85))
           X=RANART(NSEED)
           CX=2.0*X-1.0
           SX=SQRT(1.0-CX*CX)
           PHI=RANART(NSEED)*2.0*HIPR1(40)
           R=R/2.
           YT(1,1)=R*SX*COS(PHI)
           YT(2,1)=R*SX*SIN(PHI)
           YT(3,1)=R*CX
           YT(1,2)=-YT(1,1)
           YT(2,2)=-YT(2,1)
           YT(3,2)=-YT(3,1)
        endif
c
        DO 22 I=1,IHNT2(3)-1
        DO 22 J=I+1,IHNT2(3)
        IF(YT(3,I).LT.YT(3,J)) GO TO 22
        Y1=YT(1,I)
        Y2=YT(2,I)
        Y3=YT(3,I)
        YT(1,I)=YT(1,J)
        YT(2,I)=YT(2,J)
        YT(3,I)=YT(3,J)
        YT(1,J)=Y1
        YT(2,J)=Y2
        YT(3,J)=Y3
22        CONTINUE

C********************
24        MISS=-1
50        MISS=MISS+1

clin-6/2009
c        IF(MISS.GT.50) THEN
        IF(MISS.GT.maxmiss) THEN
           WRITE(6,*) 'infinite loop happened in  HIJING'
           STOP
        ENDIF

clin-4/30/01:
        itest=0

        NATT=0
        JATT=0
        EATT=0.0
        CALL HIJINI
        NLOP=0
C                        ********Initialize for a new event
60        NT=0
        NP=0
        N0=0
        N01=0
        N10=0
        N11=0
        NELT=0
        NINTHJ=0
        NELP=0
        NINP=0
        NSG=0
        NCOLT=0

C****        BB IS THE ABSOLUTE VALUE OF IMPACT PARAMETER,BB**2 IS 
C       RANDOMLY GENERATED AND ITS ORIENTATION IS RANDOMLY SET 
C       BY THE ANGLE PHI  FOR EACH COLLISION.******************
C
        BB=SQRT(BMIN**2+RANART(NSEED)*(BMAX**2-BMIN**2))
cbz6/28/99 flow1
clin-2/2012:
        PHI=0.
        if(iphirp.eq.1) PHI=2.0*HIPR1(40)*RANART(NSEED)
        phiRP=phi
cbz6/28/99 flow1 end
        BBX=BB*COS(PHI)
        BBY=BB*SIN(PHI)
        HINT1(19)=BB
        HINT1(20)=PHI
C
        DO 70 JP=1,IHNT2(1)
        DO 70 JT=1,IHNT2(3)
           SCIP(JP,JT)=-1.0
           B2=(YP(1,JP)+BBX-YT(1,JT))**2+(YP(2,JP)+BBY-YT(2,JT))**2
           R2=B2*HIPR1(40)/HIPR1(31)/0.1
C                ********mb=0.1*fm, YP is in fm,HIPR1(31) is in mb
           RRB1=MIN((YP(1,JP)**2+YP(2,JP)**2)
     &          /1.2**2/REAL(IHNT2(1))**0.6666667,1.0)
           RRB2=MIN((YT(1,JT)**2+YT(2,JT)**2)
     &          /1.2**2/REAL(IHNT2(3))**0.6666667,1.0)
           APHX1=HIPR1(6)*4.0/3.0*(IHNT2(1)**0.3333333-1.0)
     &           *SQRT(1.0-RRB1)
           APHX2=HIPR1(6)*4.0/3.0*(IHNT2(3)**0.3333333-1.0)
     &           *SQRT(1.0-RRB2)
           HINT1(18)=HINT1(14)-APHX1*HINT1(15)
     &                        -APHX2*HINT1(16)+APHX1*APHX2*HINT1(17)
           IF(IHPR2(14).EQ.0.OR.
     &          (IHNT2(1).EQ.1.AND.IHNT2(3).EQ.1)) THEN
              GS=1.0-EXP(-(HIPR1(30)+HINT1(18))*ROMG(R2)/HIPR1(31))
              RANTOT=RANART(NSEED)
              IF(RANTOT.GT.GS) GO TO 70
              GO TO 65
           ENDIF
           GSTOT0=2.0*(1.0-EXP(-(HIPR1(30)+HINT1(18))
     &             /HIPR1(31)/2.0*ROMG(0.0)))
           R2=R2/GSTOT0
           GS=1.0-EXP(-(HIPR1(30)+HINT1(18))/HIPR1(31)*ROMG(R2))
           GSTOT=2.0*(1.0-SQRT(1.0-GS))
           RANTOT=RANART(NSEED)*GSTOT0
           IF(RANTOT.GT.GSTOT) GO TO 70
           IF(RANTOT.GT.GS) THEN
              CALL HIJCSC(JP,JT)
              GO TO 70
C                        ********perform elastic collisions
           ENDIF
 65           SCIP(JP,JT)=R2
           RNIP(JP,JT)=RANTOT
           SJIP(JP,JT)=HINT1(18)
           NCOLT=NCOLT+1
           IPCOL(NCOLT)=JP
           ITCOL(NCOLT)=JT
70        CONTINUE
C                ********total number interactions proj and targ has
C                                suffered

clin-5/22/01 write impact parameter:
        bimp=bb
        write(6,*) '#impact parameter,nlop,ncolt=',bimp,nlop,ncolt

        IF(NCOLT.EQ.0) THEN
           NLOP=NLOP+1
           IF(NLOP.LE.20.OR.
     &           (IHNT2(1).EQ.1.AND.IHNT2(3).EQ.1)) GO TO 60
           RETURN
        ENDIF
C               ********At large impact parameter, there maybe no
C                       interaction at all. For NN collision
C                       repeat the event until interaction happens
C
        IF(IHPR2(3).NE.0) THEN
           NHARD=1+INT(RANART(NSEED)*(NCOLT-1)+0.5)
           NHARD=MIN(NHARD,NCOLT)
           JPHARD=IPCOL(NHARD)
           JTHARD=ITCOL(NHARD)
clin-6/2009 ctest off:
c           write(99,*) IAEVT,NHARD,NCOLT,JPHARD,JTHARD
        ENDIF
C
        IF(IHPR2(9).EQ.1) THEN
                NMINI=1+INT(RANART(NSEED)*(NCOLT-1)+0.5)
                NMINI=MIN(NMINI,NCOLT)
                JPMINI=IPCOL(NMINI)
                JTMINI=ITCOL(NMINI)
        ENDIF
C                ********Specifying the location of the hard and
C                        minijet if they are enforced by user
C
        DO 200 JP=1,IHNT2(1)
        DO 200 JT=1,IHNT2(3)
        IF(SCIP(JP,JT).EQ.-1.0) GO TO 200
                NFP(JP,11)=NFP(JP,11)+1
                NFT(JT,11)=NFT(JT,11)+1
        IF(NFP(JP,5).LE.1 .AND. NFT(JT,5).GT.1) THEN
                NP=NP+1
                N01=N01+1
        ELSE IF(NFP(JP,5).GT.1 .AND. NFT(JT,5).LE.1) THEN
                NT=NT+1
                N10=N10+1
        ELSE IF(NFP(JP,5).LE.1 .AND. NFT(JT,5).LE.1) THEN
                NP=NP+1
                NT=NT+1
                N0=N0+1
        ELSE IF(NFP(JP,5).GT.1 .AND. NFT(JT,5).GT.1) THEN
                N11=N11+1
        ENDIF
        JOUT=0
        NFP(JP,10)=0
        NFT(JT,10)=0
C*****************************************************************
        IF(IHPR2(8).EQ.0 .AND. IHPR2(3).EQ.0) GO TO 160
C                ********When IHPR2(8)=0 no jets are produced
        IF(NFP(JP,6).LT.0 .OR. NFT(JT,6).LT.0) GO TO 160
C                ********jets can not be produced for (JP,JT)
C                        because not enough energy avaible for 
C                                JP or JT 
        R2=SCIP(JP,JT)
        HINT1(18)=SJIP(JP,JT)
        TT=ROMG(R2)*HINT1(18)/HIPR1(31)
        TTS=HIPR1(30)*ROMG(R2)/HIPR1(31)
        NJET=0

        IF(IHPR2(3).NE.0 .AND. JP.EQ.JPHARD .AND. JT.EQ.JTHARD) THEN
           CALL JETINI(JP,JT,1)
           CALL HIJHRD(JP,JT,0,JFLG,0)
           HINT1(26)=HINT1(47)
           HINT1(27)=HINT1(48)
           HINT1(28)=HINT1(49)
           HINT1(29)=HINT1(50)
           HINT1(36)=HINT1(67)
           HINT1(37)=HINT1(68)
           HINT1(38)=HINT1(69)
           HINT1(39)=HINT1(70)
C
           IF(ABS(HINT1(46)).GT.HIPR1(11).AND.JFLG.EQ.2) NFP(JP,7)=1
           IF(ABS(HINT1(56)).GT.HIPR1(11).AND.JFLG.EQ.2) NFT(JT,7)=1
           IF(MAX(ABS(HINT1(46)),ABS(HINT1(56))).GT.HIPR1(11).AND.
     &                                JFLG.GE.3) IASG(NSG,3)=1
           IHNT2(9)=IHNT2(14)
           IHNT2(10)=IHNT2(15)
           DO 105 I05=1,5
              HINT1(20+I05)=HINT1(40+I05)
              HINT1(30+I05)=HINT1(50+I05)
 105           CONTINUE
clin-6/2009 ctest off:
c           write(99,*) jp,jt,IHPR2(3),HIPR1(10),njet,
c     1          ihnt2(9),hint1(21),hint1(22),hint1(23),
c     2          ihnt2(10),hint1(31),hint1(32),hint1(33)
c           write(99,*) ' '
           JOUT=1
           IF(IHPR2(8).EQ.0) GO TO 160
           RRB1=MIN((YP(1,JP)**2+YP(2,JP)**2)/1.2**2
     &                /REAL(IHNT2(1))**0.6666667,1.0)
           RRB2=MIN((YT(1,JT)**2+YT(2,JT)**2)/1.2**2
     &                /REAL(IHNT2(3))**0.6666667,1.0)
           APHX1=HIPR1(6)*4.0/3.0*(IHNT2(1)**0.3333333-1.0)
     &           *SQRT(1.0-RRB1)
           APHX2=HIPR1(6)*4.0/3.0*(IHNT2(3)**0.3333333-1.0)
     &           *SQRT(1.0-RRB2)
           HINT1(65)=HINT1(61)-APHX1*HINT1(62)
     &                        -APHX2*HINT1(63)+APHX1*APHX2*HINT1(64)
           TTRIG=ROMG(R2)*HINT1(65)/HIPR1(31)
           NJET=-1
C                ********subtract the trigger jet from total number
C                        of jet production  to be done since it has
C                                already been produced here
           XR1=-ALOG(EXP(-TTRIG)+RANART(NSEED)*(1.0-EXP(-TTRIG)))
 106           NJET=NJET+1
           XR1=XR1-ALOG(max(RANART(NSEED),1.0e-20))
           IF(XR1.LT.TTRIG) GO TO 106
           XR=0.0
 107           NJET=NJET+1
           XR=XR-ALOG(max(RANART(NSEED),1.0e-20))
           IF(XR.LT.TT-TTRIG) GO TO 107
           NJET=NJET-1
           GO TO 112
        ENDIF
C                ********create a hard interaction with specified P_T
c                                 when IHPR2(3)>0
        IF(IHPR2(9).EQ.1.AND.JP.EQ.JPMINI.AND.JT.EQ.JTMINI) GO TO 110
C                ********create at least one pair of mini jets 
C                        when IHPR2(9)=1
C
clin-4/15/2010 changed .LT. to .LE. to avoid problem when two sides are equal; 
c     this problem may lead to a jet production when there should be none and 
c     crash the run; crashes at low energies were reported by P. Bhaduri.
c        IF(IHPR2(8).GT.0 .AND.RNIP(JP,JT).LT.EXP(-TT)*
c     &                (1.0-EXP(-TTS))) GO TO 160
        IF(IHPR2(8).GT.0 .AND.RNIP(JP,JT).LE.EXP(-TT)*
     &                 (1.0-EXP(-TTS))) GO TO 160
c
C                ********this is the probability for no jet production
110        XR=-ALOG(EXP(-TT)+RANART(NSEED)*(1.0-EXP(-TT)))
111        NJET=NJET+1
        XR=XR-ALOG(max(RANART(NSEED),1.0e-20))
        IF(XR.LT.TT) GO TO 111
112        NJET=MIN(NJET,IHPR2(8))
        IF(IHPR2(8).LT.0)  NJET=ABS(IHPR2(8))
C                ******** Determine number of mini jet production
C
        DO 150 ijet=1,NJET
           CALL JETINI(JP,JT,0)
           CALL HIJHRD(JP,JT,JOUT,JFLG,1)
C                ********JFLG=1 jets valence quarks, JFLG=2 with 
C                        gluon jet, JFLG=3 with q-qbar prod for
C                        (JP,JT). If JFLG=0 jets can not be produced 
C                        this time. If JFLG=-1, error occured abandon
C                        this event. JOUT is the total hard scat for
C                        (JP,JT) up to now.
           IF(JFLG.EQ.0) GO TO 160
           IF(JFLG.LT.0) THEN
              IF(IHPR2(10).NE.0) WRITE(6,*) 'error occured in HIJHRD'
              GO TO 50
           ENDIF
           JOUT=JOUT+1
           IF(ABS(HINT1(46)).GT.HIPR1(11).AND.JFLG.EQ.2) NFP(JP,7)=1
           IF(ABS(HINT1(56)).GT.HIPR1(11).AND.JFLG.EQ.2) NFT(JT,7)=1
           IF(MAX(ABS(HINT1(46)),ABS(HINT1(56))).GT.HIPR1(11).AND.
     &                        JFLG.GE.3) IASG(NSG,3)=1
C                ******** jet with PT>HIPR1(11) will be quenched
 150        CONTINUE
 160        CONTINUE

        CALL HIJSFT(JP,JT,JOUT,IERROR)
        IF(IERROR.NE.0) THEN
           IF(IHPR2(10).NE.0) WRITE(6,*) 'error occured in HIJSFT'
           GO TO 50
        ENDIF
C
C                ********conduct soft scattering between JP and JT
        JATT=JATT+JOUT
200        CONTINUE
c
c**************************
c
clin-6/2009 write out initial minijet information:
clin-2/2012:
c           call minijet_out(BB)
           call minijet_out(BB,phiRP)
           if(pttrig.gt.0.and.ntrig.eq.0) goto 50
clin-4/2012 
clin-6/2009 write out initial transverse positions of initial nucleons:
c           write(94,*) IAEVT,MISS,IHNT2(1),IHNT2(3)
        DO 201 JP=1,IHNT2(1)
clin-6/2009:
c           write(94,203) YP(1,JP)+0.5*BB, YP(2,JP), JP, NFP(JP,5)
clin-2/2012:
c       write(94,203) YP(1,JP)+0.5*BB, YP(2,JP), JP, NFP(JP,5),yp(3,jp)
clin-4/2012:
c           write(94,203) YP(1,JP)+0.5*BB*cos(phiRP), 
c     1 YP(2,JP)+0.5*BB*sin(phiRP), JP, NFP(JP,5),yp(3,jp)
           IF(NFP(JP,5).GT.2) THEN
              NINP=NINP+1
           ELSE IF(NFP(JP,5).EQ.2.OR.NFP(JP,5).EQ.1) THEN
              NELP=NELP+1
           ENDIF
 201    continue
        DO 202 JT=1,IHNT2(3)
clin-6/2009 target nucleon # has a minus sign for distinction from projectile:
c           write(94,203) YT(1,JT)-0.5*BB, YT(2,JT), -JT, NFT(JT,5)
clin-2/2012:
c       write(94,203) YT(1,JT)-0.5*BB, YT(2,JT), -JT, NFT(JT,5),yt(3,jt)
clin-4/2012:
c           write(94,203) YT(1,JT)-0.5*BB*cos(phiRP), 
c     1 YT(2,JT)-0.5*BB*sin(phiRP), -JT, NFT(JT,5),yt(3,jt)
           IF(NFT(JT,5).GT.2) THEN
              NINTHJ=NINTHJ+1
           ELSE IF(NFT(JT,5).EQ.2.OR.NFT(JT,5).EQ.1) THEN
              NELT=NELT+1
           ENDIF
 202    continue
c 203    format(f10.3,1x,f10.3,2(1x,I5))
c 203    format(f10.3,1x,f10.3,2(1x,I5),1x,f10.3)
c     
c*******************************


C********perform jet quenching for jets with PT>HIPR1(11)**********

        IF((IHPR2(8).NE.0.OR.IHPR2(3).NE.0).AND.IHPR2(4).GT.0.AND.
     &                        IHNT2(1).GT.1.AND.IHNT2(3).GT.1) THEN
                DO 271 I=1,IHNT2(1)
                        IF(NFP(I,7).EQ.1) CALL QUENCH(I,1)
271                CONTINUE
                DO 272 I=1,IHNT2(3)
                        IF(NFT(I,7).EQ.1) CALL QUENCH(I,2)
272                CONTINUE
                DO 273 ISG=1,NSG
                        IF(IASG(ISG,3).EQ.1) CALL QUENCH(ISG,3)
273                CONTINUE
        ENDIF

clin*****4/09/01-soft1, default way of treating strings:
        if(isoft.eq.1) then
clin-4/16/01 allow fragmentation:
           isflag=1

cbz1/25/99
c.....transfer data from HIJING to ZPC
        NSP = IHNT2(1)
        NST = IHNT2(3)
        NSI = NSG
        ISTR = 0
        NPAR = 0
        DO 1008 I = 1, IHNT2(1)
           ISTR = ISTR + 1
           DO 1007 J = 1, NPJ(I)
cbz1/27/99
c.....for now only consider gluon cascade
              IF (KFPJ(I, J) .EQ. 21) THEN
cbz1/27/99end

              NPAR = NPAR + 1
              LSTRG0(NPAR) = ISTR
              LPART0(NPAR) = J
              ITYP0(NPAR) = KFPJ(I, J)
cbz6/28/99 flow1
clin-7/20/01 add dble or sngl to make precisions consistent
c              GX0(NPAR) = YP(1, I)
clin-2/2012:
c              GX0(NPAR) = dble(YP(1, I) + 0.5 * BB)
              GX0(NPAR) = dble(YP(1, I)+0.5*BB*cos(phiRP))
cbz6/28/99 flow1 end
c              GY0(NPAR) = dble(YP(2, I))
              GY0(NPAR) = dble(YP(2, I)+0.5*BB*sin(phiRP))
              GZ0(NPAR) = 0d0
              FT0(NPAR) = 0d0
              PX0(NPAR) = dble(PJPX(I, J))
              PY0(NPAR) = dble(PJPY(I, J))
              PZ0(NPAR) = dble(PJPZ(I, J))
              XMASS0(NPAR) = dble(PJPM(I, J))
c              E0(NPAR) = dble(PJPE(I, J))
              E0(NPAR) = dsqrt(PX0(NPAR)**2+PY0(NPAR)**2
     1             +PZ0(NPAR)**2+XMASS0(NPAR)**2)
clin-7/20/01-end

cbz1/27/99
c.....end gluon selection
              END IF
cbz1/27/99end
 1007      CONTINUE
 1008   CONTINUE
        DO 1010 I = 1, IHNT2(3)
           ISTR = ISTR + 1
           DO 1009 J = 1, NTJ(I)
cbz1/27/99
c.....for now only consider gluon cascade
              IF (KFTJ(I, J) .EQ. 21) THEN
cbz1/27/99end
              NPAR = NPAR + 1
              LSTRG0(NPAR) = ISTR
              LPART0(NPAR) = J
              ITYP0(NPAR) = KFTJ(I, J)
cbz6/28/99 flow1
clin-7/20/01 add dble or sngl to make precisions consistent
c              GX0(NPAR) = YT(1, I)
clin-2/2012:
c              GX0(NPAR) = dble(YT(1, I) - 0.5 * BB)
              GX0(NPAR) = dble(YT(1, I)-0.5*BB*cos(phiRP))
cbz6/28/99 flow1 end
c              GY0(NPAR) = dble(YT(2, I))
              GY0(NPAR) = dble(YT(2, I)-0.5*BB*sin(phiRP))
              GZ0(NPAR) = 0d0
              FT0(NPAR) = 0d0
              PX0(NPAR) = dble(PJTX(I, J))
              PY0(NPAR) = dble(PJTY(I, J))
              PZ0(NPAR) = dble(PJTZ(I, J))
              XMASS0(NPAR) = dble(PJTM(I, J))
c              E0(NPAR) = dble(PJTE(I, J))
              E0(NPAR) = dsqrt(PX0(NPAR)**2+PY0(NPAR)**2
     1             +PZ0(NPAR)**2+XMASS0(NPAR)**2)

cbz1/27/99
c.....end gluon selection
              END IF
cbz1/27/99end
 1009      CONTINUE
 1010   CONTINUE
        DO 1012 I = 1, NSG
           ISTR = ISTR + 1
           DO 1011 J = 1, NJSG(I)
cbz1/27/99
c.....for now only consider gluon cascade
              IF (K2SG(I, J) .EQ. 21) THEN
cbz1/27/99end
              NPAR = NPAR + 1
              LSTRG0(NPAR) = ISTR
              LPART0(NPAR) = J
              ITYP0(NPAR) = K2SG(I, J)
clin-7/20/01 add dble or sngl to make precisions consistent:
              GX0(NPAR) = 0.5d0 * 
     1             dble(YP(1, IASG(I, 1)) + YT(1, IASG(I, 2)))
              GY0(NPAR) = 0.5d0 * 
     2             dble(YP(2, IASG(I, 1)) + YT(2, IASG(I, 2)))
              GZ0(NPAR) = 0d0
              FT0(NPAR) = 0d0
              PX0(NPAR) = dble(PXSG(I, J))
              PY0(NPAR) = dble(PYSG(I, J))
              PZ0(NPAR) = dble(PZSG(I, J))
              XMASS0(NPAR) = dble(PMSG(I, J))
c              E0(NPAR) = dble(PESG(I, J))
              E0(NPAR) = dsqrt(PX0(NPAR)**2+PY0(NPAR)**2
     1             +PZ0(NPAR)**2+XMASS0(NPAR)**2)
cbz1/27/99
c.....end gluon selection
              END IF
cbz1/27/99end
 1011      CONTINUE
 1012   CONTINUE
        MUL = NPAR

cbz2/4/99
        CALL HJANA1
cbz2/4/99end

clin-6/2009:
        if(ioscar.eq.3) WRITE (95, *) IAEVT, mul
c.....call ZPC for parton cascade
        CALL ZPCMN

c     write out parton and wounded nucleon information to ana/zpc1.mom:
clin-6/2009:
c        WRITE (14, 395) ITEST, MUL, bimp, NELP,NINP,NELT,NINTHJ
        WRITE (14, 395) IAEVT, MISS, MUL, bimp, NELP,NINP,NELT,NINTHJ
        DO 1013 I = 1, MUL
cc           WRITE (14, 411) PX5(I), PY5(I), PZ5(I), ITYP5(I),
c     &        XMASS5(I), E5(I)
           if(dmax1(abs(GX5(I)),abs(GY5(I)),abs(GZ5(I)),abs(FT5(I)))
     1          .lt.9999) then
              write(14,210) ITYP5(I), PX5(I), PY5(I), PZ5(I), XMASS5(I),
     1             GX5(I), GY5(I), GZ5(I), FT5(I)
           else
c     change format for large numbers:
              write(14,211) ITYP5(I), PX5(I), PY5(I), PZ5(I), XMASS5(I),
     1             GX5(I), GY5(I), GZ5(I), FT5(I)
           endif

 1013   CONTINUE
 210    format(I6,2(1x,f8.3),1x,f10.3,1x,f6.3,4(1x,f8.2))
 211    format(I6,2(1x,f8.3),1x,f10.3,1x,f6.3,4(1x,e8.2))
 395    format(3I8,f10.4,4I5)

clin-4/09/01:
        itest=itest+1
c 411    FORMAT(1X, 3F10.3, I6, 2F10.3)
cbz3/19/99 end

clin-5/2009 ctest off:
c        call frztm(1,1)

c.....transfer data back from ZPC to HIJING
        DO 1014 I = 1, MUL
           IF (LSTRG1(I) .LE. NSP) THEN
              NSTRG = LSTRG1(I)
              NPART = LPART1(I)
              KFPJ(NSTRG, NPART) = ITYP5(I)
clin-7/20/01 add dble or sngl to make precisions consistent
              PJPX(NSTRG, NPART) = sngl(PX5(I))
              PJPY(NSTRG, NPART) = sngl(PY5(I))
              PJPZ(NSTRG, NPART) = sngl(PZ5(I))
              PJPE(NSTRG, NPART) = sngl(E5(I))
              PJPM(NSTRG, NPART) = sngl(XMASS5(I))
           ELSE IF (LSTRG1(I) .LE. NSP + NST) THEN
              NSTRG = LSTRG1(I) - NSP
              NPART = LPART1(I)
              KFTJ(NSTRG, NPART) = ITYP5(I)
              PJTX(NSTRG, NPART) = sngl(PX5(I))
              PJTY(NSTRG, NPART) = sngl(PY5(I))
              PJTZ(NSTRG, NPART) = sngl(PZ5(I))
              PJTE(NSTRG, NPART) = sngl(E5(I))
              PJTM(NSTRG, NPART) = sngl(XMASS5(I))
           ELSE
              NSTRG = LSTRG1(I) - NSP - NST
              NPART = LPART1(I)
              K2SG(NSTRG, NPART) = ITYP5(I)
              PXSG(NSTRG, NPART) = sngl(PX5(I))
              PYSG(NSTRG, NPART) = sngl(PY5(I))
              PZSG(NSTRG, NPART) = sngl(PZ5(I))
              PESG(NSTRG, NPART) = sngl(E5(I))
              PMSG(NSTRG, NPART) = sngl(XMASS5(I))
           END IF
 1014   CONTINUE
cbz1/25/99end

cbz2/4/99
        CALL HJANA2
cbz2/4/99end

clin*****4/09/01-soft2, put q+dq+X in strings into ZPC:
        elseif(isoft.eq.2) then
        NSP = IHNT2(1)
        NST = IHNT2(3)
clin-4/27/01:
        NSI = NSG
        NPAR=0
        ISTR=0
C
clin  No fragmentation to hadrons, only on parton level, 
c     and transfer minijet and string data from HIJING to ZPC:
        MSTJ(1)=0
clin-4/12/01 forbid soft radiation before ZPC to avoid small-mass strings,
c     and forbid jet order reversal before ZPC to avoid unphysical flavors:
        IHPR2(1)=0
        isflag=0

        IF(IHPR2(20).NE.0) THEN
           DO 320 NTP=1,2
              DO 310 jjtp=1,IHNT2(2*NTP-1)
                 ISTR = ISTR + 1
c change: do gluon kink only once: either here or in fragmentation.
                 CALL HIJFRG(jjtp,NTP,IERROR)
c                 call lulist(1)
                 if(NTP.eq.1) then
c 354                continue
                    NPJ(jjtp)=MAX0(N-2,0)

clin-4/12/01:                    NPJ(jjtp)=MAX0(ipartn-2,0)
                 else
c 355                continue
                    NTJ(jjtp)=MAX0(N-2,0)
clin-4/12/01:                    NTJ(jjtp)=MAX0(ipartn-2,0)
                 endif

                 do 300 ii=1,N
                 NPAR = NPAR + 1
                 LSTRG0(NPAR) = ISTR
                 LPART0(NPAR) = II
                 ITYP0(NPAR) = K(II,2)
                 GZ0(NPAR) = 0d0
                 FT0(NPAR) = 0d0
clin-7/20/01 add dble or sngl to make precisions consistent
                 PX0(NPAR) = dble(P(II,1))
                 PY0(NPAR) = dble(P(II,2))
                 PZ0(NPAR) = dble(P(II,3))
                 XMASS0(NPAR) = dble(P(II,5))
c                 E0(NPAR) = dble(P(II,4))
                 E0(NPAR) = dsqrt(PX0(NPAR)**2+PY0(NPAR)**2
     1                +PZ0(NPAR)**2+XMASS0(NPAR)**2)
                 IF (NTP .EQ. 1) THEN
clin-7/20/01 add dble or sngl to make precisions consistent
clin-2/2012:
c                    GX0(NPAR) = dble(YP(1, jjtp)+0.5 * BB)
c                    GY0(NPAR) = dble(YP(2, jjtp))
                    GX0(NPAR) = dble(YP(1, jjtp)+0.5*BB*cos(phiRP))
                    GY0(NPAR) = dble(YP(2, jjtp)+0.5*BB*sin(phiRP))

                    IITYP=ITYP0(NPAR)
                    nstrg=LSTRG0(NPAR)
                    if(IITYP.eq.2112.or.IITYP.eq.2212) then
                    elseif((IITYP.eq.1.or.IITYP.eq.2).and.
     1 (II.eq.1.or.II.eq.N)) then
                       PP(nstrg,6)=sngl(PX0(NPAR))
                       PP(nstrg,7)=sngl(PY0(NPAR))
                       PP(nstrg,14)=sngl(XMASS0(NPAR))
                    elseif((IITYP.eq.1103.or.IITYP.eq.2101
     1 .or.IITYP.eq.2103.or.IITYP.eq.2203.
     2 .or.IITYP.eq.3101.or.IITYP.eq.3103.
     3 .or.IITYP.eq.3201.or.IITYP.eq.3203.or.IITYP.eq.3303)
     4 .and.(II.eq.1.or.II.eq.N)) then
                       PP(nstrg,8)=sngl(PX0(NPAR))
                       PP(nstrg,9)=sngl(PY0(NPAR))
                       PP(nstrg,15)=sngl(XMASS0(NPAR))
                    else
                       NPART = LPART0(NPAR)-1
                       KFPJ(NSTRG, NPART) = ITYP0(NPAR)
                       PJPX(NSTRG, NPART) = sngl(PX0(NPAR))
                       PJPY(NSTRG, NPART) = sngl(PY0(NPAR))
                       PJPZ(NSTRG, NPART) = sngl(PZ0(NPAR))
                       PJPE(NSTRG, NPART) = sngl(E0(NPAR))
                       PJPM(NSTRG, NPART) = sngl(XMASS0(NPAR))
                    endif
                 ELSE
clin-2/2012:
c                    GX0(NPAR) = dble(YT(1, jjtp)-0.5 * BB)
c                    GY0(NPAR) = dble(YT(2, jjtp)) 
                    GX0(NPAR) = dble(YT(1, jjtp)-0.5*BB*cos(phiRP))
                    GY0(NPAR) = dble(YT(2, jjtp)-0.5*BB*sin(phiRP))
                    IITYP=ITYP0(NPAR)
                    nstrg=LSTRG0(NPAR)-NSP
                    if(IITYP.eq.2112.or.IITYP.eq.2212) then
                    elseif((IITYP.eq.1.or.IITYP.eq.2).and.
     1 (II.eq.1.or.II.eq.N)) then
                       PT(nstrg,6)=sngl(PX0(NPAR))
                       PT(nstrg,7)=sngl(PY0(NPAR))
                       PT(nstrg,14)=sngl(XMASS0(NPAR))
                    elseif((IITYP.eq.1103.or.IITYP.eq.2101
     1 .or.IITYP.eq.2103.or.IITYP.eq.2203.
     2 .or.IITYP.eq.3101.or.IITYP.eq.3103.
     3 .or.IITYP.eq.3201.or.IITYP.eq.3203.or.IITYP.eq.3303)
     4 .and.(II.eq.1.or.II.eq.N)) then
                       PT(nstrg,8)=sngl(PX0(NPAR))
                       PT(nstrg,9)=sngl(PY0(NPAR))
                       PT(nstrg,15)=sngl(XMASS0(NPAR))
                    else
                       NPART = LPART0(NPAR)-1
                       KFTJ(NSTRG, NPART) = ITYP0(NPAR)
                       PJTX(NSTRG, NPART) = sngl(PX0(NPAR))
                       PJTY(NSTRG, NPART) = sngl(PY0(NPAR))
                       PJTZ(NSTRG, NPART) = sngl(PZ0(NPAR))
                       PJTE(NSTRG, NPART) = sngl(E0(NPAR))
                       PJTM(NSTRG, NPART) = sngl(XMASS0(NPAR))
                    endif
                 END IF
 300          continue
 310          continue
 320       continue
           DO 330 ISG=1,NSG
              ISTR = ISTR + 1
              CALL HIJFRG(ISG,3,IERROR)
c              call lulist(2)
c
              NJSG(ISG)=N
c
              do 1001 ii=1,N
                 NPAR = NPAR + 1
                 LSTRG0(NPAR) = ISTR
                 LPART0(NPAR) = II
                 ITYP0(NPAR) = K(II,2)
                 GX0(NPAR)=0.5d0*
     1                dble(YP(1,IASG(ISG,1))+YT(1,IASG(ISG,2)))
                 GY0(NPAR)=0.5d0*
     2                dble(YP(2,IASG(ISG,1))+YT(2,IASG(ISG,2)))
                 GZ0(NPAR) = 0d0
                 FT0(NPAR) = 0d0
                 PX0(NPAR) = dble(P(II,1))
                 PY0(NPAR) = dble(P(II,2))
                 PZ0(NPAR) = dble(P(II,3))
                 XMASS0(NPAR) = dble(P(II,5))
c                 E0(NPAR) = dble(P(II,4))
                 E0(NPAR) = dsqrt(PX0(NPAR)**2+PY0(NPAR)**2
     1                +PZ0(NPAR)**2+XMASS0(NPAR)**2)
 1001         continue
 330       continue
        endif

        MUL = NPAR
cbz2/4/99
        CALL HJANA1
cbz2/4/99end
clin-6/2009:
        if(ioscar.eq.3) WRITE (95, *) IAEVT, mul
c.....call ZPC for parton cascade
        CALL ZPCMN
cbz3/19/99
clin-6/2009:
c        WRITE (14, 395) ITEST, MUL, bimp, NELP,NINP,NELT,NINTHJ
        WRITE (14, 395) IAEVT, MISS, MUL, bimp, NELP,NINP,NELT,NINTHJ
        itest=itest+1

        DO 1015 I = 1, MUL
c           WRITE (14, 311) PX5(I), PY5(I), PZ5(I), ITYP5(I),
c     &        XMASS5(I), E5(I)
clin-4/2012 write parton freeze-out position in zpc.dat for this test scenario:
c           WRITE (14, 312) PX5(I), PY5(I), PZ5(I), ITYP5(I),
c     &        XMASS5(I), E5(I),LSTRG1(I), LPART1(I)
           if(dmax1(abs(GX5(I)),abs(GY5(I)),abs(GZ5(I)),abs(FT5(I)))
     1          .lt.9999) then
              write(14,210) ITYP5(I), PX5(I), PY5(I), PZ5(I), XMASS5(I),
     1             GX5(I), GY5(I), GZ5(I), FT5(I)
           else
              write(14,211) ITYP5(I), PX5(I), PY5(I), PZ5(I), XMASS5(I),
     1             GX5(I), GY5(I), GZ5(I), FT5(I)
           endif
c
 1015   CONTINUE
c 311    FORMAT(1X, 3F10.4, I6, 2F10.4)
c 312    FORMAT(1X, 3F10.3, I6, 2F10.3,1X,I6,1X,I3)
cbz3/19/99 end

clin-5/2009 ctest off:
c        call frztm(1,1)

clin-4/13/01 initialize four momenta and invariant mass of strings after ZPC:
        do 1004 nmom=1,5
           do 1002 nstrg=1,nsp
              PP(nstrg,nmom)=0.
 1002      continue
           do 1003 nstrg=1,nst
              PT(nstrg,nmom)=0.
 1003      continue
 1004   continue
clin-4/13/01-end

        DO 1005 I = 1, MUL
           IITYP=ITYP5(I)
           IF (LSTRG1(I) .LE. NSP) THEN
              NSTRG = LSTRG1(I)
c     nucleons without interactions:
              if(IITYP.eq.2112.or.IITYP.eq.2212) then
clin-7/20/01 add dble or sngl to make precisions consistent
                 PP(nstrg,1)=sngl(PX5(I))
                 PP(nstrg,2)=sngl(PY5(I))
                 PP(nstrg,3)=sngl(PZ5(I))
                 PP(nstrg,4)=sngl(E5(I))
                 PP(nstrg,5)=sngl(XMASS5(I))
c     valence quark:
              elseif((IITYP.eq.1.or.IITYP.eq.2).and.
     1 (LPART1(I).eq.1.or.LPART1(I).eq.(NPJ(NSTRG)+2))) then
                 PP(nstrg,6)=sngl(PX5(I))
                 PP(nstrg,7)=sngl(PY5(I))
                 PP(nstrg,14)=sngl(XMASS5(I))
                 PP(nstrg,1)=PP(nstrg,1)+sngl(PX5(I))
                 PP(nstrg,2)=PP(nstrg,2)+sngl(PY5(I))
                 PP(nstrg,3)=PP(nstrg,3)+sngl(PZ5(I))
                 PP(nstrg,4)=PP(nstrg,4)+sngl(E5(I))
                 PP(nstrg,5)=sqrt(PP(nstrg,4)**2-PP(nstrg,1)**2
     1                -PP(nstrg,2)**2-PP(nstrg,3)**2)
c     diquark:
              elseif((IITYP.eq.1103.or.IITYP.eq.2101
     1 .or.IITYP.eq.2103.or.IITYP.eq.2203.
     2 .or.IITYP.eq.3101.or.IITYP.eq.3103.
     3 .or.IITYP.eq.3201.or.IITYP.eq.3203.or.IITYP.eq.3303)
     4 .and.(LPART1(I).eq.1.or.LPART1(I).eq.(NPJ(NSTRG)+2))) then
                 PP(nstrg,8)=sngl(PX5(I))
                 PP(nstrg,9)=sngl(PY5(I))
                 PP(nstrg,15)=sngl(XMASS5(I))
                 PP(nstrg,1)=PP(nstrg,1)+sngl(PX5(I))
                 PP(nstrg,2)=PP(nstrg,2)+sngl(PY5(I))
                 PP(nstrg,3)=PP(nstrg,3)+sngl(PZ5(I))
                 PP(nstrg,4)=PP(nstrg,4)+sngl(E5(I))
                 PP(nstrg,5)=sqrt(PP(nstrg,4)**2-PP(nstrg,1)**2
     1                -PP(nstrg,2)**2-PP(nstrg,3)**2)
c     partons in projectile or target strings:
              else
                 NPART = LPART1(I)-1
                 KFPJ(NSTRG, NPART) = ITYP5(I)
                 PJPX(NSTRG, NPART) = sngl(PX5(I))
                 PJPY(NSTRG, NPART) = sngl(PY5(I))
                 PJPZ(NSTRG, NPART) = sngl(PZ5(I))
                 PJPE(NSTRG, NPART) = sngl(E5(I))
                 PJPM(NSTRG, NPART) = sngl(XMASS5(I))
              endif
           ELSE IF (LSTRG1(I) .LE. NSP + NST) THEN
              NSTRG = LSTRG1(I) - NSP
              if(IITYP.eq.2112.or.IITYP.eq.2212) then
                 PT(nstrg,1)=sngl(PX5(I))
                 PT(nstrg,2)=sngl(PY5(I))
                 PT(nstrg,3)=sngl(PZ5(I))
                 PT(nstrg,4)=sngl(E5(I))
                 PT(nstrg,5)=sngl(XMASS5(I))
              elseif((IITYP.eq.1.or.IITYP.eq.2).and.
     1 (LPART1(I).eq.1.or.LPART1(I).eq.(NTJ(NSTRG)+2))) then
                 PT(nstrg,6)=sngl(PX5(I))
                 PT(nstrg,7)=sngl(PY5(I))
                 PT(nstrg,14)=sngl(XMASS5(I))
                 PT(nstrg,1)=PT(nstrg,1)+sngl(PX5(I))
                 PT(nstrg,2)=PT(nstrg,2)+sngl(PY5(I))
                 PT(nstrg,3)=PT(nstrg,3)+sngl(PZ5(I))
                 PT(nstrg,4)=PT(nstrg,4)+sngl(E5(I))
                 PT(nstrg,5)=sqrt(PT(nstrg,4)**2-PT(nstrg,1)**2
     1                -PT(nstrg,2)**2-PT(nstrg,3)**2)
              elseif((IITYP.eq.1103.or.IITYP.eq.2101
     1 .or.IITYP.eq.2103.or.IITYP.eq.2203.
     2 .or.IITYP.eq.3101.or.IITYP.eq.3103.
     3 .or.IITYP.eq.3201.or.IITYP.eq.3203.or.IITYP.eq.3303)
     4 .and.(LPART1(I).eq.1.or.LPART1(I).eq.(NTJ(NSTRG)+2))) then
                 PT(nstrg,8)=sngl(PX5(I))
                 PT(nstrg,9)=sngl(PY5(I))
                 PT(nstrg,15)=sngl(XMASS5(I))
                 PT(nstrg,1)=PT(nstrg,1)+sngl(PX5(I))
                 PT(nstrg,2)=PT(nstrg,2)+sngl(PY5(I))
                 PT(nstrg,3)=PT(nstrg,3)+sngl(PZ5(I))
                 PT(nstrg,4)=PT(nstrg,4)+sngl(E5(I))
                 PT(nstrg,5)=sqrt(PT(nstrg,4)**2-PT(nstrg,1)**2
     1                -PT(nstrg,2)**2-PT(nstrg,3)**2)
              else
                 NPART = LPART1(I)-1
                 KFTJ(NSTRG, NPART) = ITYP5(I)
                 PJTX(NSTRG, NPART) = sngl(PX5(I))
                 PJTY(NSTRG, NPART) = sngl(PY5(I))
                 PJTZ(NSTRG, NPART) = sngl(PZ5(I))
                 PJTE(NSTRG, NPART) = sngl(E5(I))
                 PJTM(NSTRG, NPART) = sngl(XMASS5(I))
              endif
           ELSE
              NSTRG = LSTRG1(I) - NSP - NST
              NPART = LPART1(I)
              K2SG(NSTRG, NPART) = ITYP5(I)
              PXSG(NSTRG, NPART) = sngl(PX5(I))
              PYSG(NSTRG, NPART) = sngl(PY5(I))
              PZSG(NSTRG, NPART) = sngl(PZ5(I))
              PESG(NSTRG, NPART) = sngl(E5(I))
              PMSG(NSTRG, NPART) = sngl(XMASS5(I))
           END IF
 1005   CONTINUE
cbz1/25/99end

clin-4/09/01  turn on fragmentation with soft radiation 
c     and jet order reversal to form hadrons after ZPC:
        MSTJ(1)=1
        IHPR2(1)=1
        isflag=1
clin-4/13/01 allow small mass strings (D=1.5GeV):
        HIPR1(1)=0.94

cbz2/4/99
        CALL HJANA2
cbz2/4/99end

clin-4/19/01-soft3, fragment strings, then convert hadrons to partons 
c     and input to ZPC:
        elseif(isoft.eq.3.or.isoft.eq.4.or.isoft.eq.5) then
clin-4/24/01 normal fragmentation first:
        isflag=0

        IF(IHPR2(20).NE.0) THEN
           DO 560 ISG=1,NSG
                CALL HIJFRG(ISG,3,IERROR)
C
                nsbst=1
                IDSTR=92
                IF(IHPR2(21).EQ.0) THEN
                   CALL LUEDIT(2)
                ELSE
 551                   nsbst=nsbst+1
                   IF(K(nsbst,2).LT.91.OR.K(nsbst,2).GT.93) GO TO  551
                   IDSTR=K(nsbst,2)
                   nsbst=nsbst+1
                ENDIF

                IF(FRAME.EQ.'LAB') THEN
                        CALL HBOOST
                ENDIF
C                ******** boost back to lab frame(if it was in)
C
                nsbstR=0
                DO 560 I=nsbst,N
                   IF(K(I,2).EQ.IDSTR) THEN
                      nsbstR=nsbstR+1
                      GO TO 560
                   ENDIF
                   K(I,4)=nsbstR
                   NATT=NATT+1
                   KATT(NATT,1)=K(I,2)
                   KATT(NATT,2)=20
                   KATT(NATT,4)=K(I,1)
c     from Yasushi, to avoid violation of array limits:
c                   IF(K(I,3).EQ.0 .OR. K(K(I,3),2).EQ.IDSTR) THEN
clin-4/2008 to avoid out-of-bound error in K():
c                   IF(K(I,3).EQ.0 .OR. 
c     1 (K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR)) THEN
c                      KATT(NATT,3)=0
                   IF(K(I,3).EQ.0) THEN
                      KATT(NATT,3)=0
                   ELSEIF(K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR) THEN
                      KATT(NATT,3)=0
clin-4/2008-end
                   ELSE
                      KATT(NATT,3)=NATT-I+K(I,3)+nsbstR-K(K(I,3),4)
                   ENDIF

C       ****** identify the mother particle
                   PATT(NATT,1)=P(I,1)
                   PATT(NATT,2)=P(I,2)
                   PATT(NATT,3)=P(I,3)
                   PATT(NATT,4)=P(I,4)
                   EATT=EATT+P(I,4)
                   GXAR(NATT) = 0.5 * (YP(1, IASG(ISG, 1)) +
     &                YT(1, IASG(ISG, 2)))
                   GYAR(NATT) = 0.5 * (YP(2, IASG(ISG, 1)) +
     &                YT(2, IASG(ISG, 2)))
                   GZAR(NATT) = 0.
                   FTAR(NATT) = 0.
                   ITYPAR(NATT) = K(I, 2)
                   PXAR(NATT) = P(I, 1)
                   PYAR(NATT) = P(I, 2)
                   PZAR(NATT) = P(I, 3)
                   PEAR(NATT) = P(I, 4)
                   XMAR(NATT) = P(I, 5)
cbz11/11/98end

 560            CONTINUE
C                ********Fragment the q-qbar jets systems *****
C
           JTP(1)=IHNT2(1)
           JTP(2)=IHNT2(3)
           DO 600 NTP=1,2
           DO 600 jjtp=1,JTP(NTP)
                CALL HIJFRG(jjtp,NTP,IERROR)
C
                nsbst=1
                IDSTR=92
                IF(IHPR2(21).EQ.0) THEN
                   CALL LUEDIT(2)
                ELSE
 581                   nsbst=nsbst+1
                   IF(K(nsbst,2).LT.91.OR.K(nsbst,2).GT.93) GO TO  581
                   IDSTR=K(nsbst,2)
                   nsbst=nsbst+1
                ENDIF
                IF(FRAME.EQ.'LAB') THEN
                        CALL HBOOST
                ENDIF
C                ******** boost back to lab frame(if it was in)
C
                NFTP=NFP(jjtp,5)
                IF(NTP.EQ.2) NFTP=10+NFT(jjtp,5)
                nsbstR=0
                DO 590 I=nsbst,N
                   IF(K(I,2).EQ.IDSTR) THEN
                      nsbstR=nsbstR+1
                      GO TO 590
                   ENDIF
                   K(I,4)=nsbstR
                   NATT=NATT+1
                   KATT(NATT,1)=K(I,2)
                   KATT(NATT,2)=NFTP
                   KATT(NATT,4)=K(I,1)
c                   IF(K(I,3).EQ.0 .OR. K(K(I,3),2).EQ.IDSTR) THEN
clin-4/2008
c                   IF(K(I,3).EQ.0 .OR.
c     1 (K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR)) THEN
c                      KATT(NATT,3)=0
                   IF(K(I,3).EQ.0) THEN
                      KATT(NATT,3)=0
                   ELSEIF(K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR) THEN
                      KATT(NATT,3)=0
clin-4/2008-end
                   ELSE
                      KATT(NATT,3)=NATT-I+K(I,3)+nsbstR-K(K(I,3),4)
                   ENDIF

C       ****** identify the mother particle
                   PATT(NATT,1)=P(I,1)
                   PATT(NATT,2)=P(I,2)
                   PATT(NATT,3)=P(I,3)
                   PATT(NATT,4)=P(I,4)
                   EATT=EATT+P(I,4)
                   IF (NTP .EQ. 1) THEN
clin-2/2012:
c                      GXAR(NATT) = YP(1, jjtp)+0.5 * BB
c                      GYAR(NATT) = YP(2, jjtp)
                      GXAR(NATT) = YP(1, jjtp)+0.5*BB*cos(phiRP)
                      GYAR(NATT) = YP(2, jjtp)+0.5*BB*sin(phiRP)

                   ELSE
clin-2/2012:
c                      GXAR(NATT) = YT(1, jjtp)-0.5 * BB
c                      GYAR(NATT) = YT(2, jjtp)
                      GXAR(NATT) = YT(1, jjtp)-0.5*BB*cos(phiRP)
                      GYAR(NATT) = YT(2, jjtp)-0.5*BB*sin(phiRP)
                   END IF
                   GZAR(NATT) = 0.
                   FTAR(NATT) = 0.
                   ITYPAR(NATT) = K(I, 2)
                   PXAR(NATT) = P(I, 1)
                   PYAR(NATT) = P(I, 2)
                   PZAR(NATT) = P(I, 3)
                   PEAR(NATT) = P(I, 4)
                   XMAR(NATT) = P(I, 5)
cbz11/11/98end

 590                CONTINUE 
 600           CONTINUE
C     ********Fragment the q-qq related string systems
        ENDIF
clin-4/2008 check for zero NDR value:
        if(NDR.ge.1) then
c
        DO 650 I=1,NDR
                NATT=NATT+1
                KATT(NATT,1)=KFDR(I)
                KATT(NATT,2)=40
                KATT(NATT,3)=0
                PATT(NATT,1)=PDR(I,1)
                PATT(NATT,2)=PDR(I,2)
                PATT(NATT,3)=PDR(I,3)
                PATT(NATT,4)=PDR(I,4)
                EATT=EATT+PDR(I,4)
clin-11/11/03     set direct photons positions and time at formation:
                GXAR(NATT) = rtdr(I,1)
                GYAR(NATT) = rtdr(I,2)
                GZAR(NATT) = 0.
                FTAR(NATT) = 0.
                ITYPAR(NATT) =KATT(NATT,1) 
                PXAR(NATT) = PATT(NATT,1)
                PYAR(NATT) = PATT(NATT,2)
                PZAR(NATT) = PATT(NATT,3)
                PEAR(NATT) = PATT(NATT,4)
                XMAR(NATT) = PDR(I,5)
 650        CONTINUE
clin-4/2008:
         endif
clin-6/2009
         call embedHighPt
c
        CALL HJANA1

clin-4/19/01 convert hadrons to partons for ZPC (with GX0 given):
        call htop

clin-7/03/01 move up, used in zpstrg (otherwise not set and incorrect):
        nsp=0
        nst=0
        nsg=natt
        NSI=NSG
clin-7/03/01-end

clin-6/2009:
        if(ioscar.eq.3) WRITE (95, *) IAEVT, mul

c.....call ZPC for parton cascade
        CALL ZPCMN
clin-6/2009:
c        WRITE (14, 395) ITEST, MUL, bimp, NELP,NINP,NELT,NINTHJ
        WRITE (14, 395) IAEVT, MISS, MUL, bimp, NELP,NINP,NELT,NINTHJ
        itest=itest+1

        DO 1016 I = 1, MUL
c           WRITE (14, 511) PX5(I), PY5(I), PZ5(I), ITYP5(I),
c     &        XMASS5(I), E5(I)
clin-4/2012 write parton freeze-out position in zpc.dat 
c     for string melting version:
c           WRITE (14, 512) ITYP5(I), PX5(I), PY5(I), PZ5(I), 
c     &        XMASS5(I), LSTRG1(I), LPART1(I), FT5(I)
           if(dmax1(abs(GX5(I)),abs(GY5(I)),abs(GZ5(I)),abs(FT5(I)))
     1          .lt.9999) then
              write(14,210) ITYP5(I), PX5(I), PY5(I), PZ5(I), XMASS5(I),
     1             GX5(I), GY5(I), GZ5(I), FT5(I)
           else
              write(14,211) ITYP5(I), PX5(I), PY5(I), PZ5(I), XMASS5(I),
     1             GX5(I), GY5(I), GZ5(I), FT5(I)
           endif
c
 1016   CONTINUE
c 511    FORMAT(1X, 3F10.4, I6, 2F10.4)
c 512    FORMAT(I6,4(1X,F10.3),1X,I6,1X,I3,1X,F10.3)
c 513    FORMAT(1X, 4F10.4)

clin-5/2009 ctest off:
c        call frztm(1,1)

clin  save data after ZPC for fragmentation purpose:
c.....transfer data back from ZPC to HIJING
        DO 1018 I = 1, MAXSTR
           DO 1017 J = 1, 3
              K1SGS(I, J) = 0
              K2SGS(I, J) = 0
              PXSGS(I, J) = 0d0
              PYSGS(I, J) = 0d0
              PZSGS(I, J) = 0d0
              PESGS(I, J) = 0d0
              PMSGS(I, J) = 0d0
              GXSGS(I, J) = 0d0
              GYSGS(I, J) = 0d0
              GZSGS(I, J) = 0d0
              FTSGS(I, J) = 0d0
 1017      CONTINUE
 1018   CONTINUE
        DO 1019 I = 1, MUL
           IITYP=ITYP5(I)
           NSTRG = LSTRG1(I)
           NPART = LPART1(I)
           K2SGS(NSTRG, NPART) = ITYP5(I)
           PXSGS(NSTRG, NPART) = PX5(I)
           PYSGS(NSTRG, NPART) = PY5(I)
           PZSGS(NSTRG, NPART) = PZ5(I)
           PMSGS(NSTRG, NPART) = XMASS5(I)
clin-7/20/01 E5(I) does no include the finite parton mass XMASS5(I), 
c     so define it anew:
c           PESGS(NSTRG, NPART) = E5(I)
c           if(abs(PZ5(i)/E5(i)).gt.0.9999999d0) 
c     1          write(91,*) 'a',PX5(i),PY5(i),XMASS5(i),PZ5(i),E5(i)
           E5(I)=dsqrt(PX5(I)**2+PY5(I)**2+PZ5(I)**2+XMASS5(I)**2)
           PESGS(NSTRG, NPART) = E5(I)
c           if(abs(PZ5(i)/E5(i)).gt.0.9999999d0) 
c     1          write(91,*) 'b: new E5(I)=',E5(i)
clin-7/20/01-end
           GXSGS(NSTRG, NPART) = GX5(I)
           GYSGS(NSTRG, NPART) = GY5(I)
           GZSGS(NSTRG, NPART) = GZ5(I)
           FTSGS(NSTRG, NPART) = FT5(I)
 1019   CONTINUE
        CALL HJANA2

clin-4/19/01-end

        endif
clin-4/09/01-end

C
C**************fragment all the string systems in the following*****
C
C********nsbst is where particle information starts
C********nsbstR+1 is the number of strings in fragmentation
C********the number of strings before a line is stored in K(I,4)
C********IDSTR is id number of the string system (91,92 or 93)
C
clin-4/30/01 convert partons to hadrons after ZPC:
        if(isoft.eq.3.or.isoft.eq.4.or.isoft.eq.5) then
           NATT=0
           EATT=0.
           call ptoh
           do 1006 I=1,nnozpc
              NATT=NATT+1
              KATT(NATT,1)=ITYPN(I)
              PATT(NATT,1)=PXN(I)
              PATT(NATT,2)=PYN(I)
              PATT(NATT,3)=PZN(I)
              PATT(NATT,4)=EEN(I)
              EATT=EATT+EEN(I)
              GXAR(NATT)=GXN(I)
              GYAR(NATT)=GYN(I)
              GZAR(NATT)=GZN(I)
              FTAR(NATT)=FTN(I)
              ITYPAR(NATT)=ITYPN(I)
              PXAR(NATT)=PXN(I)
              PYAR(NATT)=PYN(I)
              PZAR(NATT)=PZN(I)
              PEAR(NATT)=EEN(I)
              XMAR(NATT)=XMN(I)
 1006      continue
           goto 565
        endif
clin-4/30/01-end        
        IF(IHPR2(20).NE.0) THEN
           DO 360 ISG=1,NSG
                CALL HIJFRG(ISG,3,IERROR)
                IF(MSTU(24).NE.0 .OR.IERROR.GT.0) THEN
                   MSTU(24)=0
                   MSTU(28)=0
                   IF(IHPR2(10).NE.0) THEN
c                      call lulist(2)
                      WRITE(6,*) 'error occured ISG, repeat the event'
                  write(6,*) ISG

                   ENDIF
                   GO TO 50
                ENDIF
C                        ********Check errors
C
                nsbst=1
                IDSTR=92
                IF(IHPR2(21).EQ.0) THEN
                   CALL LUEDIT(2)
                ELSE
351                   nsbst=nsbst+1
                   IF(K(nsbst,2).LT.91.OR.K(nsbst,2).GT.93) GO TO  351
                   IDSTR=K(nsbst,2)
                   nsbst=nsbst+1
                ENDIF
C
                IF(FRAME.EQ.'LAB') THEN
                        CALL HBOOST
                ENDIF
C                ******** boost back to lab frame(if it was in)
C
                nsbstR=0
                DO 360 I=nsbst,N
                   IF(K(I,2).EQ.IDSTR) THEN
                      nsbstR=nsbstR+1
                      GO TO 360
                   ENDIF
                   K(I,4)=nsbstR
                   NATT=NATT+1
                   KATT(NATT,1)=K(I,2)
                   KATT(NATT,2)=20
                   KATT(NATT,4)=K(I,1)
c                   IF(K(I,3).EQ.0 .OR. K(K(I,3),2).EQ.IDSTR) THEN
clin-4/2008:
c                   IF(K(I,3).EQ.0 .OR. 
c     1 (K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR)) THEN
c                      KATT(NATT,3)=0
                   IF(K(I,3).EQ.0) THEN
                      KATT(NATT,3)=0
                   ELSEIF(K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR) THEN
                      KATT(NATT,3)=0
clin-4/2008-end
                   ELSE
                      KATT(NATT,3)=NATT-I+K(I,3)+nsbstR-K(K(I,3),4)
                   ENDIF

C       ****** identify the mother particle
                   PATT(NATT,1)=P(I,1)
                   PATT(NATT,2)=P(I,2)
                   PATT(NATT,3)=P(I,3)
                   PATT(NATT,4)=P(I,4)
                   EATT=EATT+P(I,4)

cbz11/11/98
cbz1/25/99
c                   GXAR(NATT) = 0.5 * (YP(1, IASG(ISG, 1)) +
c     &                YT(1, IASG(ISG, 2)))
c                   GYAR(NATT) = 0.5 * (YP(2, IASG(ISG, 1)) +
c     &                YT(2, IASG(ISG, 2)))
                   LSG = NSP + NST + ISG
                   GXAR(NATT) = sngl(ZT1(LSG))
                   GYAR(NATT) = sngl(ZT2(LSG))
                   GZAR(NATT) = sngl(ZT3(LSG))
                   FTAR(NATT) = sngl(ATAUI(LSG))
cbz1/25/99end
                   ITYPAR(NATT) = K(I, 2)
                   PXAR(NATT) = P(I, 1)
                   PYAR(NATT) = P(I, 2)
                   PZAR(NATT) = P(I, 3)
                   PEAR(NATT) = P(I, 4)
                   XMAR(NATT) = P(I, 5)
cbz11/11/98end

360           CONTINUE
C                ********Fragment the q-qbar jets systems *****
C
           JTP(1)=IHNT2(1)
           JTP(2)=IHNT2(3)
           DO 400 NTP=1,2
           DO 400 jjtp=1,JTP(NTP)
                CALL HIJFRG(jjtp,NTP,IERROR)
                IF(MSTU(24).NE.0 .OR. IERROR.GT.0) THEN
                   MSTU(24)=0
                   MSTU(28)=0
                   IF(IHPR2(10).NE.0) THEN
c                  call lulist(2)
                  WRITE(6,*) 'error occured P&T, repeat the event'
                  WRITE(6,*) NTP,jjtp
clin-6/2009 when this happens, the event will be repeated, 
c     and another record for the same event number will be written into
c     zpc.dat, zpc.res, minijet-initial-beforePropagation.dat,
c     parton-initial-afterPropagation.dat, parton-after-coalescence.dat, 
c     and parton-collisionsHistory.dat. 
                   ENDIF
                   GO TO 50
                ENDIF
C                        ********check errors
C
                nsbst=1
                IDSTR=92
                IF(IHPR2(21).EQ.0) THEN
                   CALL LUEDIT(2)
                ELSE
381                   nsbst=nsbst+1
                   IF(K(nsbst,2).LT.91.OR.K(nsbst,2).GT.93) GO TO  381
                   IDSTR=K(nsbst,2)
                   nsbst=nsbst+1
                ENDIF
                IF(FRAME.EQ.'LAB') THEN
                        CALL HBOOST
                ENDIF
C                ******** boost back to lab frame(if it was in)
C
                NFTP=NFP(jjtp,5)
                IF(NTP.EQ.2) NFTP=10+NFT(jjtp,5)
                nsbstR=0
                DO 390 I=nsbst,N
                   IF(K(I,2).EQ.IDSTR) THEN
                      nsbstR=nsbstR+1
                      GO TO 390
                   ENDIF
                   K(I,4)=nsbstR
                   NATT=NATT+1
                   KATT(NATT,1)=K(I,2)
                   KATT(NATT,2)=NFTP
                   KATT(NATT,4)=K(I,1)
c                   IF(K(I,3).EQ.0 .OR. K(K(I,3),2).EQ.IDSTR) THEN
clin-4/2008:
c                   IF(K(I,3).EQ.0 .OR. 
c     1 (K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR)) THEN
c                      KATT(NATT,3)=0
                   IF(K(I,3).EQ.0) THEN
                      KATT(NATT,3)=0
                   ELSEIF(K(I,3).ne.0.and.K(K(I,3),2).EQ.IDSTR) THEN
                      KATT(NATT,3)=0
clin-4/2008-end
                   ELSE
                      KATT(NATT,3)=NATT-I+K(I,3)+nsbstR-K(K(I,3),4)
                   ENDIF
C       ****** identify the mother particle
                   PATT(NATT,1)=P(I,1)
                   PATT(NATT,2)=P(I,2)
                   PATT(NATT,3)=P(I,3)
                   PATT(NATT,4)=P(I,4)
                   EATT=EATT+P(I,4)
cbz11/11/98
cbz1/25/99
c                   IF (NTP .EQ. 1) THEN
c                      GXAR(NATT) = YP(1, jjtp)
c                   ELSE
c                      GXAR(NATT) = YT(1, jjtp)
c                   END IF
c                   IF (NTP .EQ. 1) THEN
c                      GYAR(NATT) = YP(2, jjtp)
c                   ELSE
c                      GYAR(NATT) = YT(2, jjtp)
c                   END IF
                   IF (NTP .EQ. 1) THEN
                      LSG = jjtp
                   ELSE
                      LSG = jjtp + NSP
                   END IF
                   GXAR(NATT) = sngl(ZT1(LSG))
                   GYAR(NATT) = sngl(ZT2(LSG))
                   GZAR(NATT) = sngl(ZT3(LSG))
                   FTAR(NATT) = sngl(ATAUI(LSG))
cbz1/25/99end
                   ITYPAR(NATT) = K(I, 2)
                   PXAR(NATT) = P(I, 1)
                   PYAR(NATT) = P(I, 2)
                   PZAR(NATT) = P(I, 3)
                   PEAR(NATT) = P(I, 4)
                   XMAR(NATT) = P(I, 5)
cbz11/11/98end

390                CONTINUE 
400           CONTINUE
C     ********Fragment the q-qq related string systems
        ENDIF

        DO 450 I=1,NDR
           NATT=NATT+1
           KATT(NATT,1)=KFDR(I)
           KATT(NATT,2)=40
           KATT(NATT,3)=0
           PATT(NATT,1)=PDR(I,1)
           PATT(NATT,2)=PDR(I,2)
           PATT(NATT,3)=PDR(I,3)
           PATT(NATT,4)=PDR(I,4)
           EATT=EATT+PDR(I,4)
clin-11/11/03     set direct photons positions and time at formation:
           GXAR(NATT) = rtdr(I,1)
           GYAR(NATT) = rtdr(I,2)
           GZAR(NATT) = 0.
           FTAR(NATT) = 0.
           ITYPAR(NATT) =KATT(NATT,1) 
           PXAR(NATT) = PATT(NATT,1)
           PYAR(NATT) = PATT(NATT,2)
           PZAR(NATT) = PATT(NATT,3)
           PEAR(NATT) = PATT(NATT,4)
           XMAR(NATT) = PDR(I,5)
 450    CONTINUE

C                        ********store the direct-produced particles
C

clin-4/19/01 soft3:
 565    continue

        DENGY=EATT/(IHNT2(1)*HINT1(6)+IHNT2(3)*HINT1(7))-1.0
        IF(ABS(DENGY).GT.HIPR1(43).AND.IHPR2(20).NE.0
     &     .AND.IHPR2(21).EQ.0) THEN
         IF(IHPR2(10).NE.0) 
     &        WRITE(6,*) 'Energy not conserved, repeat the event'
c                call lulist(1)
         write(6,*) 'violated:EATT(GeV),NATT,B(fm)=',EATT,NATT,bimp
         GO TO 50
        ENDIF
        write(6,*) 'satisfied:EATT(GeV),NATT,B(fm)=',EATT,NATT,bimp
        write(6,*) ' '
c
clin-4/2012 write out initial transverse positions of initial nucleons:
        write(94,*) IAEVT,MISS,IHNT2(1),IHNT2(3),bimp
        DO JP=1,IHNT2(1)
clin-12/2012 write out present and original flavor code of nucleons:
c           write(94,243) YP(1,JP)+0.5*BB*cos(phiRP), 
c     1 YP(2,JP)+0.5*BB*sin(phiRP), JP, NFP(JP,5),yp(3,jp)
           write(94,243) YP(1,JP)+0.5*BB*cos(phiRP), 
     1 YP(2,JP)+0.5*BB*sin(phiRP),JP, NFP(JP,5),yp(3,jp),
     2 NFP(JP,3),NFP(JP,4)
        ENDDO
        DO JT=1,IHNT2(3)
c target nucleon # has a minus sign for distinction from projectile:
clin-12/2012 write out present and original flavor code of nucleons:
c           write(94,243) YT(1,JT)-0.5*BB*cos(phiRP), 
c     1 YT(2,JT)-0.5*BB*sin(phiRP), -JT, NFT(JT,5),yt(3,jt)
           write(94,243) YT(1,JT)-0.5*BB*cos(phiRP), 
     1 YT(2,JT)-0.5*BB*sin(phiRP), -JT, NFT(JT,5),yt(3,jt),
     2 NFT(JT,3),NFT(JT,4)
        ENDDO
clin-12/2012 write out present and original flavor code of nucleons:
c 243    format(f10.3,1x,f10.3,2(1x,I5),1x,f10.3)
 243    format(f10.3,1x,f10.3,2(1x,I5),1x,f10.3,2(1x,I5))
clin-4/2012-end

        RETURN
        END
C
C
C
        SUBROUTINE HIJSET(EFRM,FRAME,PROJ,TARG,IAP,IZP,IAT,IZT)
        CHARACTER FRAME*4,PROJ*4,TARG*4,EFRAME*4
        DOUBLE PRECISION  DD1,DD2,DD3,DD4
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HIJDAT/HIDAT0(10,10),HIDAT(10)
cc      SAVE /HIJDAT/
        COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
cc      SAVE /LUDAT1/
        EXTERNAL FNKICK,FNKC2,FNSTRU,FNSTRM,FNSTRS
        SAVE   

        CALL TITLE
        IHNT2(1)=IAP
        IHNT2(2)=IZP
        IHNT2(3)=IAT
        IHNT2(4)=IZT
        IHNT2(5)=0
        IHNT2(6)=0
C
        HINT1(8)=MAX(ULMASS(2112),ULMASS(2212))
        HINT1(9)=HINT1(8)
C
        IF(PROJ.NE.'A') THEN
                IF(PROJ.EQ.'P') THEN
                    IHNT2(5)=2212
                ELSE IF(PROJ.EQ.'PBAR') THEN 
                    IHNT2(5)=-2212
                ELSE IF(PROJ.EQ.'PI+') THEN
                    IHNT2(5)=211
                ELSE IF(PROJ.EQ.'PI-') THEN
                    IHNT2(5)=-211
                ELSE IF(PROJ.EQ.'K+') THEN
                    IHNT2(5)=321
                ELSE IF(PROJ.EQ.'K-') THEN
                    IHNT2(5)=-321
                ELSE IF(PROJ.EQ.'N') THEN
                    IHNT2(5)=2112
                ELSE IF(PROJ.EQ.'NBAR') THEN
                    IHNT2(5)=-2112
                ELSE
                    WRITE(6,*) PROJ, 'wrong or unavailable proj name'
                    STOP
                ENDIF
                HINT1(8)=ULMASS(IHNT2(5))
        ENDIF
        IF(TARG.NE.'A') THEN
                IF(TARG.EQ.'P') THEN
                    IHNT2(6)=2212
                ELSE IF(TARG.EQ.'PBAR') THEN 
                    IHNT2(6)=-2212
                ELSE IF(TARG.EQ.'PI+') THEN
                    IHNT2(6)=211
                ELSE IF(TARG.EQ.'PI-') THEN
                    IHNT2(6)=-211
                ELSE IF(TARG.EQ.'K+') THEN
                    IHNT2(6)=321
                ELSE IF(TARG.EQ.'K-') THEN
                    IHNT2(6)=-321
                ELSE IF(TARG.EQ.'N') THEN
                    IHNT2(6)=2112
                ELSE IF(TARG.EQ.'NBAR') THEN
                    IHNT2(6)=-2112
                ELSE
                    WRITE(6,*) TARG,'wrong or unavailable targ name'
                    STOP
                ENDIF
                HINT1(9)=ULMASS(IHNT2(6))
        ENDIF

C...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
        IF(IHPR2(12).GT.0) THEN
        CALL LUGIVE('MDCY(C221,1)=0')
clin-11/07/00 no K* decays:
        CALL LUGIVE('MDCY(C313,1)=0')
        CALL LUGIVE('MDCY(C-313,1)=0')
        CALL LUGIVE('MDCY(C323,1)=0')
        CALL LUGIVE('MDCY(C-323,1)=0')
clin-1/04/01 no K0 and K0bar decays so K0L and K0S do not appear,
c     this way the K/Kbar difference is accounted for exactly:
        CALL LUGIVE('MDCY(C311,1)=0')
        CALL LUGIVE('MDCY(C-311,1)=0')
clin-11/08/00 no Delta decays:
        CALL LUGIVE('MDCY(C1114,1)=0')
        CALL LUGIVE('MDCY(C2114,1)=0')
        CALL LUGIVE('MDCY(C2214,1)=0')
        CALL LUGIVE('MDCY(C2224,1)=0')
        CALL LUGIVE('MDCY(C-1114,1)=0')
        CALL LUGIVE('MDCY(C-2114,1)=0')
        CALL LUGIVE('MDCY(C-2214,1)=0')
        CALL LUGIVE('MDCY(C-2224,1)=0')
clin-11/07/00-end
cbz12/4/98
        CALL LUGIVE('MDCY(C213,1)=0')
        CALL LUGIVE('MDCY(C-213,1)=0')
        CALL LUGIVE('MDCY(C113,1)=0')
        CALL LUGIVE('MDCY(C223,1)=0')
        CALL LUGIVE('MDCY(C333,1)=0')
cbz12/4/98end
        CALL LUGIVE('MDCY(C111,1)=0')
        CALL LUGIVE('MDCY(C310,1)=0')
        CALL LUGIVE('MDCY(C411,1)=0;MDCY(C-411,1)=0')
        CALL LUGIVE('MDCY(C421,1)=0;MDCY(C-421,1)=0')
        CALL LUGIVE('MDCY(C431,1)=0;MDCY(C-431,1)=0')
        CALL LUGIVE('MDCY(C511,1)=0;MDCY(C-511,1)=0')
        CALL LUGIVE('MDCY(C521,1)=0;MDCY(C-521,1)=0')
        CALL LUGIVE('MDCY(C531,1)=0;MDCY(C-531,1)=0')
        CALL LUGIVE('MDCY(C3122,1)=0;MDCY(C-3122,1)=0')
        CALL LUGIVE('MDCY(C3112,1)=0;MDCY(C-3112,1)=0')
        CALL LUGIVE('MDCY(C3212,1)=0;MDCY(C-3212,1)=0')
        CALL LUGIVE('MDCY(C3222,1)=0;MDCY(C-3222,1)=0')
        CALL LUGIVE('MDCY(C3312,1)=0;MDCY(C-3312,1)=0')
        CALL LUGIVE('MDCY(C3322,1)=0;MDCY(C-3322,1)=0')
        CALL LUGIVE('MDCY(C3334,1)=0;MDCY(C-3334,1)=0')
clin-7/2011-no HQ(charm or bottom) decays in order to get net-HQ conservation:
        CALL LUGIVE('MDCY(C441,1)=0')
        CALL LUGIVE('MDCY(C443,1)=0')
        CALL LUGIVE('MDCY(C413,1)=0;MDCY(C-413,1)=0')
        CALL LUGIVE('MDCY(C423,1)=0;MDCY(C-423,1)=0')
        CALL LUGIVE('MDCY(C433,1)=0;MDCY(C-433,1)=0')
        CALL LUGIVE('MDCY(C4112,1)=0;MDCY(C-4112,1)=0')
        CALL LUGIVE('MDCY(C4114,1)=0;MDCY(C-4114,1)=0')
        CALL LUGIVE('MDCY(C4122,1)=0;MDCY(C-4122,1)=0')
        CALL LUGIVE('MDCY(C4212,1)=0;MDCY(C-4212,1)=0')
        CALL LUGIVE('MDCY(C4214,1)=0;MDCY(C-4214,1)=0')
        CALL LUGIVE('MDCY(C4222,1)=0;MDCY(C-4222,1)=0')
        CALL LUGIVE('MDCY(C4224,1)=0;MDCY(C-4224,1)=0')
        CALL LUGIVE('MDCY(C4132,1)=0;MDCY(C-4132,1)=0')
        CALL LUGIVE('MDCY(C4312,1)=0;MDCY(C-4312,1)=0')
        CALL LUGIVE('MDCY(C4314,1)=0;MDCY(C-4314,1)=0')
        CALL LUGIVE('MDCY(C4232,1)=0;MDCY(C-4232,1)=0')
        CALL LUGIVE('MDCY(C4322,1)=0;MDCY(C-4322,1)=0')
        CALL LUGIVE('MDCY(C4324,1)=0;MDCY(C-4324,1)=0')
        CALL LUGIVE('MDCY(C4332,1)=0;MDCY(C-4332,1)=0')
        CALL LUGIVE('MDCY(C4334,1)=0;MDCY(C-4334,1)=0')
        CALL LUGIVE('MDCY(C551,1)=0')
        CALL LUGIVE('MDCY(C553,1)=0')
        CALL LUGIVE('MDCY(C513,1)=0;MDCY(C-513,1)=0')
        CALL LUGIVE('MDCY(C523,1)=0;MDCY(C-523,1)=0')
        CALL LUGIVE('MDCY(C533,1)=0;MDCY(C-533,1)=0')
        CALL LUGIVE('MDCY(C5112,1)=0;MDCY(C-5112,1)=0')
        CALL LUGIVE('MDCY(C5114,1)=0;MDCY(C-5114,1)=0')
        CALL LUGIVE('MDCY(C5122,1)=0;MDCY(C-5122,1)=0')
        CALL LUGIVE('MDCY(C5212,1)=0;MDCY(C-5212,1)=0')
        CALL LUGIVE('MDCY(C5214,1)=0;MDCY(C-5214,1)=0')
        CALL LUGIVE('MDCY(C5222,1)=0;MDCY(C-5222,1)=0')
        CALL LUGIVE('MDCY(C5224,1)=0;MDCY(C-5224,1)=0')
clin-7/2011-end
        ENDIF
        MSTU(12)=0
        MSTU(21)=1
        IF(IHPR2(10).EQ.0) THEN
                MSTU(22)=0
                MSTU(25)=0
                MSTU(26)=0
        ENDIF

clin    parj(41) and (42) are a, b parameters in Lund, read from input.ampt:
c        PARJ(41)=HIPR1(3)
c        PARJ(42)=HIPR1(4)
c        PARJ(41)=2.2
c        PARJ(42)=0.5

clin  2 popcorn parameters read from input.ampt:
c        IHPR2(11) = 3
c        PARJ(5) = 0.5
        MSTJ(12)=IHPR2(11)

clin  parj(21) gives the mean gaussian width for hadron Pt:
        PARJ(21)=HIPR1(2)
clin  parj(2) is gamma_s=P(s)/P(u), kappa propto 1/b/(2+a) assumed.
        rkp=HIPR1(4)*(2+HIPR1(3))/PARJ(42)/(2+PARJ(41))
        PARJ(2)=PARJ(2)**(1./rkp)
        PARJ(21)=PARJ(21)*sqrt(rkp)
clin-10/31/00 update when string tension is changed:
        HIPR1(2)=PARJ(21)

clin-8/2013 test on: set upper limit for gamma_s=P(s)/P(u) to 0.4
c     (to limit strangeness enhancement when string tension is strongly 
c     increased due to using a very low value of parameter b in Lund 
c     symmetric splitting function as done in arXiv:1403.6321):
        PARJ(2)=min(PARJ(2),0.4)

C                        ******** set up for jetset
        IF(FRAME.EQ.'LAB') THEN
           DD1=dble(EFRM)
           DD2=dble(HINT1(8))
           DD3=dble(HINT1(9))
           HINT1(1)=SQRT(HINT1(8)**2+2.0*HINT1(9)*EFRM+HINT1(9)**2)
           DD4=DSQRT(DD1**2-DD2**2)/(DD1+DD3)
           HINT1(2)=sngl(DD4)
           HINT1(3)=0.5*sngl(DLOG((1.D0+DD4)/(1.D0-DD4)))
           DD4=DSQRT(DD1**2-DD2**2)/DD1
           HINT1(4)=0.5*sngl(DLOG((1.D0+DD4)/(1.D0-DD4)))
           HINT1(5)=0.0
           HINT1(6)=EFRM
           HINT1(7)=HINT1(9)
        ELSE IF(FRAME.EQ.'CMS') THEN
           HINT1(1)=EFRM
           HINT1(2)=0.0
           HINT1(3)=0.0
           DD1=dble(HINT1(1))
           DD2=dble(HINT1(8))
           DD3=dble(HINT1(9))
           DD4=DSQRT(1.D0-4.D0*DD2**2/DD1**2)
           HINT1(4)=0.5*sngl(DLOG((1.D0+DD4)/(1.D0-DD4)))
           DD4=DSQRT(1.D0-4.D0*DD3**2/DD1**2)
           HINT1(5)=-0.5*sngl(DLOG((1.D0+DD4)/(1.D0-DD4)))
           HINT1(6)=HINT1(1)/2.0
           HINT1(7)=HINT1(1)/2.0
        ENDIF
C                ********define Lorentz transform to lab frame
c
C                ********calculate the cross sections involved with
C                        nucleon collisions.
        IF(IHNT2(1).GT.1) THEN
                CALL HIJWDS(IHNT2(1),1,RMAX)
                HIPR1(34)=RMAX
C                        ********set up Wood-Sax distr for proj.
        ENDIF
        IF(IHNT2(3).GT.1) THEN
                CALL HIJWDS(IHNT2(3),2,RMAX)
                HIPR1(35)=RMAX
C                        ********set up Wood-Sax distr for  targ.
        ENDIF
C
C
        I=0
20        I=I+1
        IF(I.EQ.10) GO TO 30
        IF(HIDAT0(10,I).LE.HINT1(1)) GO TO 20
30        IF(I.EQ.1) I=2
        DO 40 J=1,9
           HIDAT(J)=HIDAT0(J,I-1)+(HIDAT0(J,I)-HIDAT0(J,I-1))
     &          *(HINT1(1)-HIDAT0(10,I-1))/(HIDAT0(10,I)-HIDAT0(10,I-1))
40        CONTINUE
        HIPR1(31)=HIDAT(5)
        HIPR1(30)=2.0*HIDAT(5)
C
C
        CALL HIJCRS
C
        IF(IHPR2(5).NE.0) THEN
                CALL HIFUN(3,0.0,36.0,FNKICK)
C                ********booking for generating pt**2 for pt kick
        ENDIF
        CALL HIFUN(7,0.0,6.0,FNKC2)
        CALL HIFUN(4,0.0,1.0,FNSTRU)
        CALL HIFUN(5,0.0,1.0,FNSTRM)
        CALL HIFUN(6,0.0,1.0,FNSTRS)
C                ********booking for x distribution of valence quarks
        EFRAME='Ecm'
        IF(FRAME.EQ.'LAB') EFRAME='Elab'
        WRITE(6,100) EFRAME,EFRM,PROJ,IHNT2(1),IHNT2(2),
     &               TARG,IHNT2(3),IHNT2(4) 
100        FORMAT(
     &        10X,'**************************************************'/
     &        10X,'*',48X,'*'/
     &        10X,'*         HIJING has been initialized at         *'/
     &        10X,'*',13X,A4,'= ',F10.2,' GeV/n',13X,'*'/
     &        10X,'*',48X,'*'/
     &        10X,'*',8X,'for ',
     &        A4,'(',I3,',',I3,')',' + ',A4,'(',I3,',',I3,')',7X,'*'/
     &        10X,'**************************************************')
        RETURN
        END
C
C
C
        FUNCTION FNKICK(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        FNKICK=1.0/(X+HIPR1(19)**2)/(X+HIPR1(20)**2)
     &                /(1+EXP((SQRT(X)-HIPR1(20))/0.4))
        RETURN
        END
C
C
        FUNCTION FNKC2(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        FNKC2=X*EXP(-2.0*X/HIPR1(42))
        RETURN
        END
C
C
C
        FUNCTION FNSTRU(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        FNSTRU=(1.0-X)**HIPR1(44)/
     &                (X**2+HIPR1(45)**2/HINT1(1)**2)**HIPR1(46)
        RETURN
        END
C
C
C
        FUNCTION FNSTRM(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        FNSTRM=1.0/((1.0-X)**2+HIPR1(45)**2/HINT1(1)**2)**HIPR1(46)
     &          /(X**2+HIPR1(45)**2/HINT1(1)**2)**HIPR1(46)
        RETURN
        END
C
C
        FUNCTION FNSTRS(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        FNSTRS=(1.0-X)**HIPR1(47)/
     &                (X**2+HIPR1(45)**2/HINT1(1)**2)**HIPR1(48)
        RETURN
        END
C
C
C
C
        SUBROUTINE HBOOST
              IMPLICIT DOUBLE PRECISION(D)  
              COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5) 
cc      SAVE /LUJETS/ 
              COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) 
cc      SAVE /LUDAT1/ 
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        DO 100 I=1,N
           DBETA=dble(P(I,3)/P(I,4))
           IF(ABS(DBETA).GE.1.D0) THEN
              DB=dble(HINT1(2))
              IF(DB.GT.0.99999999D0) THEN 
C                ********Rescale boost vector if too close to unity. 
                 WRITE(6,*) '(HIBOOT:) boost vector too large' 
                 DB=0.99999999D0
              ENDIF 
              DGA=1D0/SQRT(1D0-DB**2)
              DP3=dble(P(I,3))
              DP4=dble(P(I,4))
              P(I,3)=sngl((DP3+DB*DP4)*DGA)
              P(I,4)=sngl((DP4+DB*DP3)*DGA)
              GO TO 100
           ENDIF
           Y=0.5*sngl(DLOG((1.D0+DBETA)/(1.D0-DBETA)))
           AMT=SQRT(P(I,1)**2+P(I,2)**2+P(I,5)**2)
           P(I,3)=AMT*SINH(Y+HINT1(3))
           P(I,4)=AMT*COSH(Y+HINT1(3))
100        CONTINUE
        RETURN
        END
C
C
C
C
        SUBROUTINE QUENCH(JPJT,NTP)
        PARAMETER (MAXSTR=150001)
        DIMENSION RDP(300),LQP(300),RDT(300),LQT(300)
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
C
        COMMON/HJJET1/NPJ(300),KFPJ(300,500),PJPX(300,500),
     &                PJPY(300,500),PJPZ(300,500),PJPE(300,500),
     &                PJPM(300,500),NTJ(300),KFTJ(300,500),
     &                PJTX(300,500),PJTY(300,500),PJTZ(300,500),
     &                PJTE(300,500),PJTM(300,500)
cc      SAVE /HJJET1/
        COMMON/HJJET2/NSG,NJSG(MAXSTR),IASG(MAXSTR,3),K1SG(MAXSTR,100),
     &       K2SG(MAXSTR,100),PXSG(MAXSTR,100),PYSG(MAXSTR,100),
     &       PZSG(MAXSTR,100),PESG(MAXSTR,100),PMSG(MAXSTR,100)
cc      SAVE /HJJET2/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
C
c     Uzhi:
        BB=HINT1(19)
        PHI=HINT1(20)
        BBX=BB*COS(PHI)
        BBY=BB*SIN(PHI)
c
        IF(NTP.EQ.2) GO TO 400
        IF(NTP.EQ.3) GO TO 2000 
C*******************************************************
C Jet interaction for proj jet in the direction PHIP
C******************************************************
C
        IF(NFP(JPJT,7).NE.1) RETURN

        JP=JPJT
        DO 290 I=1,NPJ(JP)
           PTJET0=SQRT(PJPX(JP,I)**2+PJPY(JP,I)**2)
           IF(PTJET0.LE.HIPR1(11)) GO TO 290
           PTOT=SQRT(PTJET0*PTJET0+PJPZ(JP,I)**2)
           IF(PTOT.LT.HIPR1(8)) GO TO 290
           PHIP=ULANGL(PJPX(JP,I),PJPY(JP,I))
C******* find the wounded proj which can interact with jet***
           KP=0
           DO 100 I2=1,IHNT2(1)
              IF(NFP(I2,5).NE.3 .OR. I2.EQ.JP) GO TO 100
              DX=YP(1,I2)-YP(1,JP)
              DY=YP(2,I2)-YP(2,JP)
              PHI=ULANGL(DX,DY)
              DPHI=ABS(PHI-PHIP)
c     Uzhi:
              IF(DPHI.GE.HIPR1(40)) DPHI=2.*HIPR1(40)-DPHI
              IF(DPHI.GE.HIPR1(40)/2.0) GO TO 100
              RD0=SQRT(DX*DX+DY*DY)
              IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 100
              KP=KP+1
              LQP(KP)=I2
              RDP(KP)=COS(DPHI)*RD0
 100           CONTINUE
C*******        rearrange according decending rd************
           DO 110 I2=1,KP-1
              DO 110 J2=I2+1,KP
                 IF(RDP(I2).LT.RDP(J2)) GO TO 110
                 RD=RDP(I2)
                 LQ=LQP(I2)
                 RDP(I2)=RDP(J2)
                 LQP(I2)=LQP(J2)
                 RDP(J2)=RD
                 LQP(J2)=LQ
 110              CONTINUE
C****** find wounded targ which can interact with jet********
              KT=0
              DO 120 I2=1,IHNT2(3)
                 IF(NFT(I2,5).NE.3) GO TO 120
                 DX=YT(1,I2)-YP(1,JP)-BBX
                 DY=YT(2,I2)-YP(2,JP)-BBY
                 PHI=ULANGL(DX,DY)
                 DPHI=ABS(PHI-PHIP)
c     Uzhi:
                 IF(DPHI.GE.HIPR1(40)) DPHI=2.*HIPR1(40)-DPHI
                 IF(DPHI.GT.HIPR1(40)/2.0) GO TO 120
                 RD0=SQRT(DX*DX+DY*DY)
                 IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 120
                 KT=KT+1
                 LQT(KT)=I2
                 RDT(KT)=COS(DPHI)*RD0
 120              CONTINUE
C*******        rearrange according decending rd************
              DO 130 I2=1,KT-1
                 DO 130 J2=I2+1,KT
                    IF(RDT(I2).LT.RDT(J2)) GO TO 130
                    RD=RDT(I2)
                    LQ=LQT(I2)
                    RDT(I2)=RDT(J2)
                    LQT(I2)=LQT(J2)
                    RDT(J2)=RD
                    LQT(J2)=LQ
 130                 CONTINUE
                
                 MP=0
                 MT=0
                 R0=0.0
                 NQ=0
                 DP=0.0
                 PTOT=SQRT(PJPX(JP,I)**2+PJPY(JP,I)**2+PJPZ(JP,I)**2)
                 V1=PJPX(JP,I)/PTOT
                 V2=PJPY(JP,I)/PTOT
                 V3=PJPZ(JP,I)/PTOT

 200                 RN=RANART(NSEED)
 210                 IF(MT.GE.KT .AND. MP.GE.KP) GO TO 290
                 IF(MT.GE.KT) GO TO 220
                 IF(MP.GE.KP) GO TO 240
                 IF(RDP(MP+1).GT.RDT(MT+1)) GO TO 240
 220                 MP=MP+1
                 DRR=RDP(MP)-R0
                 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 210
                 DP=DRR*HIPR1(14)
                 IF(KFPJ(JP,I).NE.21) DP=0.5*DP
C        ********string tension of quark jet is 0.5 of gluon's 
                 IF(DP.LE.0.2) GO TO 210
                 IF(PTOT.LE.0.4) GO TO 290
                 IF(PTOT.LE.DP) DP=PTOT-0.2
                 DE=DP

                 IF(KFPJ(JP,I).NE.21) THEN
                    PRSHU=PP(LQP(MP),1)**2+PP(LQP(MP),2)**2
     &                   +PP(LQP(MP),3)**2
                    DE=SQRT(PJPM(JP,I)**2+PTOT**2)
     &                        -SQRT(PJPM(JP,I)**2+(PTOT-DP)**2)
                    ERSHU=(PP(LQP(MP),4)+DE-DP)**2
                    AMSHU=ERSHU-PRSHU
                    IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 210
                    PP(LQP(MP),4)=SQRT(ERSHU)
                    PP(LQP(MP),5)=SQRT(AMSHU)
                 ENDIF
C                ********reshuffle the energy when jet has mass
                 R0=RDP(MP)
                 DP1=DP*V1
                 DP2=DP*V2
                 DP3=DP*V3
C                ********momentum and energy transfer from jet
                 
                 NPJ(LQP(MP))=NPJ(LQP(MP))+1
                 KFPJ(LQP(MP),NPJ(LQP(MP)))=21
                 PJPX(LQP(MP),NPJ(LQP(MP)))=DP1
                 PJPY(LQP(MP),NPJ(LQP(MP)))=DP2
                 PJPZ(LQP(MP),NPJ(LQP(MP)))=DP3
                 PJPE(LQP(MP),NPJ(LQP(MP)))=DP
                 PJPM(LQP(MP),NPJ(LQP(MP)))=0.0
                 GO TO 260

 240                 MT=MT+1
                 DRR=RDT(MT)-R0
                 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 210
                 DP=DRR*HIPR1(14)
                 IF(DP.LE.0.2) GO TO 210
                 IF(PTOT.LE.0.4) GO TO 290
                 IF(PTOT.LE.DP) DP=PTOT-0.2
                 DE=DP

                 IF(KFPJ(JP,I).NE.21) THEN
                    PRSHU=PT(LQT(MT),1)**2+PT(LQT(MT),2)**2
     &                   +PT(LQT(MT),3)**2
                    DE=SQRT(PJPM(JP,I)**2+PTOT**2)
     &                        -SQRT(PJPM(JP,I)**2+(PTOT-DP)**2)
                    ERSHU=(PT(LQT(MT),4)+DE-DP)**2
                    AMSHU=ERSHU-PRSHU
                    IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 210
                    PT(LQT(MT),4)=SQRT(ERSHU)
                    PT(LQT(MT),5)=SQRT(AMSHU)
                 ENDIF
C                ********reshuffle the energy when jet has mass

                 R0=RDT(MT)
                 DP1=DP*V1
                 DP2=DP*V2
                 DP3=DP*V3
C                ********momentum and energy transfer from jet
                 NTJ(LQT(MT))=NTJ(LQT(MT))+1
                 KFTJ(LQT(MT),NTJ(LQT(MT)))=21
                 PJTX(LQT(MT),NTJ(LQT(MT)))=DP1
                 PJTY(LQT(MT),NTJ(LQT(MT)))=DP2
                 PJTZ(LQT(MT),NTJ(LQT(MT)))=DP3
                 PJTE(LQT(MT),NTJ(LQT(MT)))=DP
                 PJTM(LQT(MT),NTJ(LQT(MT)))=0.0

 260                 PJPX(JP,I)=(PTOT-DP)*V1
                 PJPY(JP,I)=(PTOT-DP)*V2
                 PJPZ(JP,I)=(PTOT-DP)*V3
                 PJPE(JP,I)=PJPE(JP,I)-DE

                 PTOT=PTOT-DP
                 NQ=NQ+1
                 GO TO 200
 290              CONTINUE

              RETURN

C*******************************************************
C Jet interaction for target jet in the direction PHIT
C******************************************************
C
C******* find the wounded proj which can interact with jet***

 400              IF(NFT(JPJT,7).NE.1) RETURN
              JT=JPJT
              DO 690 I=1,NTJ(JT)
                 PTJET0=SQRT(PJTX(JT,I)**2+PJTY(JT,I)**2)
                 IF(PTJET0.LE.HIPR1(11)) GO TO 690
                 PTOT=SQRT(PTJET0*PTJET0+PJTZ(JT,I)**2)
                 IF(PTOT.LT.HIPR1(8)) GO TO 690
                 PHIT=ULANGL(PJTX(JT,I),PJTY(JT,I))
                 KP=0
                 DO 500 I2=1,IHNT2(1)
                    IF(NFP(I2,5).NE.3) GO TO 500
                    DX=YP(1,I2)+BBX-YT(1,JT)
                    DY=YP(2,I2)+BBY-YT(2,JT)
                    PHI=ULANGL(DX,DY)
                    DPHI=ABS(PHI-PHIT)
c     Uzhi:
                    IF(DPHI.GE.HIPR1(40)) DPHI=2.*HIPR1(40)-DPHI
                    IF(DPHI.GT.HIPR1(40)/2.0) GO TO 500
                    RD0=SQRT(DX*DX+DY*DY)
                    IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 500
                    KP=KP+1
                    LQP(KP)=I2
                    RDP(KP)=COS(DPHI)*RD0
 500                 CONTINUE
C*******        rearrange according to decending rd************
                 DO 510 I2=1,KP-1
                    DO 510 J2=I2+1,KP
                       IF(RDP(I2).LT.RDP(J2)) GO TO 510
                       RD=RDP(I2)
                       LQ=LQP(I2)
                       RDP(I2)=RDP(J2)
                       LQP(I2)=LQP(J2)
                       RDP(J2)=RD
                       LQP(J2)=LQ
 510                    CONTINUE
C****** find wounded targ which can interact with jet********
                    KT=0
                    DO 520 I2=1,IHNT2(3)
                       IF(NFT(I2,5).NE.3 .OR. I2.EQ.JT) GO TO 520
                       DX=YT(1,I2)-YT(1,JT)
                       DY=YT(2,I2)-YT(2,JT)
                       PHI=ULANGL(DX,DY)
                       DPHI=ABS(PHI-PHIT)
c     Uzhi:
                       IF(DPHI.GE.HIPR1(40)) DPHI=2.*HIPR1(40)-DPHI
                       IF(DPHI.GT.HIPR1(40)/2.0) GO TO 520
                       RD0=SQRT(DX*DX+DY*DY)
                       IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 520
                       KT=KT+1
                       LQT(KT)=I2
                       RDT(KT)=COS(DPHI)*RD0
 520                    CONTINUE
C*******        rearrange according to decending rd************
                    DO 530 I2=1,KT-1
                       DO 530 J2=I2+1,KT
                          IF(RDT(I2).LT.RDT(J2)) GO TO 530
                          RD=RDT(I2)
                          LQ=LQT(I2)
                          RDT(I2)=RDT(J2)
                          LQT(I2)=LQT(J2)
                          RDT(J2)=RD
                          LQT(J2)=LQ
 530                       CONTINUE
                       
                       MP=0
                       MT=0
                       NQ=0
                       DP=0.0
                       R0=0.0
                PTOT=SQRT(PJTX(JT,I)**2+PJTY(JT,I)**2+PJTZ(JT,I)**2)
                V1=PJTX(JT,I)/PTOT
                V2=PJTY(JT,I)/PTOT
                V3=PJTZ(JT,I)/PTOT

 600                RN=RANART(NSEED)
 610                IF(MT.GE.KT .AND. MP.GE.KP) GO TO 690
                IF(MT.GE.KT) GO TO 620
                IF(MP.GE.KP) GO TO 640
                IF(RDP(MP+1).GT.RDT(MT+1)) GO TO 640
620                MP=MP+1
                DRR=RDP(MP)-R0
                IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 610
                DP=DRR*HIPR1(14)
                IF(KFTJ(JT,I).NE.21) DP=0.5*DP
C        ********string tension of quark jet is 0.5 of gluon's 
                IF(DP.LE.0.2) GO TO 610
                IF(PTOT.LE.0.4) GO TO 690
                IF(PTOT.LE.DP) DP=PTOT-0.2
                DE=DP
C
                IF(KFTJ(JT,I).NE.21) THEN
                   PRSHU=PP(LQP(MP),1)**2+PP(LQP(MP),2)**2
     &                   +PP(LQP(MP),3)**2
                   DE=SQRT(PJTM(JT,I)**2+PTOT**2)
     &                     -SQRT(PJTM(JT,I)**2+(PTOT-DP)**2)
                   ERSHU=(PP(LQP(MP),4)+DE-DP)**2
                   AMSHU=ERSHU-PRSHU
                   IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 610
                   PP(LQP(MP),4)=SQRT(ERSHU)
                   PP(LQP(MP),5)=SQRT(AMSHU)
                ENDIF
C                ********reshuffle the energy when jet has mass
C
                R0=RDP(MP)
                DP1=DP*V1
                DP2=DP*V2
                DP3=DP*V3
C                ********momentum and energy transfer from jet
                NPJ(LQP(MP))=NPJ(LQP(MP))+1
                KFPJ(LQP(MP),NPJ(LQP(MP)))=21
                PJPX(LQP(MP),NPJ(LQP(MP)))=DP1
                PJPY(LQP(MP),NPJ(LQP(MP)))=DP2
                PJPZ(LQP(MP),NPJ(LQP(MP)))=DP3
                PJPE(LQP(MP),NPJ(LQP(MP)))=DP
                PJPM(LQP(MP),NPJ(LQP(MP)))=0.0

                GO TO 660

640                MT=MT+1
                DRR=RDT(MT)-R0
                IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 610
                DP=DRR*HIPR1(14)
                IF(DP.LE.0.2) GO TO 610
                IF(PTOT.LE.0.4) GO TO 690
                IF(PTOT.LE.DP) DP=PTOT-0.2
                DE=DP

                IF(KFTJ(JT,I).NE.21) THEN
                   PRSHU=PT(LQT(MT),1)**2+PT(LQT(MT),2)**2
     &                   +PT(LQT(MT),3)**2
                   DE=SQRT(PJTM(JT,I)**2+PTOT**2)
     &                     -SQRT(PJTM(JT,I)**2+(PTOT-DP)**2)
                   ERSHU=(PT(LQT(MT),4)+DE-DP)**2
                   AMSHU=ERSHU-PRSHU
                   IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 610
                   PT(LQT(MT),4)=SQRT(ERSHU)
                   PT(LQT(MT),5)=SQRT(AMSHU)
                ENDIF
C                ********reshuffle the energy when jet has mass

                R0=RDT(MT)
                DP1=DP*V1
                DP2=DP*V2
                DP3=DP*V3
C                ********momentum and energy transfer from jet
                NTJ(LQT(MT))=NTJ(LQT(MT))+1
                KFTJ(LQT(MT),NTJ(LQT(MT)))=21
                PJTX(LQT(MT),NTJ(LQT(MT)))=DP1
                PJTY(LQT(MT),NTJ(LQT(MT)))=DP2
                PJTZ(LQT(MT),NTJ(LQT(MT)))=DP3
                PJTE(LQT(MT),NTJ(LQT(MT)))=DP
                PJTM(LQT(MT),NTJ(LQT(MT)))=0.0

660                PJTX(JT,I)=(PTOT-DP)*V1
                PJTY(JT,I)=(PTOT-DP)*V2
                PJTZ(JT,I)=(PTOT-DP)*V3
                PJTE(JT,I)=PJTE(JT,I)-DE

                PTOT=PTOT-DP
                NQ=NQ+1
                GO TO 600
690        CONTINUE
        RETURN
C********************************************************
C        Q-QBAR jet interaction
C********************************************************
2000        ISG=JPJT
        IF(IASG(ISG,3).NE.1) RETURN
C
        JP=IASG(ISG,1)
        JT=IASG(ISG,2)
        XJ=(YP(1,JP)+BBX+YT(1,JT))/2.0
        YJ=(YP(2,JP)+BBY+YT(2,JT))/2.0
        DO 2690 I=1,NJSG(ISG)
           PTJET0=SQRT(PXSG(ISG,I)**2+PYSG(ISG,I)**2)
           IF(PTJET0.LE.HIPR1(11).OR.PESG(ISG,I).LT.HIPR1(1))
     &            GO TO 2690
           PTOT=SQRT(PTJET0*PTJET0+PZSG(ISG,I)**2)
           IF(PTOT.LT.MAX(HIPR1(1),HIPR1(8))) GO TO 2690
           PHIQ=ULANGL(PXSG(ISG,I),PYSG(ISG,I))
           KP=0
           DO 2500 I2=1,IHNT2(1)
              IF(NFP(I2,5).NE.3.OR.I2.EQ.JP) GO TO 2500
              DX=YP(1,I2)+BBX-XJ
              DY=YP(2,I2)+BBY-YJ
              PHI=ULANGL(DX,DY)
              DPHI=ABS(PHI-PHIQ)
c     Uzhi:
              IF(DPHI.GE.HIPR1(40)) DPHI=2.*HIPR1(40)-DPHI
              IF(DPHI.GT.HIPR1(40)/2.0) GO TO 2500
              RD0=SQRT(DX*DX+DY*DY)
              IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 2500
              KP=KP+1
              LQP(KP)=I2
              RDP(KP)=COS(DPHI)*RD0
 2500           CONTINUE
C*******        rearrange according to decending rd************
           DO 2510 I2=1,KP-1
              DO 2510 J2=I2+1,KP
                 IF(RDP(I2).LT.RDP(J2)) GO TO 2510
                 RD=RDP(I2)
                 LQ=LQP(I2)
                 RDP(I2)=RDP(J2)
                 LQP(I2)=LQP(J2)
                 RDP(J2)=RD
                 LQP(J2)=LQ
 2510              CONTINUE
C****** find wounded targ which can interact with jet********
              KT=0
              DO 2520 I2=1,IHNT2(3)
                 IF(NFT(I2,5).NE.3 .OR. I2.EQ.JT) GO TO 2520
                 DX=YT(1,I2)-XJ
                 DY=YT(2,I2)-YJ
                 PHI=ULANGL(DX,DY)
                 DPHI=ABS(PHI-PHIQ)
c     Uzhi:
                 IF(DPHI.GE.HIPR1(40)) DPHI=2.*HIPR1(40)-DPHI
                 IF(DPHI.GT.HIPR1(40)/2.0) GO TO 2520
                 RD0=SQRT(DX*DX+DY*DY)
                 IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 2520
                 KT=KT+1
                 LQT(KT)=I2
                 RDT(KT)=COS(DPHI)*RD0
 2520              CONTINUE
C*******        rearrange according to decending rd************
              DO 2530 I2=1,KT-1
                 DO 2530 J2=I2+1,KT
                    IF(RDT(I2).LT.RDT(J2)) GO TO 2530
                    RD=RDT(I2)
                    LQ=LQT(I2)
                    RDT(I2)=RDT(J2)
                    LQT(I2)=LQT(J2)
                    RDT(J2)=RD
                    LQT(J2)=LQ
 2530                 CONTINUE
                
                 MP=0
                 MT=0
                 NQ=0
                 DP=0.0
                 R0=0.0
                 PTOT=SQRT(PXSG(ISG,I)**2+PYSG(ISG,I)**2
     &                +PZSG(ISG,I)**2)
                 V1=PXSG(ISG,I)/PTOT
                 V2=PYSG(ISG,I)/PTOT
                 V3=PZSG(ISG,I)/PTOT

 2600                 RN=RANART(NSEED)
 2610                 IF(MT.GE.KT .AND. MP.GE.KP) GO TO 2690
                 IF(MT.GE.KT) GO TO 2620
                 IF(MP.GE.KP) GO TO 2640
                 IF(RDP(MP+1).GT.RDT(MT+1)) GO TO 2640
 2620                 MP=MP+1
                 DRR=RDP(MP)-R0
                 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 2610
                 DP=DRR*HIPR1(14)/2.0
                 IF(DP.LE.0.2) GO TO 2610
                 IF(PTOT.LE.0.4) GO TO 2690
                 IF(PTOT.LE.DP) DP=PTOT-0.2
                 DE=DP
C
                 IF(K2SG(ISG,I).NE.21) THEN
                    IF(PTOT.LT.DP+HIPR1(1)) GO TO 2690
                    PRSHU=PP(LQP(MP),1)**2+PP(LQP(MP),2)**2
     &                    +PP(LQP(MP),3)**2
                    DE=SQRT(PMSG(ISG,I)**2+PTOT**2)
     &                       -SQRT(PMSG(ISG,I)**2+(PTOT-DP)**2)
                    ERSHU=(PP(LQP(MP),4)+DE-DP)**2
                    AMSHU=ERSHU-PRSHU
                    IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 2610
                    PP(LQP(MP),4)=SQRT(ERSHU)
                    PP(LQP(MP),5)=SQRT(AMSHU)
                 ENDIF
C                ********reshuffle the energy when jet has mass
C
                 R0=RDP(MP)
                 DP1=DP*V1
                 DP2=DP*V2
                 DP3=DP*V3
C                ********momentum and energy transfer from jet
                 NPJ(LQP(MP))=NPJ(LQP(MP))+1
                 KFPJ(LQP(MP),NPJ(LQP(MP)))=21
                 PJPX(LQP(MP),NPJ(LQP(MP)))=DP1
                 PJPY(LQP(MP),NPJ(LQP(MP)))=DP2
                 PJPZ(LQP(MP),NPJ(LQP(MP)))=DP3
                 PJPE(LQP(MP),NPJ(LQP(MP)))=DP
                 PJPM(LQP(MP),NPJ(LQP(MP)))=0.0

                 GO TO 2660

 2640                 MT=MT+1
                 DRR=RDT(MT)-R0
                 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 2610
                 DP=DRR*HIPR1(14)
                 IF(DP.LE.0.2) GO TO 2610
                 IF(PTOT.LE.0.4) GO TO 2690
                 IF(PTOT.LE.DP) DP=PTOT-0.2
                 DE=DP

                 IF(K2SG(ISG,I).NE.21) THEN
                    IF(PTOT.LT.DP+HIPR1(1)) GO TO 2690
                    PRSHU=PT(LQT(MT),1)**2+PT(LQT(MT),2)**2
     &                    +PT(LQT(MT),3)**2
                    DE=SQRT(PMSG(ISG,I)**2+PTOT**2)
     &                       -SQRT(PMSG(ISG,I)**2+(PTOT-DP)**2)
                    ERSHU=(PT(LQT(MT),4)+DE-DP)**2
                    AMSHU=ERSHU-PRSHU
                    IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 2610
                    PT(LQT(MT),4)=SQRT(ERSHU)
                    PT(LQT(MT),5)=SQRT(AMSHU)
                 ENDIF
C               ********reshuffle the energy when jet has mass

                 R0=RDT(MT)
                 DP1=DP*V1
                 DP2=DP*V2
                 DP3=DP*V3
C                ********momentum and energy transfer from jet
                 NTJ(LQT(MT))=NTJ(LQT(MT))+1
                 KFTJ(LQT(MT),NTJ(LQT(MT)))=21
                 PJTX(LQT(MT),NTJ(LQT(MT)))=DP1
                 PJTY(LQT(MT),NTJ(LQT(MT)))=DP2
                 PJTZ(LQT(MT),NTJ(LQT(MT)))=DP3
                 PJTE(LQT(MT),NTJ(LQT(MT)))=DP
                 PJTM(LQT(MT),NTJ(LQT(MT)))=0.0

 2660                 PXSG(ISG,I)=(PTOT-DP)*V1
                 PYSG(ISG,I)=(PTOT-DP)*V2
                 PZSG(ISG,I)=(PTOT-DP)*V3
                 PESG(ISG,I)=PESG(ISG,I)-DE

                 PTOT=PTOT-DP
                 NQ=NQ+1
                 GO TO 2600
 2690        CONTINUE
        RETURN
        END

C
C
C
C
        SUBROUTINE HIJFRG(JTP,NTP,IERROR)
C        NTP=1, fragment proj string, NTP=2, targ string, 
C       NTP=3, independent 
C        strings from jets.  JTP is the line number of the string
C*******Fragment all leadng strings of proj and targ**************
C        IHNT2(1)=atomic #, IHNT2(2)=proton #(=-1 if anti-proton)  *
C******************************************************************
        PARAMETER (MAXSTR=150001)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HIJDAT/HIDAT0(10,10),HIDAT(10)
cc      SAVE /HIJDAT/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/HJJET1/NPJ(300),KFPJ(300,500),PJPX(300,500),
     &                PJPY(300,500),PJPZ(300,500),PJPE(300,500),
     &                PJPM(300,500),NTJ(300),KFTJ(300,500),
     &                PJTX(300,500),PJTY(300,500),PJTZ(300,500),
     &                PJTE(300,500),PJTM(300,500)
cc      SAVE /HJJET1/
        COMMON/HJJET2/NSG,NJSG(MAXSTR),IASG(MAXSTR,3),K1SG(MAXSTR,100),
     &       K2SG(MAXSTR,100),PXSG(MAXSTR,100),PYSG(MAXSTR,100),
     &       PZSG(MAXSTR,100),PESG(MAXSTR,100),PMSG(MAXSTR,100)
cc      SAVE /HJJET2/
C
        COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5)
cc      SAVE /LUJETS/
        COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
cc      SAVE /LUDAT1/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
clin-4/11/01 soft:
      common/anim/nevent,isoft,isflag,izpc
cc      SAVE /anim/
        SAVE   
        
cbz3/12/99
c.....set up fragmentation function according to the number of collisions
c.....a wounded nucleon has suffered
c        IF (NTP .EQ. 1) THEN
c           NCOLL = NFP(JTP, 11)
c        ELSE IF (NTP .EQ. 2) THEN
c           NCOLL = NFT(JTP, 11)
c        ELSE IF (NTP .EQ. 3) THEN
c           NCOLL = (NFP(IASG(JTP,1), 11) + NFT(IASG(JTP,2), 11)) / 2
c        END IF
c        IF (NCOLL .LE. 1) THEN
c           PARJ(5) = 0.5
c        ELSE IF (NCOLL .EQ. 2) THEN
c           PARJ(5) = 0.75
c        ELSE IF (NCOLL .EQ. 3) THEN
c           PARJ(5) = 1.17
c        ELSE IF (NCOLL .EQ. 4) THEN
c           PARJ(5) = 2.0
c        ELSE IF (NCOLL .EQ. 5) THEN
c           PARJ(5) = 4.5
c        ELSE IF (NCOLL .GE. 6) THEN
c           PARJ(5) = 49.5
c        END IF
c        PARJ(5) = 0.5
cbz3/12/99 end

        IERROR=0
        CALL LUEDIT(0)
        N=0
C                        ********initialize the document lines
        IF(NTP.EQ.3) THEN
                ISG=JTP
                N=NJSG(ISG)
                DO 100 I=1,NJSG(ISG)
                   K(I,1)=K1SG(ISG,I)
                   K(I,2)=K2SG(ISG,I)
                   P(I,1)=PXSG(ISG,I)
                   P(I,2)=PYSG(ISG,I)
                   P(I,3)=PZSG(ISG,I)
                   P(I,4)=PESG(ISG,I)
                   P(I,5)=PMSG(ISG,I)
 100            CONTINUE

C                IF(IHPR2(1).GT.0) CALL ATTRAD(IERROR)
c                IF(IERROR.NE.0) RETURN
C                CALL LULIST(1)
                if(isoft.ne.2.or.isflag.ne.0) CALL LUEXEC
             RETURN
        ENDIF
C
        IF(NTP.EQ.2) GO TO 200
        IF(JTP.GT.IHNT2(1))   RETURN
        IF(NFP(JTP,5).NE.3.AND.NFP(JTP,3).NE.0
     &            .AND.NPJ(JTP).EQ.0.AND.NFP(JTP,10).EQ.0) GO TO 1000
        IF(NFP(JTP,15).EQ.-1) THEN
                KF1=NFP(JTP,2)
                KF2=NFP(JTP,1)
                PQ21=PP(JTP,6)
                PQ22=PP(JTP,7)
                PQ11=PP(JTP,8)
                PQ12=PP(JTP,9)
                AM1=PP(JTP,15)
                AM2=PP(JTP,14)
        ELSE
                KF1=NFP(JTP,1)
                KF2=NFP(JTP,2)
                PQ21=PP(JTP,8)
                PQ22=PP(JTP,9)
                PQ11=PP(JTP,6)
                PQ12=PP(JTP,7)
                AM1=PP(JTP,14)
                AM2=PP(JTP,15)        
        ENDIF

C        ********for NFP(JTP,15)=-1 NFP(JTP,1) IS IN -Z DIRECTION
        PB1=PQ11+PQ21
        PB2=PQ12+PQ22
        PB3=PP(JTP,3)
        PECM=PP(JTP,5)
        BTZ=PB3/PP(JTP,4)
        IF((ABS(PB1-PP(JTP,1)).GT.0.01.OR.
     &     ABS(PB2-PP(JTP,2)).GT.0.01).AND.IHPR2(10).NE.0)
     &     WRITE(6,*) '  Pt of Q and QQ do not sum to the total',jtp
     &     ,ntp,pq11,pq21,pb1,'*',pq12,pq22,pb2,'*',pp(JTP,1),pp(JTP,2)
        GO TO 300

200        IF(JTP.GT.IHNT2(3))  RETURN
        IF(NFT(JTP,5).NE.3.AND.NFT(JTP,3).NE.0
     &           .AND.NTJ(JTP).EQ.0.AND.NFT(JTP,10).EQ.0) GO TO 1200
        IF(NFT(JTP,15).EQ.1) THEN
                KF1=NFT(JTP,1)
                KF2=NFT(JTP,2)
                PQ11=PT(JTP,6)
                PQ12=PT(JTP,7)
                PQ21=PT(JTP,8)
                PQ22=PT(JTP,9)
                AM1=PT(JTP,14)
                AM2=PT(JTP,15)
        ELSE
                KF1=NFT(JTP,2)
                KF2=NFT(JTP,1)
                PQ11=PT(JTP,8)
                PQ12=PT(JTP,9)
                PQ21=PT(JTP,6)
                PQ22=PT(JTP,7)
                AM1=PT(JTP,15)
                AM2=PT(JTP,14)
        ENDIF        
C        ********for NFT(JTP,15)=1 NFT(JTP,1) IS IN +Z DIRECTION
        PB1=PQ11+PQ21
        PB2=PQ12+PQ22
        PB3=PT(JTP,3)
        PECM=PT(JTP,5)
        BTZ=PB3/PT(JTP,4)

        IF((ABS(PB1-PT(JTP,1)).GT.0.01.OR.
     &     ABS(PB2-PT(JTP,2)).GT.0.01).AND.IHPR2(10).NE.0)
     &     WRITE(6,*) '  Pt of Q and QQ do not sum to the total',jtp
     &     ,ntp,pq11,pq21,pb1,'*',pq12,pq22,pb2,'*',pt(JTP,1),pt(JTP,2)
300        IF(PECM.LT.HIPR1(1)) THEN
           IERROR=1
           IF(IHPR2(10).EQ.0) RETURN
           WRITE(6,*) ' ECM=',PECM,' energy of the string is too small'
clin:
           write (6,*) 'JTP,NTP,pq=',JTP,NTP,pq11,pq12,pq21,pq22
           RETURN
        ENDIF
        AMT=PECM**2+PB1**2+PB2**2
        AMT1=AM1**2+PQ11**2+PQ12**2
        AMT2=AM2**2+PQ21**2+PQ22**2
        PZCM=SQRT(ABS(AMT**2+AMT1**2+AMT2**2-2.0*AMT*AMT1
     &       -2.0*AMT*AMT2-2.0*AMT1*AMT2))/2.0/SQRT(AMT)
C                *******PZ of end-partons in c.m. frame of the string
        K(1,1)=2
        K(1,2)=KF1
        P(1,1)=PQ11
        P(1,2)=PQ12
        P(1,3)=PZCM
        P(1,4)=SQRT(AMT1+PZCM**2)
        P(1,5)=AM1
        K(2,1)=1
        K(2,2)=KF2
        P(2,1)=PQ21
        P(2,2)=PQ22
        P(2,3)=-PZCM
        P(2,4)=SQRT(AMT2+PZCM**2)
        P(2,5)=AM2
        N=2
C*****
        CALL HIROBO(0.0,0.0,0.0,0.0,BTZ)
        JETOT=0
        IF((PQ21**2+PQ22**2).GT.(PQ11**2+PQ12**2)) THEN
                PMAX1=P(2,1)
                PMAX2=P(2,2)
                PMAX3=P(2,3)
        ELSE
                PMAX1=P(1,1)
                PMAX2=P(1,2)
                PMAX3=P(1,3)
        ENDIF
        IF(NTP.EQ.1) THEN
                PP(JTP,10)=PMAX1
                PP(JTP,11)=PMAX2
                PP(JTP,12)=PMAX3
        ELSE IF(NTP.EQ.2) THEN
                PT(JTP,10)=PMAX1
                PT(JTP,11)=PMAX2
                PT(JTP,12)=PMAX3
        ENDIF
C*******************attach produced jets to the leadng partons****
        IF(NTP.EQ.1.AND.NPJ(JTP).NE.0) THEN
                JETOT=NPJ(JTP)
C                IF(NPJ(JTP).GE.2) CALL HIJSRT(JTP,1)
C                        ********sort jets in order of y
                IEX=0
                IF((ABS(KF1).GT.1000.AND.KF1.LT.0)
     &                        .OR.(ABS(KF1).LT.1000.AND.KF1.GT.0)) IEX=1
                DO 520 I=N,2,-1
                DO 520 J=1,5
                        II=NPJ(JTP)+I
                        K(II,J)=K(I,J)
                        P(II,J)=P(I,J)
                        V(II,J)=V(I,J)
520                CONTINUE

                DO 540 I=1,NPJ(JTP)
                        DO 542 J=1,5
                                K(I+1,J)=0
                                V(I+1,J)=0
542                        CONTINUE                                
                        I0=I
clin-4/12/01:                        IF(IEX.EQ.1) I0=NPJ(JTP)-I+1
                        IF(IEX.EQ.1.and.(isoft.ne.2.or.isflag.ne.0))
     1 I0=NPJ(JTP)-I+1
C                                ********reverse the order of jets
                        KK1=KFPJ(JTP,I0)
                        K(I+1,1)=2
                        K(I+1,2)=KK1
                        IF(KK1.NE.21 .AND. KK1.NE.0)  K(I+1,1)=
     &                          1+(ABS(KK1)+(2*IEX-1)*KK1)/2/ABS(KK1)
                        P(I+1,1)=PJPX(JTP,I0)
                        P(I+1,2)=PJPY(JTP,I0)
                        P(I+1,3)=PJPZ(JTP,I0)
                        P(I+1,4)=PJPE(JTP,I0)
                        P(I+1,5)=PJPM(JTP,I0)
540                CONTINUE
                N=N+NPJ(JTP)
        ELSE IF(NTP.EQ.2.AND.NTJ(JTP).NE.0) THEN
                JETOT=NTJ(JTP)
c                IF(NTJ(JTP).GE.2)  CALL HIJSRT(JTP,2)
C                        ********sort jets in order of y
                IEX=1
                IF((ABS(KF2).GT.1000.AND.KF2.LT.0)
     &                        .OR.(ABS(KF2).LT.1000.AND.KF2.GT.0)) IEX=0
                DO 560 I=N,2,-1
                DO 560 J=1,5
                        II=NTJ(JTP)+I
                        K(II,J)=K(I,J)
                        P(II,J)=P(I,J)
                        V(II,J)=V(I,J)
560                CONTINUE
                DO 580 I=1,NTJ(JTP)
                        DO 582 J=1,5
                                K(I+1,J)=0
                                V(I+1,J)=0
582                        CONTINUE                                
                        I0=I
clin-4/12/01:                        IF(IEX.EQ.1) I0=NTJ(JTP)-I+1
                        IF(IEX.EQ.1.and.(isoft.ne.2.or.isflag.ne.0))
     1 I0=NTJ(JTP)-I+1
C                                ********reverse the order of jets
                        KK1=KFTJ(JTP,I0)
                        K(I+1,1)=2
                        K(I+1,2)=KK1
                        IF(KK1.NE.21 .AND. KK1.NE.0) K(I+1,1)=
     &                           1+(ABS(KK1)+(2*IEX-1)*KK1)/2/ABS(KK1)
                        P(I+1,1)=PJTX(JTP,I0)
                        P(I+1,2)=PJTY(JTP,I0)
                        P(I+1,3)=PJTZ(JTP,I0)
                        P(I+1,4)=PJTE(JTP,I0)
                        P(I+1,5)=PJTM(JTP,I0)
580                CONTINUE
                N=N+NTJ(JTP)
        ENDIF
        IF(IHPR2(1).GT.0.AND.RANART(NSEED).LE.HIDAT(3)) THEN
             HDAT20=HIDAT(2)
             HPR150=HIPR1(5)
             IF(IHPR2(8).EQ.0.AND.IHPR2(3).EQ.0.AND.IHPR2(9).EQ.0)
     &                        HIDAT(2)=2.0
             IF(HINT1(1).GE.1000.0.AND.JETOT.EQ.0)THEN
                HIDAT(2)=3.0
                HIPR1(5)=5.0
             ENDIF
             CALL ATTRAD(IERROR)
             HIDAT(2)=HDAT20
             HIPR1(5)=HPR150
        ELSE IF(JETOT.EQ.0.AND.IHPR2(1).GT.0.AND.
     &                       HINT1(1).GE.1000.0.AND.
     &                RANART(NSEED).LE.0.8) THEN
                HDAT20=HIDAT(2)
                HPR150=HIPR1(5)
                HIDAT(2)=3.0
                HIPR1(5)=5.0
             IF(IHPR2(8).EQ.0.AND.IHPR2(3).EQ.0.AND.IHPR2(9).EQ.0)
     &                        HIDAT(2)=2.0
                CALL ATTRAD(IERROR)
                HIDAT(2)=HDAT20
                HIPR1(5)=HPR150
        ENDIF
        IF(IERROR.NE.0) RETURN
C                ******** conduct soft radiations
C****************************
C
C
clin-4/11/01 soft:
c        CALL LUEXEC
        if(isoft.ne.2.or.isflag.ne.0) CALL LUEXEC

        RETURN

1000        N=1
        K(1,1)=1
               K(1,2)=NFP(JTP,3)
        DO 1100 JJ=1,5
                       P(1,JJ)=PP(JTP,JJ)
1100                CONTINUE
C                        ********proj remain as a nucleon or delta
clin-4/11/01 soft:
c        CALL LUEXEC
        if(isoft.ne.2.or.isflag.ne.0) CALL LUEXEC

C        call lulist(1)
        RETURN
C
1200        N=1
        K(1,1)=1
        K(1,2)=NFT(JTP,3)
        DO 1300 JJ=1,5
                P(1,JJ)=PT(JTP,JJ)
1300        CONTINUE
C                        ********targ remain as a nucleon or delta
clin-4/11/01 soft:
c        CALL LUEXEC
        if(isoft.ne.2.or.isflag.ne.0) CALL LUEXEC

C        call lulist(1)
        RETURN
        END
C
C
C
C
C****************************************************************
C        conduct soft radiation according to dipole approxiamtion
C****************************************************************
        SUBROUTINE ATTRAD(IERROR)
C
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HIJDAT/HIDAT0(10,10),HIDAT(10)
cc      SAVE /HIJDAT/
        COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5)
cc      SAVE /LUJETS/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
        IERROR=0

C.....S INVARIANT MASS-SQUARED BETWEEN PARTONS I AND I+1......
C.....SM IS THE LARGEST MASS-SQUARED....

40        SM=0.
        JL=1
        DO 30 I=1,N-1
           S=2.*(P(I,4)*P(I+1,4)-P(I,1)*P(I+1,1)-P(I,2)*P(I+1,2)
     &                -P(I,3)*P(I+1,3))+P(I,5)**2+P(I+1,5)**2
           IF(S.LT.0.) S=0.
           WP=SQRT(S)-1.5*(P(I,5)+P(I+1,5))
           IF(WP.GT.SM) THEN
              PBT1=P(I,1)+P(I+1,1)
              PBT2=P(I,2)+P(I+1,2)
              PBT3=P(I,3)+P(I+1,3)
              PBT4=P(I,4)+P(I+1,4)
              BTT=(PBT1**2+PBT2**2+PBT3**2)/PBT4**2
              IF(BTT.GE.1.0-1.0E-10) GO TO 30
              IF((I.NE.1.OR.I.NE.N-1).AND.
     &             (K(I,2).NE.21.AND.K(I+1,2).NE.21)) GO TO 30
              JL=I
              SM=WP
           ENDIF
30        CONTINUE
        S=(SM+1.5*(P(JL,5)+P(JL+1,5)))**2
              IF(SM.LT.HIPR1(5)) GOTO 2
     
C.....MAKE PLACE FOR ONE GLUON.....
              IF(JL+1.EQ.N) GOTO 190
              DO 160 J=N,JL+2,-1
                      K(J+1,1)=K(J,1)
                K(J+1,2)=K(J,2)
                      DO 150 M=1,5
150                           P(J+1,M)=P(J,M)
160                   CONTINUE
190           N=N+1
     
C.....BOOST TO REST SYSTEM FOR PARTICLES JL AND JL+1.....
              P1=P(JL,1)+P(JL+1,1)
              P2=P(JL,2)+P(JL+1,2)
              P3=P(JL,3)+P(JL+1,3)
              P4=P(JL,4)+P(JL+1,4)
              BEX=-P1/P4
              BEY=-P2/P4
              BEZ=-P3/P4
        IMIN=JL
        IMAX=JL+1
              CALL ATROBO(0.,0.,BEX,BEY,BEZ,IMIN,IMAX,IERROR)
        IF(IERROR.NE.0) RETURN
C.....ROTATE TO Z-AXIS....
              CTH=P(JL,3)/SQRT(P(JL,4)**2-P(JL,5)**2)
              IF(ABS(CTH).GT.1.0)  CTH=MAX(-1.,MIN(1.,CTH))
              THETA=ACOS(CTH)
              PHI=ULANGL(P(JL,1),P(JL,2))
              CALL ATROBO(0.,-PHI,0.,0.,0.,IMIN,IMAX,IERROR)
              CALL ATROBO(-THETA,0.,0.,0.,0.,IMIN,IMAX,IERROR)
     
C.....CREATE ONE GLUON AND ORIENTATE.....
     
1        CALL AR3JET(S,X1,X3,JL)
              CALL ARORIE(S,X1,X3,JL)                
        IF(HIDAT(2).GT.0.0) THEN
                 PTG1=SQRT(P(JL,1)**2+P(JL,2)**2)
                 PTG2=SQRT(P(JL+1,1)**2+P(JL+1,2)**2)
                 PTG3=SQRT(P(JL+2,1)**2+P(JL+2,2)**2)
           PTG=MAX(PTG1,PTG2,PTG3)
           IF(PTG.GT.HIDAT(2)) THEN
              FMFACT=EXP(-(PTG**2-HIDAT(2)**2)/HIPR1(2)**2)
              IF(RANART(NSEED).GT.FMFACT) GO TO 1
           ENDIF
        ENDIF
C.....ROTATE AND BOOST BACK.....
        IMIN=JL
        IMAX=JL+2
              CALL ATROBO(THETA,PHI,-BEX,-BEY,-BEZ,IMIN,IMAX,IERROR)
        IF(IERROR.NE.0) RETURN
C.....ENUMERATE THE GLUONS.....
              K(JL+2,1)=K(JL+1,1)
        K(JL+2,2)=K(JL+1,2)
        K(JL+2,3)=K(JL+1,3)
        K(JL+2,4)=K(JL+1,4)
        K(JL+2,5)=K(JL+1,5)
              P(JL+2,5)=P(JL+1,5)
              K(JL+1,1)=2
        K(JL+1,2)=21
        K(JL+1,3)=0
        K(JL+1,4)=0
        K(JL+1,5)=0
              P(JL+1,5)=0.
C----THETA FUNCTION DAMPING OF THE EMITTED GLUONS. FOR HADRON-HADRON.
C----R0=VFR(2)
C              IF(VFR(2).GT.0.) THEN
C              PTG=SQRT(P(JL+1,1)**2+P(JL+1,2)**2)
C              PTGMAX=WSTRI/2.
C              DOPT=SQRT((4.*PAR(71)*VFR(2))/WSTRI)
C              PTOPT=(DOPT*WSTRI)/(2.*VFR(2))
C              IF(PTG.GT.PTOPT) IORDER=IORDER-1
C              IF(PTG.GT.PTOPT) GOTO 1
C              ENDIF
C-----
             IF(SM.GE.HIPR1(5)) GOTO 40

2              K(1,1)=2
        K(1,3)=0
        K(1,4)=0
        K(1,5)=0
              K(N,1)=1
        K(N,3)=0
        K(N,4)=0
        K(N,5)=0

              RETURN
              END


        SUBROUTINE AR3JET(S,X1,X3,JL)
C     
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5)
cc      SAVE /LUJETS/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
C     
        C=1./3.
              IF(K(JL,2).NE.21 .AND. K(JL+1,2).NE.21) C=8./27.
              EXP1=3
              EXP3=3
              IF(K(JL,2).NE.21) EXP1=2
              IF(K(JL+1,2).NE.21) EXP3=2
              A=0.24**2/S
              YMA=ALOG(.5/SQRT(A)+SQRT(.25/A-1))
              D=4.*C*YMA
              SM1=P(JL,5)**2/S
              SM3=P(JL+1,5)**2/S
              XT2M=(1.-2.*SQRT(SM1)+SM1-SM3)*(1.-2.*SQRT(SM3)-SM1+SM3)
              XT2M=MIN(.25,XT2M)
              NTRY=0
1             IF(NTRY.EQ.5000) THEN
                X1=.5*(2.*SQRT(SM1)+1.+SM1-SM3)
                X3=.5*(2.*SQRT(SM3)+1.-SM1+SM3)
                RETURN
              ENDIF
              NTRY=NTRY+1
     
              XT2=A*(XT2M/A)**(RANART(NSEED)**(1./D))
     
              YMAX=ALOG(.5/SQRT(XT2)+SQRT(.25/XT2-1.))
              Y=(2.*RANART(NSEED)-1.)*YMAX
              X1=1.-SQRT(XT2)*EXP(Y)
              X3=1.-SQRT(XT2)*EXP(-Y)
              X2=2.-X1-X3
              NEG=0
              IF(K(JL,2).NE.21 .OR. K(JL+1,2).NE.21) THEN
        IF((1.-X1)*(1.-X2)*(1.-X3)-X2*SM1*(1.-X1)-X2*SM3*(1.-X3).
     &  LE.0..OR.X1.LE.2.*SQRT(SM1)-SM1+SM3.OR.X3.LE.2.*SQRT(SM3)
     &  -SM3+SM1) NEG=1
        X1=X1+SM1-SM3
        X3=X3-SM1+SM3
             ENDIF
              IF(NEG.EQ.1) GOTO 1
     
              FG=2.*YMAX*C*(X1**EXP1+X3**EXP3)/D
              XT2M=XT2
              IF(FG.LT.RANART(NSEED)) GOTO 1
     
              RETURN
              END
C*************************************************************


        SUBROUTINE ARORIE(S,X1,X3,JL)
C     
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5)
cc      SAVE /LUJETS/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
C     
             W=SQRT(S)
             X2=2.-X1-X3
             E1=.5*X1*W
             E3=.5*X3*W
             P1=SQRT(E1**2-P(JL,5)**2)
        P3=SQRT(E3**2-P(JL+1,5)**2)
        CBET=1.
        IF(P1.GT.0..AND.P3.GT.0.) CBET=(P(JL,5)**2
     &           +P(JL+1,5)**2+2.*E1*E3-S*(1.-X2))/(2.*P1*P3)
              IF(ABS(CBET).GT.1.0) CBET=MAX(-1.,MIN(1.,CBET))
              BET=ACOS(CBET)
     
C.....MINIMIZE PT1-SQUARED PLUS PT3-SQUARED.....
              IF(P1.GE.P3) THEN
           PSI=.5*ULANGL(P1**2+P3**2*COS(2.*BET),-P3**2*SIN(2.*BET))
           PT1=P1*SIN(PSI)
           PZ1=P1*COS(PSI)
           PT3=P3*SIN(PSI+BET)
           PZ3=P3*COS(PSI+BET)
              ELSE IF(P3.GT.P1) THEN
           PSI=.5*ULANGL(P3**2+P1**2*COS(2.*BET),-P1**2*SIN(2.*BET))
           PT1=P1*SIN(BET+PSI)
           PZ1=-P1*COS(BET+PSI)
           PT3=P3*SIN(PSI)
           PZ3=-P3*COS(PSI)
              ENDIF
     
              DEL=2.0*HIPR1(40)*RANART(NSEED)
              P(JL,4)=E1
              P(JL,1)=PT1*SIN(DEL)
              P(JL,2)=-PT1*COS(DEL)
              P(JL,3)=PZ1
              P(JL+2,4)=E3
              P(JL+2,1)=PT3*SIN(DEL)
              P(JL+2,2)=-PT3*COS(DEL)
              P(JL+2,3)=PZ3
              P(JL+1,4)=W-E1-E3
              P(JL+1,1)=-P(JL,1)-P(JL+2,1)
              P(JL+1,2)=-P(JL,2)-P(JL+2,2)
              P(JL+1,3)=-P(JL,3)-P(JL+2,3)
              RETURN
              END


C
C*******************************************************************
C        make  boost and rotation to entries from IMIN to IMAX
C*******************************************************************
        SUBROUTINE ATROBO(THE,PHI,BEX,BEY,BEZ,IMIN,IMAX,IERROR)
        COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5)
cc      SAVE /LUJETS/
        DIMENSION ROT(3,3),PV(3)
        DOUBLE PRECISION DP(4),DBEX,DBEY,DBEZ,DGA,DGA2,DBEP,DGABEP
        SAVE   
        IERROR=0
     
              IF(IMIN.LE.0 .OR. IMAX.GT.N .OR. IMIN.GT.IMAX) RETURN

              IF(THE**2+PHI**2.GT.1E-20) THEN
C...ROTATE (TYPICALLY FROM Z AXIS TO DIRECTION THETA,PHI)
           ROT(1,1)=COS(THE)*COS(PHI)
           ROT(1,2)=-SIN(PHI)
           ROT(1,3)=SIN(THE)*COS(PHI)
           ROT(2,1)=COS(THE)*SIN(PHI)
           ROT(2,2)=COS(PHI)
           ROT(2,3)=SIN(THE)*SIN(PHI)
           ROT(3,1)=-SIN(THE)
           ROT(3,2)=0.
           ROT(3,3)=COS(THE)
           DO 120 I=IMIN,IMAX
C**************           IF(MOD(K(I,1)/10000,10).GE.6) GOTO 120
              DO 100 J=1,3
 100                 PV(J)=P(I,J)
                 DO 110 J=1,3
 110                    P(I,J)=ROT(J,1)*PV(1)+ROT(J,2)*PV(2)
     &                     +ROT(J,3)*PV(3)
 120                 CONTINUE
        ENDIF
     
              IF(BEX**2+BEY**2+BEZ**2.GT.1E-20) THEN
C...LORENTZ BOOST (TYPICALLY FROM REST TO MOMENTUM/ENERGY=BETA)
                DBEX=dble(BEX)
                DBEY=dble(BEY)
                DBEZ=dble(BEZ)
                DGA2=1D0-DBEX**2-DBEY**2-DBEZ**2
                IF(DGA2.LE.0D0) THEN
                        IERROR=1
                        RETURN
                ENDIF
                DGA=1D0/DSQRT(DGA2)
                DO 140 I=IMIN,IMAX
C*************           IF(MOD(K(I,1)/10000,10).GE.6) GOTO 140
                   DO 130 J=1,4
 130                  DP(J)=dble(P(I,J))
                   DBEP=DBEX*DP(1)+DBEY*DP(2)+DBEZ*DP(3)
                   DGABEP=DGA*(DGA*DBEP/(1D0+DGA)+DP(4))
                   P(I,1)=sngl(DP(1)+DGABEP*DBEX)
                   P(I,2)=sngl(DP(2)+DGABEP*DBEY)
                   P(I,3)=sngl(DP(3)+DGABEP*DBEZ)
                   P(I,4)=sngl(DGA*(DP(4)+DBEP))
140                   CONTINUE
              ENDIF
     
              RETURN
              END
C
C
C
        SUBROUTINE HIJHRD(JP,JT,JOUT,JFLG,IOPJT0)
C
C        IOPTJET=1, ALL JET WILL FORM SINGLE STRING SYSTEM
C                0, ONLY Q-QBAR JET FORM SINGLE STRING SYSTEM
C*******Perform jets production and fragmentation when JP JT *******
C     scatter. JOUT-> number of hard scatterings precede this one  *
C     for the the same pair(JP,JT). JFLG->a flag to show whether   *
C     jets can be produced (with valence quark=1,gluon=2, q-qbar=3)*
C     or not(0). Information of jets are in  COMMON/ATTJET and     *
C     /MINJET. ABS(NFP(JP,6)) is the total number jets produced by *
C    JP. If NFP(JP,6)<0 JP can not produce jet anymore.                   *
C*******************************************************************
        PARAMETER (MAXSTR=150001)
        DIMENSION IP(100,2),IPQ(50),IPB(50),IT(100,2),ITQ(50),ITB(50)
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HIJDAT/HIDAT0(10,10),HIDAT(10)
cc      SAVE /HIJDAT/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/HJJET1/NPJ(300),KFPJ(300,500),PJPX(300,500),
     &                PJPY(300,500),PJPZ(300,500),PJPE(300,500),
     &                PJPM(300,500),NTJ(300),KFTJ(300,500),
     &                PJTX(300,500),PJTY(300,500),PJTZ(300,500),
     &                PJTE(300,500),PJTM(300,500)
cc      SAVE /HJJET1/
        COMMON/HJJET2/NSG,NJSG(MAXSTR),IASG(MAXSTR,3),K1SG(MAXSTR,100),
     &       K2SG(MAXSTR,100),PXSG(MAXSTR,100),PYSG(MAXSTR,100),
     &       PZSG(MAXSTR,100),PESG(MAXSTR,100),PMSG(MAXSTR,100)
cc      SAVE /HJJET2/
c        COMMON/HJJET4/NDR,IADR(900,2),KFDR(900),PDR(900,5)
        COMMON/HJJET4/NDR,IADR(MAXSTR,2),KFDR(MAXSTR),PDR(MAXSTR,5)
        common/xydr/rtdr(MAXSTR,2)
cc      SAVE /HJJET4/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
C************************************ HIJING common block
        COMMON/LUJETS/N,K(9000,5),P(9000,5),V(9000,5)
cc      SAVE /LUJETS/
        COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
cc      SAVE /LUDAT1/
        COMMON/PYSUBS/MSEL,MSUB(200),KFIN(2,-40:40),CKIN(200)
cc      SAVE /PYSUBS/
        COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)
cc      SAVE /PYPARS/
        COMMON/PYINT1/MINT(400),VINT(400)
cc      SAVE /PYINT1/
        COMMON/PYINT2/ISET(200),KFPR(200,2),COEF(200,20),ICOL(40,4,2)
cc      SAVE /PYINT2/
        COMMON/PYINT5/NGEN(0:200,3),XSEC(0:200,3)
cc      SAVE /PYINT5/
        COMMON/HPINT/MINT4,MINT5,ATCO(200,20),ATXS(0:200)
cc      SAVE /HPINT/
clin-2/2012 correction:
        common/phidcy/iphidcy,pttrig,ntrig,maxmiss,ipi0dcy
        SAVE   
C*********************************** LU common block
        MXJT=500
C                SIZE OF COMMON BLOCK FOR # OF PARTON PER STRING
        MXSG=900
C                SIZE OF COMMON BLOCK FOR # OF SINGLE STRINGS
        MXSJ=100
C                SIZE OF COMMON BLOCK FOR # OF PARTON PER SINGLE
C                STRING
        JFLG=0
        IHNT2(11)=JP
        IHNT2(12)=JT
C
        IOPJET=IOPJT0
        IF(IOPJET.EQ.1.AND.(NFP(JP,6).NE.0.OR.NFT(JT,6).NE.0))
     &                   IOPJET=0
        IF(JP.GT.IHNT2(1) .OR. JT.GT.IHNT2(3)) RETURN
        IF(NFP(JP,6).LT.0 .OR. NFT(JT,6).LT.0) RETURN
C                ******** JP or JT can not produce jet anymore
C
        IF(JOUT.EQ.0) THEN
                EPP=PP(JP,4)+PP(JP,3)
                EPM=PP(JP,4)-PP(JP,3)
                ETP=PT(JT,4)+PT(JT,3)
                ETM=PT(JT,4)-PT(JT,3)
                IF(EPP.LT.0.0) GO TO 1000
                IF(EPM.LT.0.0) GO TO 1000
                IF(ETP.LT.0.0) GO TO 1000
                IF(ETM.LT.0.0) GO TO 1000
                IF(EPP/(EPM+0.01).LE.ETP/(ETM+0.01)) RETURN
        ENDIF
C                ********for the first hard scattering of (JP,JT)
C                        have collision only when Ycm(JP)>Ycm(JT)

        ECUT1=HIPR1(1)+HIPR1(8)+PP(JP,14)+PP(JP,15)
        ECUT2=HIPR1(1)+HIPR1(8)+PT(JT,14)+PT(JT,15)
        IF(PP(JP,4).LE.ECUT1) THEN
                NFP(JP,6)=-ABS(NFP(JP,6))
                RETURN
        ENDIF
        IF(PT(JT,4).LE.ECUT2) THEN
                NFT(JT,6)=-ABS(NFT(JT,6))
                RETURN
        ENDIF
C                *********must have enough energy to produce jets

        MISS=0
        MISP=0
        MIST=0
C
        IF(NFP(JP,10).EQ.0 .AND. NFT(JT,10).EQ.0) THEN
                MINT(44)=MINT4
                MINT(45)=MINT5
                XSEC(0,1)=ATXS(0)
                XSEC(11,1)=ATXS(11)
                XSEC(12,1)=ATXS(12)
                XSEC(28,1)=ATXS(28)
                DO 120 I=1,20
                COEF(11,I)=ATCO(11,I)
                COEF(12,I)=ATCO(12,I)
                COEF(28,I)=ATCO(28,I)
120                CONTINUE
        ELSE
                ISUB11=0
                ISUB12=0
                ISUB28=0
                IF(XSEC(11,1).NE.0) ISUB11=1
                IF(XSEC(12,1).NE.0) ISUB12=1
                IF(XSEC(28,1).NE.0) ISUB28=1                
                MINT(44)=MINT4-ISUB11-ISUB12-ISUB28
                MINT(45)=MINT5-ISUB11-ISUB12-ISUB28
                XSEC(0,1)=ATXS(0)-ATXS(11)-ATXS(12)-ATXS(28)
                XSEC(11,1)=0.0
                XSEC(12,1)=0.0
                XSEC(28,1)=0.0        
                DO 110 I=1,20
                COEF(11,I)=0.0
                COEF(12,I)=0.0
                COEF(28,I)=0.0
110                CONTINUE
        ENDIF                
C        ********Scatter the valence quarks only once per NN 
C       collision,
C                afterwards only gluon can have hard scattering.
 155        CALL PYTHIA
        JJ=MINT(31)
        IF(JJ.NE.1) GO TO 155
C                *********one hard collision at a time
        IF(K(7,2).EQ.-K(8,2)) THEN
                QMASS2=(P(7,4)+P(8,4))**2-(P(7,1)+P(8,1))**2
     &                        -(P(7,2)+P(8,2))**2-(P(7,3)+P(8,3))**2
                QM=ULMASS(K(7,2))
                IF(QMASS2.LT.(2.0*QM+HIPR1(1))**2) GO TO 155
        ENDIF
C                ********q-qbar jets must has minimum mass HIPR1(1)
        PXP=PP(JP,1)-P(3,1)
        PYP=PP(JP,2)-P(3,2)
        PZP=PP(JP,3)-P(3,3)
        PEP=PP(JP,4)-P(3,4)
        PXT=PT(JT,1)-P(4,1)
        PYT=PT(JT,2)-P(4,2)
        PZT=PT(JT,3)-P(4,3)
        PET=PT(JT,4)-P(4,4)

        IF(PEP.LE.ECUT1) THEN
                MISP=MISP+1
                IF(MISP.LT.50) GO TO 155
                NFP(JP,6)=-ABS(NFP(JP,6))
                RETURN
        ENDIF
        IF(PET.LE.ECUT2) THEN
                MIST=MIST+1
                IF(MIST.LT.50) GO TO 155
                NFT(JT,6)=-ABS(NFT(JT,6))
                RETURN
        ENDIF
C                ******** if the remain energy<ECUT the proj or targ
C                         can not produce jet anymore

        WP=PEP+PZP+PET+PZT
        WM=PEP-PZP+PET-PZT
        IF(WP.LT.0.0 .OR. WM.LT.0.0) THEN
                MISS=MISS+1
clin-6/2009 Let user set the limit when selecting high-Pt events 
c     because more attempts may be needed:
c                IF(MISS.LT.50) GO TO 155
                if(pttrig.gt.0) then
                   if(MISS.LT.maxmiss) then
                write(6,*) 'Failed to generate minijet Pt>',pttrig,'GeV'
                      GO TO 155
                   endif
                else
                   IF(MISS.LT.50) GO TO 155
                endif

                RETURN
        ENDIF
C                ********the total W+, W- must be positive
        SW=WP*WM
        AMPX=SQRT((ECUT1-HIPR1(8))**2+PXP**2+PYP**2+0.01)
        AMTX=SQRT((ECUT2-HIPR1(8))**2+PXT**2+PYT**2+0.01)
        SXX=(AMPX+AMTX)**2
        IF(SW.LT.SXX.OR.VINT(43).LT.HIPR1(1)) THEN
                MISS=MISS+1
clin-6/2009
c                IF(MISS.LT.50) GO TO 155
                IF(MISS.GT.maxmiss) GO TO 155
                RETURN
        ENDIF  
C                ********the proj and targ remnants must have at least
C                        a CM energy that can produce two strings
C                        with minimum mass HIPR1(1)(see HIJSFT HIJFRG)
C
        HINT1(41)=P(7,1)
        HINT1(42)=P(7,2)
        HINT1(43)=P(7,3)
        HINT1(44)=P(7,4)
        HINT1(45)=P(7,5)
        HINT1(46)=SQRT(P(7,1)**2+P(7,2)**2)
        HINT1(51)=P(8,1)
        HINT1(52)=P(8,2)
        HINT1(53)=P(8,3)
        HINT1(54)=P(8,4)
        HINT1(55)=P(8,5)
        HINT1(56)=SQRT(P(8,1)**2+P(8,2)**2) 
        IHNT2(14)=K(7,2)
        IHNT2(15)=K(8,2)
C
        PINIRD=(1.0-EXP(-2.0*(VINT(47)-HIDAT(1))))
     &                /(1.0+EXP(-2.0*(VINT(47)-HIDAT(1))))
        IINIRD=0
        IF(RANART(NSEED).LE.PINIRD) IINIRD=1
        IF(K(7,2).EQ.-K(8,2)) GO TO 190
        IF(K(7,2).EQ.21.AND.K(8,2).EQ.21.AND.IOPJET.EQ.1) GO TO 190
C*******************************************************************
C        gluon  jets are going to be connectd with
C        the final leadng string of quark-aintquark
C*******************************************************************
        JFLG=2
        JPP=0
        LPQ=0
        LPB=0
        JTT=0
        LTQ=0
        LTB=0
        IS7=0
        IS8=0
        HINT1(47)=0.0
        HINT1(48)=0.0
        HINT1(49)=0.0
        HINT1(50)=0.0
        HINT1(67)=0.0
        HINT1(68)=0.0
        HINT1(69)=0.0
        HINT1(70)=0.0
        DO 180 I=9,N
           IF(K(I,3).EQ.1 .OR. K(I,3).EQ.2.OR.
     &                   ABS(K(I,2)).GT.30) GO TO 180
C************************************************************
           IF(K(I,3).EQ.7) THEN
              HINT1(47)=HINT1(47)+P(I,1)
              HINT1(48)=HINT1(48)+P(I,2)
              HINT1(49)=HINT1(49)+P(I,3)
              HINT1(50)=HINT1(50)+P(I,4)
           ENDIF
           IF(K(I,3).EQ.8) THEN
              HINT1(67)=HINT1(67)+P(I,1)
              HINT1(68)=HINT1(68)+P(I,2)
              HINT1(69)=HINT1(69)+P(I,3)
              HINT1(70)=HINT1(70)+P(I,4)
           ENDIF
C************************modifcation made on Apr 10. 1996*****
           IF(K(I,2).GT.21.AND.K(I,2).LE.30) THEN
              NDR=NDR+1
              IADR(NDR,1)=JP
              IADR(NDR,2)=JT
              KFDR(NDR)=K(I,2)
              PDR(NDR,1)=P(I,1)
              PDR(NDR,2)=P(I,2)
              PDR(NDR,3)=P(I,3)
              PDR(NDR,4)=P(I,4)
              PDR(NDR,5)=P(I,5)
              rtdr(NDR,1)=0.5*(YP(1,JP)+YT(1,JT))
              rtdr(NDR,2)=0.5*(YP(2,JP)+YT(2,JT))
C************************************************************
              GO TO 180
C************************correction made on Oct. 14,1994*****
           ENDIF
           IF(K(I,3).EQ.7.OR.K(I,3).EQ.3) THEN
              IF(K(I,3).EQ.7.AND.K(I,2).NE.21.AND.K(I,2).EQ.K(7,2)
     &                     .AND.IS7.EQ.0) THEN
                 PP(JP,10)=P(I,1)
                 PP(JP,11)=P(I,2)
                 PP(JP,12)=P(I,3)
                 PZP=PZP+P(I,3)
                 PEP=PEP+P(I,4)
                 NFP(JP,10)=1
                 IS7=1
                 GO TO 180
              ENDIF
              IF(K(I,3).EQ.3.AND.(K(I,2).NE.21.OR.
     &                               IINIRD.EQ.0)) THEN
                 PXP=PXP+P(I,1)
                 PYP=PYP+P(I,2)
                 PZP=PZP+P(I,3)
                 PEP=PEP+P(I,4)
                 GO TO 180 
              ENDIF
              JPP=JPP+1
              IP(JPP,1)=I
              IP(JPP,2)=0
              IF(K(I,2).NE.21) THEN
                 IF(K(I,2).GT.0) THEN
                    LPQ=LPQ+1
                    IPQ(LPQ)=JPP
                    IP(JPP,2)=LPQ
                 ELSE IF(K(I,2).LT.0) THEN
                    LPB=LPB+1
                    IPB(LPB)=JPP
                    IP(JPP,2)=-LPB
                 ENDIF
              ENDIF
           ELSE IF(K(I,3).EQ.8.OR.K(I,3).EQ.4) THEN
              IF(K(I,3).EQ.8.AND.K(I,2).NE.21.AND.K(I,2).EQ.K(8,2)
     &                                .AND.IS8.EQ.0) THEN
                 PT(JT,10)=P(I,1)
                 PT(JT,11)=P(I,2)
                 PT(JT,12)=P(I,3)
                 PZT=PZT+P(I,3)
                 PET=PET+P(I,4)
                 NFT(JT,10)=1
                 IS8=1
                 GO TO 180
              ENDIF                        
              IF(K(I,3).EQ.4.AND.(K(I,2).NE.21.OR.
     &                             IINIRD.EQ.0)) THEN
                 PXT=PXT+P(I,1)
                 PYT=PYT+P(I,2)
                 PZT=PZT+P(I,3)
                 PET=PET+P(I,4)
                 GO TO 180
              ENDIF
              JTT=JTT+1
              IT(JTT,1)=I
              IT(JTT,2)=0
              IF(K(I,2).NE.21) THEN
                 IF(K(I,2).GT.0) THEN
                    LTQ=LTQ+1
                    ITQ(LTQ)=JTT
                    IT(JTT,2)=LTQ
                 ELSE IF(K(I,2).LT.0) THEN
                    LTB=LTB+1
                    ITB(LTB)=JTT
                    IT(JTT,2)=-LTB
                 ENDIF
              ENDIF
           ENDIF
 180        CONTINUE
c
c
        IF(LPQ.NE.LPB .OR. LTQ.NE.LTB) THEN
                MISS=MISS+1
clin-6/2009
c                IF(MISS.LE.50) GO TO 155
                IF(MISS.LE.maxmiss) GO TO 155
                WRITE(6,*) ' Q -QBAR NOT MATCHED IN HIJHRD'
                JFLG=0
                RETURN
        ENDIF
C****The following will rearrange the partons so that a quark is***
C****allways followed by an anti-quark ****************************

        J=0
181        J=J+1
        IF(J.GT.JPP) GO TO 182
        IF(IP(J,2).EQ.0) THEN
                GO TO 181
        ELSE IF(IP(J,2).NE.0) THEN
                LP=ABS(IP(J,2))
                IP1=IP(J,1)
                IP2=IP(J,2)
                IP(J,1)=IP(IPQ(LP),1)
                IP(J,2)=IP(IPQ(LP),2)
                IP(IPQ(LP),1)=IP1
                IP(IPQ(LP),2)=IP2
                IF(IP2.GT.0) THEN
                        IPQ(IP2)=IPQ(LP)
                ELSE IF(IP2.LT.0) THEN
                        IPB(-IP2)=IPQ(LP)
                ENDIF
C                ********replace J with a quark
                IP1=IP(J+1,1)
                IP2=IP(J+1,2)
                IP(J+1,1)=IP(IPB(LP),1)
                IP(J+1,2)=IP(IPB(LP),2)
                IP(IPB(LP),1)=IP1
                IP(IPB(LP),2)=IP2
                IF(IP2.GT.0) THEN
                        IPQ(IP2)=IPB(LP)
                ELSE IF(IP2.LT.0) THEN
                        IPB(-IP2)=IPB(LP)
                ENDIF
C                ******** replace J+1 with anti-quark
                J=J+1
                GO TO 181
        ENDIF

182        J=0
183        J=J+1
        IF(J.GT.JTT) GO TO 184
        IF(IT(J,2).EQ.0) THEN
                GO TO 183
        ELSE IF(IT(J,2).NE.0) THEN
                LT=ABS(IT(J,2))
                IT1=IT(J,1)
                IT2=IT(J,2)
                IT(J,1)=IT(ITQ(LT),1)
                IT(J,2)=IT(ITQ(LT),2)
                IT(ITQ(LT),1)=IT1
                IT(ITQ(LT),2)=IT2
                IF(IT2.GT.0) THEN
                        ITQ(IT2)=ITQ(LT)
                ELSE IF(IT2.LT.0) THEN
                        ITB(-IT2)=ITQ(LT)
                ENDIF
C                ********replace J with a quark
                IT1=IT(J+1,1)
                IT2=IT(J+1,2)
                IT(J+1,1)=IT(ITB(LT),1)
                IT(J+1,2)=IT(ITB(LT),2)
                IT(ITB(LT),1)=IT1
                IT(ITB(LT),2)=IT2
                IF(IT2.GT.0) THEN
                        ITQ(IT2)=ITB(LT)
                ELSE IF(IT2.LT.0) THEN
                        ITB(-IT2)=ITB(LT)
                ENDIF
C                ******** replace J+1 with anti-quark
                J=J+1
                GO TO 183

        ENDIF

184        CONTINUE
        IF(NPJ(JP)+JPP.GT.MXJT.OR.NTJ(JT)+JTT.GT.MXJT) THEN
                JFLG=0
                WRITE(6,*) 'number of partons per string exceeds'
                WRITE(6,*) 'the common block size'
                RETURN
        ENDIF
C                        ********check the bounds of common blocks
        DO 186 J=1,JPP
                KFPJ(JP,NPJ(JP)+J)=K(IP(J,1),2)
                PJPX(JP,NPJ(JP)+J)=P(IP(J,1),1)
                PJPY(JP,NPJ(JP)+J)=P(IP(J,1),2)
                PJPZ(JP,NPJ(JP)+J)=P(IP(J,1),3)
                PJPE(JP,NPJ(JP)+J)=P(IP(J,1),4)
                PJPM(JP,NPJ(JP)+J)=P(IP(J,1),5)
186        CONTINUE
        NPJ(JP)=NPJ(JP)+JPP
        DO 188 J=1,JTT
                KFTJ(JT,NTJ(JT)+J)=K(IT(J,1),2)
                PJTX(JT,NTJ(JT)+J)=P(IT(J,1),1)
                PJTY(JT,NTJ(JT)+J)=P(IT(J,1),2)
                PJTZ(JT,NTJ(JT)+J)=P(IT(J,1),3)
                PJTE(JT,NTJ(JT)+J)=P(IT(J,1),4)
                PJTM(JT,NTJ(JT)+J)=P(IT(J,1),5)
188        CONTINUE
        NTJ(JT)=NTJ(JT)+JTT
        GO TO 900
C*****************************************************************
CThis is the case of a quark-antiquark jet it will fragment alone
C****************************************************************
190        JFLG=3
        IF(K(7,2).NE.21.AND.K(8,2).NE.21.AND.
     &                   K(7,2)*K(8,2).GT.0) GO TO 155
        JPP=0
        LPQ=0
        LPB=0
        DO 200 I=9,N
           IF(K(I,3).EQ.1.OR.K(I,3).EQ.2.OR.
     &                  ABS(K(I,2)).GT.30) GO TO 200
                IF(K(I,2).GT.21.AND.K(I,2).LE.30) THEN
                        NDR=NDR+1
                        IADR(NDR,1)=JP
                        IADR(NDR,2)=JT
                        KFDR(NDR)=K(I,2)
                        PDR(NDR,1)=P(I,1)
                        PDR(NDR,2)=P(I,2)
                        PDR(NDR,3)=P(I,3)
                        PDR(NDR,4)=P(I,4)
                        PDR(NDR,5)=P(I,5)
                        rtdr(NDR,1)=0.5*(YP(1,JP)+YT(1,JT))
                        rtdr(NDR,2)=0.5*(YP(2,JP)+YT(2,JT))
C************************************************************
                        GO TO 200
C************************correction made on Oct. 14,1994*****
                ENDIF
                IF(K(I,3).EQ.3.AND.(K(I,2).NE.21.OR.
     &                              IINIRD.EQ.0)) THEN
                        PXP=PXP+P(I,1)
                        PYP=PYP+P(I,2)
                        PZP=PZP+P(I,3)
                        PEP=PEP+P(I,4)
                        GO TO 200
                ENDIF
                IF(K(I,3).EQ.4.AND.(K(I,2).NE.21.OR.
     &                                IINIRD.EQ.0)) THEN
                        PXT=PXT+P(I,1)
                        PYT=PYT+P(I,2)
                        PZT=PZT+P(I,3)
                        PET=PET+P(I,4)
                        GO TO 200
                ENDIF
                JPP=JPP+1
                IP(JPP,1)=I
                IP(JPP,2)=0
                IF(K(I,2).NE.21) THEN
                        IF(K(I,2).GT.0) THEN
                                LPQ=LPQ+1
                                IPQ(LPQ)=JPP
                                IP(JPP,2)=LPQ
                        ELSE IF(K(I,2).LT.0) THEN
                                LPB=LPB+1
                                IPB(LPB)=JPP
                                IP(JPP,2)=-LPB
                        ENDIF
                ENDIF
200        CONTINUE
        IF(LPQ.NE.LPB) THEN
           MISS=MISS+1
clin-6/2009
c           IF(MISS.LE.50) GO TO 155
           IF(MISS.LE.maxmiss) GO TO 155
           WRITE(6,*) LPQ,LPB, 'Q-QBAR NOT CONSERVED OR NOT MATCHED'
           JFLG=0
           RETURN
        ENDIF

C**** The following will rearrange the partons so that a quark is***
C**** allways followed by an anti-quark ****************************
        J=0
220        J=J+1
        IF(J.GT.JPP) GO TO 222
        IF(IP(J,2).EQ.0) GO TO 220
                LP=ABS(IP(J,2))
                IP1=IP(J,1)
                IP2=IP(J,2)
                IP(J,1)=IP(IPQ(LP),1)
                IP(J,2)=IP(IPQ(LP),2)
                IP(IPQ(LP),1)=IP1
                IP(IPQ(LP),2)=IP2
                IF(IP2.GT.0) THEN
                        IPQ(IP2)=IPQ(LP)
                ELSE IF(IP2.LT.0) THEN
                        IPB(-IP2)=IPQ(LP)
                ENDIF
                IPQ(LP)=J
C                ********replace J with a quark
                IP1=IP(J+1,1)
                IP2=IP(J+1,2)
                IP(J+1,1)=IP(IPB(LP),1)
                IP(J+1,2)=IP(IPB(LP),2)
                IP(IPB(LP),1)=IP1
                IP(IPB(LP),2)=IP2
                IF(IP2.GT.0) THEN
                        IPQ(IP2)=IPB(LP)
                ELSE IF(IP2.LT.0) THEN
                        IPB(-IP2)=IPB(LP)
                ENDIF
C                ******** replace J+1 with an anti-quark
                IPB(LP)=J+1
                J=J+1
                GO TO 220

222        CONTINUE
        IF(LPQ.GE.1) THEN
                DO 240 L0=2,LPQ
                        IP1=IP(2*L0-3,1)
                        IP2=IP(2*L0-3,2)
                        IP(2*L0-3,1)=IP(IPQ(L0),1)
                        IP(2*L0-3,2)=IP(IPQ(L0),2)
                        IP(IPQ(L0),1)=IP1
                        IP(IPQ(L0),2)=IP2
                        IF(IP2.GT.0) THEN
                                IPQ(IP2)=IPQ(L0)
                        ELSE IF(IP2.LT.0) THEN
                                IPB(-IP2)=IPQ(L0)
                        ENDIF
                        IPQ(L0)=2*L0-3
C
                        IP1=IP(2*L0-2,1)
                        IP2=IP(2*L0-2,2)
                        IP(2*L0-2,1)=IP(IPB(L0),1)
                        IP(2*L0-2,2)=IP(IPB(L0),2)
                        IP(IPB(L0),1)=IP1
                        IP(IPB(L0),2)=IP2
                        IF(IP2.GT.0) THEN
                                IPQ(IP2)=IPB(L0)
                        ELSE IF(IP2.LT.0) THEN
                                IPB(-IP2)=IPB(L0)
                        ENDIF
                        IPB(L0)=2*L0-2
240                CONTINUE
C                ********move all the qqbar pair to the front of 
C                                the list, except the first pair
                IP1=IP(2*LPQ-1,1)
                IP2=IP(2*LPQ-1,2)
                IP(2*LPQ-1,1)=IP(IPQ(1),1)
                IP(2*LPQ-1,2)=IP(IPQ(1),2)
                IP(IPQ(1),1)=IP1
                IP(IPQ(1),2)=IP2
                IF(IP2.GT.0) THEN
                        IPQ(IP2)=IPQ(1)
                ELSE IF(IP2.LT.0) THEN
                        IPB(-IP2)=IPQ(1)
                ENDIF
                IPQ(1)=2*LPQ-1
C                ********move the first quark to the beginning of
C                                the last string system
                IP1=IP(JPP,1)
                IP2=IP(JPP,2)
                IP(JPP,1)=IP(IPB(1),1)
                IP(JPP,2)=IP(IPB(1),2)
                IP(IPB(1),1)=IP1
                IP(IPB(1),2)=IP2
                IF(IP2.GT.0) THEN
                        IPQ(IP2)=IPB(1)
                ELSE IF(IP2.LT.0) THEN
                        IPB(-IP2)=IPB(1)
                ENDIF
                IPB(1)=JPP
C                ********move the first anti-quark to the end of the 
C                        last string system
        ENDIF
        IF(NSG.GE.MXSG) THEN
           JFLG=0
           WRITE(6,*) 'number of jets forming single strings exceeds'
           WRITE(6,*) 'the common block size'
           RETURN
        ENDIF
        IF(JPP.GT.MXSJ) THEN
           JFLG=0
           WRITE(6,*) 'number of partons per single jet system'
           WRITE(6,*) 'exceeds the common block size'
           RETURN
        ENDIF
C                ********check the bounds of common block size
        NSG=NSG+1
        NJSG(NSG)=JPP
        IASG(NSG,1)=JP
        IASG(NSG,2)=JT
        IASG(NSG,3)=0
        DO 300 I=1,JPP
                K1SG(NSG,I)=2
                K2SG(NSG,I)=K(IP(I,1),2)
                IF(K2SG(NSG,I).LT.0) K1SG(NSG,I)=1
                PXSG(NSG,I)=P(IP(I,1),1)
                PYSG(NSG,I)=P(IP(I,1),2)
                PZSG(NSG,I)=P(IP(I,1),3)
                PESG(NSG,I)=P(IP(I,1),4)
                PMSG(NSG,I)=P(IP(I,1),5)
300        CONTINUE
        K1SG(NSG,1)=2
        K1SG(NSG,JPP)=1
C******* reset the energy-momentum of incoming particles ********
900        PP(JP,1)=PXP
        PP(JP,2)=PYP
        PP(JP,3)=PZP
        PP(JP,4)=PEP
        PP(JP,5)=0.0
        PT(JT,1)=PXT
        PT(JT,2)=PYT
        PT(JT,3)=PZT
        PT(JT,4)=PET
        PT(JT,5)=0.0

        NFP(JP,6)=NFP(JP,6)+1
        NFT(JT,6)=NFT(JT,6)+1
        RETURN
C
1000        JFLG=-1
        IF(IHPR2(10).EQ.0) RETURN
        WRITE(6,*) 'Fatal HIJHRD error'
        WRITE(6,*) JP, ' proj E+,E-',EPP,EPM,' status',NFP(JP,5)
        WRITE(6,*) JT, ' targ E+,E_',ETP,ETM,' status',NFT(JT,5)
        RETURN
        END
C
C
C
C
C
        SUBROUTINE JETINI(JP,JT,itrig)
C*******Initialize PYTHIA for jet production**********************
C        itrig=0: for normal processes
C        itrig=1: for triggered processes
C       JP: sequence number of the projectile
C       JT: sequence number of the target
C     For A+A collisions, one has to initilize pythia
C     separately for each type of collisions, pp, pn,np and nn,
C     or hp and hn for hA collisions. In this subroutine we use the following
C     catalogue for different type of collisions:
C     h+h: h+h (itype=1)
C     h+A: h+p (itype=1), h+n (itype=2)
C     A+h: p+h (itype=1), n+h (itype=2)
C     A+A: p+p (itype=1), p+n (itype=2), n+p (itype=3), n+n (itype=4)
C*****************************************************************
        CHARACTER BEAM*16,TARG*16
        DIMENSION XSEC0(8,0:200),COEF0(8,200,20),INI(8),
     &                MINT44(8),MINT45(8)
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/HPINT/MINT4,MINT5,ATCO(200,20),ATXS(0:200)
cc      SAVE /HPINT/
C
        COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
cc      SAVE /LUDAT1/
        COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5)    
cc      SAVE /LUDAT3/
        COMMON/PYSUBS/MSEL,MSUB(200),KFIN(2,-40:40),CKIN(200)
cc      SAVE /PYSUBS/
        COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)
cc      SAVE /PYPARS/
        COMMON/PYINT1/MINT(400),VINT(400)
cc      SAVE /PYINT1/
        COMMON/PYINT2/ISET(200),KFPR(200,2),COEF(200,20),ICOL(40,4,2)
cc      SAVE /PYINT2/
        COMMON/PYINT5/NGEN(0:200,3),XSEC(0:200,3)
cc      SAVE /PYINT5/
        SAVE
clin        DATA INI/8*0/ilast/-1/
        DATA INI/8*0/,ilast/-1/
C
        IHNT2(11)=JP
        IHNT2(12)=JT
        IF(IHNT2(5).NE.0 .AND. IHNT2(6).NE.0) THEN
           itype=1
        ELSE IF(IHNT2(5).NE.0 .AND. IHNT2(6).EQ.0) THEN
           itype=1
           IF(NFT(JT,4).EQ.2112) itype=2
        ELSE IF(IHNT2(5).EQ.0 .AND. IHNT2(6).NE.0) THEN
           itype=1
           IF(NFP(JP,4).EQ.2112) itype=2
        ELSE
           IF(NFP(JP,4).EQ.2212 .AND. NFT(JT,4).EQ.2212) THEN
              itype=1
           ELSE IF(NFP(JP,4).EQ.2212 .AND. NFT(JT,4).EQ.2112) THEN
              itype=2
           ELSE IF(NFP(JP,4).EQ.2112 .AND. NFT(JT,4).EQ.2212) THEN
              itype=3
           ELSE
              itype=4
           ENDIF
        ENDIF

clin-12/2012 correct NN differential cross section in HIJING:
c        write(94,*) 'In JETINI: ',jp,jt,NFP(JP,4),NFT(JT,4),itype

c
        IF(itrig.NE.0) GO TO 160
        IF(itrig.EQ.ilast) GO TO 150
        MSTP(2)=2
c                        ********second order running alpha_strong
        MSTP(33)=1
        PARP(31)=HIPR1(17)
C                        ********inclusion of K factor
        MSTP(51)=3
C                        ********Duke-Owens set 1 structure functions
        MSTP(61)=1
C                        ********INITIAL STATE RADIATION
        MSTP(71)=1
C                        ********FINAL STATE RADIATION
        IF(IHPR2(2).EQ.0.OR.IHPR2(2).EQ.2) MSTP(61)=0
        IF(IHPR2(2).EQ.0.OR.IHPR2(2).EQ.1) MSTP(71)=0
c
        MSTP(81)=0
C                        ******** NO MULTIPLE INTERACTION
        MSTP(82)=1
C                        *******STRUCTURE OF MUTLIPLE INTERACTION
        MSTP(111)=0
C                ********frag off(have to be done by local call)
        IF(IHPR2(10).EQ.0) MSTP(122)=0
C                ********No printout of initialization information
        PARP(81)=HIPR1(8)
        CKIN(5)=HIPR1(8)
        CKIN(3)=HIPR1(8)
        CKIN(4)=HIPR1(9)
        IF(HIPR1(9).LE.HIPR1(8)) CKIN(4)=-1.0
        CKIN(9)=-10.0
        CKIN(10)=10.0
        MSEL=0
        DO 100 ISUB=1,200
           MSUB(ISUB)=0
 100    CONTINUE
        MSUB(11)=1
        MSUB(12)=1
        MSUB(13)=1
        MSUB(28)=1
        MSUB(53)=1
        MSUB(68)=1
        MSUB(81)=1
        MSUB(82)=1
        DO 110 J=1,MIN(8,MDCY(21,3))
 110    MDME(MDCY(21,2)+J-1,1)=0
        ISEL=4
        IF(HINT1(1).GE.20.0 .and. IHPR2(18).EQ.1) ISEL=5
        MDME(MDCY(21,2)+ISEL-1,1)=1
C                        ********QCD subprocesses
        MSUB(14)=1
        MSUB(18)=1
        MSUB(29)=1
C                       ******* direct photon production
 150    IF(INI(itype).NE.0) GO TO 800
        GO TO 400
C
C        *****triggered subprocesses, jet, photon, heavy quark and DY
C
 160    itype=4+itype
        IF(itrig.EQ.ilast) GO TO 260
        PARP(81)=ABS(HIPR1(10))-0.25
        CKIN(5)=ABS(HIPR1(10))-0.25
        CKIN(3)=ABS(HIPR1(10))-0.25
        CKIN(4)=ABS(HIPR1(10))+0.25
        IF(HIPR1(10).LT.HIPR1(8)) CKIN(4)=-1.0
c
        MSEL=0
        DO 101 ISUB=1,200
           MSUB(ISUB)=0
 101    CONTINUE
        IF(IHPR2(3).EQ.1) THEN
           MSUB(11)=1
           MSUB(12)=1
           MSUB(13)=1
           MSUB(28)=1
           MSUB(53)=1
           MSUB(68)=1
           MSUB(81)=1
           MSUB(82)=1
           MSUB(14)=1
           MSUB(18)=1
           MSUB(29)=1
           DO 102 J=1,MIN(8,MDCY(21,3))
 102           MDME(MDCY(21,2)+J-1,1)=0
           ISEL=4
           IF(HINT1(1).GE.20.0 .and. IHPR2(18).EQ.1) ISEL=5
           MDME(MDCY(21,2)+ISEL-1,1)=1
C                        ********QCD subprocesses
        ELSE IF(IHPR2(3).EQ.2) THEN
           MSUB(14)=1
           MSUB(18)=1
           MSUB(29)=1
C                ********Direct photon production
c                q+qbar->g+gamma,q+qbar->gamma+gamma, q+g->q+gamma
        ELSE IF(IHPR2(3).EQ.3) THEN
           CKIN(3)=MAX(0.0,HIPR1(10))
           CKIN(5)=HIPR1(8)
           PARP(81)=HIPR1(8)
           MSUB(81)=1
           MSUB(82)=1
           DO 105 J=1,MIN(8,MDCY(21,3))
 105           MDME(MDCY(21,2)+J-1,1)=0
           ISEL=4
           IF(HINT1(1).GE.20.0 .and. IHPR2(18).EQ.1) ISEL=5
           MDME(MDCY(21,2)+ISEL-1,1)=1
C             **********Heavy quark production
        ENDIF
260        IF(INI(itype).NE.0) GO TO 800
C
C
400        INI(itype)=1
        IF(IHPR2(10).EQ.0) MSTP(122)=0
        IF(NFP(JP,4).EQ.2212) THEN
                BEAM='P'
        ELSE IF(NFP(JP,4).EQ.-2212) THEN
                BEAM='P~'
        ELSE IF(NFP(JP,4).EQ.2112) THEN
                BEAM='N'
        ELSE IF(NFP(JP,4).EQ.-2112) THEN
                BEAM='N~'
        ELSE IF(NFP(JP,4).EQ.211) THEN
                BEAM='PI+'
        ELSE IF(NFP(JP,4).EQ.-211) THEN
                BEAM='PI-'
        ELSE IF(NFP(JP,4).EQ.321) THEN
                BEAM='PI+'
        ELSE IF(NFP(JP,4).EQ.-321) THEN
                BEAM='PI-'
        ELSE
                WRITE(6,*) 'unavailable beam type', NFP(JP,4)
        ENDIF
        IF(NFT(JT,4).EQ.2212) THEN
                TARG='P'
        ELSE IF(NFT(JT,4).EQ.-2212) THEN
                TARG='P~'
        ELSE IF(NFT(JT,4).EQ.2112) THEN
                TARG='N'
        ELSE IF(NFT(JT,4).EQ.-2112) THEN
                TARG='N~'
        ELSE IF(NFT(JT,4).EQ.211) THEN
                TARG='PI+'
        ELSE IF(NFT(JT,4).EQ.-211) THEN
                TARG='PI-'
        ELSE IF(NFT(JT,4).EQ.321) THEN
                TARG='PI+'
        ELSE IF(NFT(JT,4).EQ.-321) THEN
                TARG='PI-'
        ELSE
                WRITE(6,*) 'unavailable target type', NFT(JT,4)
        ENDIF
C
        IHNT2(16)=1
C       ******************indicate for initialization use when
C                         structure functions are called in PYTHIA
C
        CALL PYINIT('CMS',BEAM,TARG,HINT1(1))
        MINT4=MINT(44)
        MINT5=MINT(45)
        MINT44(itype)=MINT(44)
        MINT45(itype)=MINT(45)
        ATXS(0)=XSEC(0,1)
        XSEC0(itype,0)=XSEC(0,1)
        DO 500 I=1,200
                ATXS(I)=XSEC(I,1)
                XSEC0(itype,I)=XSEC(I,1)
                DO 500 J=1,20
                        ATCO(I,J)=COEF(I,J)
                        COEF0(itype,I,J)=COEF(I,J)
500        CONTINUE
C
        IHNT2(16)=0
C
        RETURN
C                ********Store the initialization information for
C                                late use
C
C
800        MINT(44)=MINT44(itype)
        MINT(45)=MINT45(itype)
        MINT4=MINT(44)
        MINT5=MINT(45)
        XSEC(0,1)=XSEC0(itype,0)
        ATXS(0)=XSEC(0,1)
        DO 900 I=1,200
                XSEC(I,1)=XSEC0(itype,I)
                ATXS(I)=XSEC(I,1)
        DO 900 J=1,20
                COEF(I,J)=COEF0(itype,I,J)
                ATCO(I,J)=COEF(I,J)
900        CONTINUE
        ilast=itrig
        MINT(11)=NFP(JP,4)
        MINT(12)=NFT(JT,4)
        RETURN
        END
C            
C
C
        SUBROUTINE HIJINI
        PARAMETER (MAXSTR=150001)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/HJJET1/NPJ(300),KFPJ(300,500),PJPX(300,500),
     &                PJPY(300,500),PJPZ(300,500),PJPE(300,500),
     &                PJPM(300,500),NTJ(300),KFTJ(300,500),
     &                PJTX(300,500),PJTY(300,500),PJTZ(300,500),
     &                PJTE(300,500),PJTM(300,500)
cc      SAVE /HJJET1/
        COMMON/HJJET2/NSG,NJSG(MAXSTR),IASG(MAXSTR,3),K1SG(MAXSTR,100),
     &       K2SG(MAXSTR,100),PXSG(MAXSTR,100),PYSG(MAXSTR,100),
     &       PZSG(MAXSTR,100),PESG(MAXSTR,100),PMSG(MAXSTR,100)
cc      SAVE /HJJET2/
c        COMMON/HJJET4/NDR,IADR(900,2),KFDR(900),PDR(900,5)
        COMMON/HJJET4/NDR,IADR(MAXSTR,2),KFDR(MAXSTR),PDR(MAXSTR,5)
cc      SAVE /HJJET4/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
C****************Reset the momentum of initial particles************
C             and assign flavors to the proj and targ string       *
C*******************************************************************
        NSG=0
        NDR=0
        IPP=2212
        IPT=2212
        IF(IHNT2(5).NE.0) IPP=IHNT2(5)
        IF(IHNT2(6).NE.0) IPT=IHNT2(6)
C                ********in case the proj or targ is a hadron.
C
        DO 100 I=1,IHNT2(1)
        PP(I,1)=0.0
        PP(I,2)=0.0
        PP(I,3)=SQRT(HINT1(1)**2/4.0-HINT1(8)**2)
        PP(I,4)=HINT1(1)/2
        PP(I,5)=HINT1(8)
        PP(I,6)=0.0
        PP(I,7)=0.0
        PP(I,8)=0.0
        PP(I,9)=0.0
        PP(I,10)=0.0
cbzdbg2/22/99
ctest OFF
        PP(I, 11) = 0.0
        PP(I, 12) = 0.0
cbzdbg2/22/99end
        NFP(I,3)=IPP
        NFP(I,4)=IPP
        NFP(I,5)=0
        NFP(I,6)=0
        NFP(I,7)=0
        NFP(I,8)=0
        NFP(I,9)=0
        NFP(I,10)=0
        NFP(I,11)=0
        NPJ(I)=0
        IF(I.GT.ABS(IHNT2(2))) NFP(I,3)=2112

clin-12/2012 correct NN differential cross section in HIJING:
        IF(I.GT.ABS(IHNT2(2))) NFP(I,4)=2112

        CALL ATTFLV(NFP(I,3),IDQ,IDQQ)
        NFP(I,1)=IDQ
        NFP(I,2)=IDQQ
        NFP(I,15)=-1
        IF(ABS(IDQ).GT.1000.OR.(ABS(IDQ*IDQQ).LT.100.AND.
     &                RANART(NSEED).LT.0.5)) NFP(I,15)=1
        PP(I,14)=ULMASS(IDQ)
        PP(I,15)=ULMASS(IDQQ)
100        CONTINUE
C
        DO 200 I=1,IHNT2(3)
        PT(I,1)=0.0
        PT(I,2)=0.0
        PT(I,3)=-SQRT(HINT1(1)**2/4.0-HINT1(9)**2)
        PT(I,4)=HINT1(1)/2.0
        PT(I,5)=HINT1(9)
        PT(I,6)=0.0
        PT(I,7)=0.0
        PT(I,8)=0.0
        PT(I,9)=0.0
        PT(I,10)=0.0
ctest OFF
cbzdbg2/22/99
        PT(I, 11) = 0.0
        PT(I, 12) = 0.0
cbzdbg2/22/99end
        NFT(I,3)=IPT
        NFT(I,4)=IPT
        NFT(I,5)=0
        NFT(I,6)=0
        NFT(I,7)=0
        NFT(I,8)=0
        NFT(I,9)=0
        NFT(I,10)=0
        NFT(I,11)=0
        NTJ(I)=0
        IF(I.GT.ABS(IHNT2(4))) NFT(I,3)=2112

clin-12/2012 correct NN differential cross section in HIJING:
        IF(I.GT.ABS(IHNT2(4))) NFT(I,4)=2112

        CALL ATTFLV(NFT(I,3),IDQ,IDQQ)
        NFT(I,1)=IDQ
        NFT(I,2)=IDQQ
        NFT(I,15)=1
        IF(ABS(IDQ).GT.1000.OR.(ABS(IDQ*IDQQ).LT.100.AND.
     &       RANART(NSEED).LT.0.5)) NFT(I,15)=-1
        PT(I,14)=ULMASS(IDQ)
        PT(I,15)=ULMASS(IDQQ)
200        CONTINUE
        RETURN
        END
C
C
C
        SUBROUTINE ATTFLV(ID,IDQ,IDQQ)
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
C
        IF(ABS(ID).LT.100) THEN
                NSIGN=1
                IDQ=ID/100
                IDQQ=-ID/10+IDQ*10
                IF(ABS(IDQ).EQ.3) NSIGN=-1
                IDQ=NSIGN*IDQ
                IDQQ=NSIGN*IDQQ
                IF(IDQ.LT.0) THEN
                        ID0=IDQ
                        IDQ=IDQQ
                        IDQQ=ID0
                ENDIF
                RETURN
        ENDIF
C                ********return ID of quark(IDQ) and anti-quark(IDQQ)
C                        for pions and kaons
c
C        Return LU ID for quarks and diquarks for proton(ID=2212) 
C        anti-proton(ID=-2212) and nuetron(ID=2112)
C        LU ID for d=1,u=2, (ud)0=2101, (ud)1=2103, 
C       (dd)1=1103,(uu)1=2203.
C        Use SU(6)  weight  proton=1/3d(uu)1 + 1/6u(ud)1 + 1/2u(ud)0
C                          nurtron=1/3u(dd)1 + 1/6d(ud)1 + 1/2d(ud)0
C 
        IDQ=2
        IF(ABS(ID).EQ.2112) IDQ=1
        IDQQ=2101
        X=RANART(NSEED)
        IF(X.LE.0.5) GO TO 30
        IF(X.GT.0.666667) GO TO 10
        IDQQ=2103
        GO TO 30
10        IDQ=1
        IDQQ=2203
        IF(ABS(ID).EQ.2112) THEN
                IDQ=2
                IDQQ=1103
        ENDIF
30        IF(ID.LT.0) THEN
                ID00=IDQQ
                IDQQ=-IDQ
                IDQ=-ID00
        ENDIF
        RETURN
        END        
C
C*******************************************************************
C        This subroutine performs elastic scatterings and possible 
C        elastic cascading within their own nuclei
c*******************************************************************
        SUBROUTINE HIJCSC(JP,JT)
        DIMENSION PSC1(5),PSC2(5)
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        SAVE   
        IF(JP.EQ.0 .OR. JT.EQ.0) GO TO 25
        DO 10 I=1,5
        PSC1(I)=PP(JP,I)
        PSC2(I)=PT(JT,I)
10        CONTINUE
        CALL HIJELS(PSC1,PSC2)
        DPP1=PSC1(1)-PP(JP,1)
        DPP2=PSC1(2)-PP(JP,2)
        DPT1=PSC2(1)-PT(JT,1)
        DPT2=PSC2(2)-PT(JT,2)
        PP(JP,6)=PP(JP,6)+DPP1/2.0
        PP(JP,7)=PP(JP,7)+DPP2/2.0
        PP(JP,8)=PP(JP,8)+DPP1/2.0
        PP(JP,9)=PP(JP,9)+DPP2/2.0
        PT(JT,6)=PT(JT,6)+DPT1/2.0
        PT(JT,7)=PT(JT,7)+DPT2/2.0
        PT(JT,8)=PT(JT,8)+DPT1/2.0
        PT(JT,9)=PT(JT,9)+DPT2/2.0
        DO 20 I=1,4
        PP(JP,I)=PSC1(I)
        PT(JT,I)=PSC2(I)
20        CONTINUE
        NFP(JP,5)=MAX(1,NFP(JP,5))
        NFT(JT,5)=MAX(1,NFT(JT,5))
C                ********Perform elastic scattering between JP and JT
        RETURN
C                ********The following is for possible elastic cascade
c
25        IF(JP.EQ.0) GO TO 45
        PABS=SQRT(PP(JP,1)**2+PP(JP,2)**2+PP(JP,3)**2)
        BX=PP(JP,1)/PABS
        BY=PP(JP,2)/PABS
        BZ=PP(JP,3)/PABS
        DO 40 I=1,IHNT2(1)
                IF(I.EQ.JP) GO TO 40
                DX=YP(1,I)-YP(1,JP)
                DY=YP(2,I)-YP(2,JP)
                DZ=YP(3,I)-YP(3,JP)
                DIS=DX*BX+DY*BY+DZ*BZ
                IF(DIS.LE.0) GO TO 40
                BB=DX**2+DY**2+DZ**2-DIS**2
                R2=BB*HIPR1(40)/HIPR1(31)/0.1
C                ********mb=0.1*fm, YP is in fm,HIPR1(31) is in mb
                GS=1.0-EXP(-(HIPR1(30)+HINT1(11))/HIPR1(31)/2.0
     &                        *ROMG(R2))**2
                GS0=1.0-EXP(-(HIPR1(30)+HINT1(11))/HIPR1(31)/2.0
     &                        *ROMG(0.0))**2
                IF(RANART(NSEED).GT.GS/GS0) GO TO 40
                DO 30 K=1,5
                        PSC1(K)=PP(JP,K)
                        PSC2(K)=PP(I,K)
30                CONTINUE
                CALL HIJELS(PSC1,PSC2)
                DPP1=PSC1(1)-PP(JP,1)
                DPP2=PSC1(2)-PP(JP,2)
                DPT1=PSC2(1)-PP(I,1)
                DPT2=PSC2(2)-PP(I,2)
                PP(JP,6)=PP(JP,6)+DPP1/2.0
                PP(JP,7)=PP(JP,7)+DPP2/2.0
                PP(JP,8)=PP(JP,8)+DPP1/2.0
                PP(JP,9)=PP(JP,9)+DPP2/2.0
                PP(I,6)=PP(I,6)+DPT1/2.0
                PP(I,7)=PP(I,7)+DPT2/2.0
                PP(I,8)=PP(I,8)+DPT1/2.0
                PP(I,9)=PP(I,9)+DPT2/2.0
                DO 35 K=1,5
                        PP(JP,K)=PSC1(K)
                        PP(I,K)=PSC2(K)
35                CONTINUE
                NFP(I,5)=MAX(1,NFP(I,5))
                GO TO 45
40        CONTINUE
45        IF(JT.EQ.0) GO TO 80
clin 50        PABS=SQRT(PT(JT,1)**2+PT(JT,2)**2+PT(JT,3)**2)
        PABS=SQRT(PT(JT,1)**2+PT(JT,2)**2+PT(JT,3)**2)
        BX=PT(JT,1)/PABS
        BY=PT(JT,2)/PABS
        BZ=PT(JT,3)/PABS
        DO 70 I=1,IHNT2(3)
                IF(I.EQ.JT) GO TO 70
                DX=YT(1,I)-YT(1,JT)
                DY=YT(2,I)-YT(2,JT)
                DZ=YT(3,I)-YT(3,JT)
                DIS=DX*BX+DY*BY+DZ*BZ
                IF(DIS.LE.0) GO TO 70
                BB=DX**2+DY**2+DZ**2-DIS**2
                R2=BB*HIPR1(40)/HIPR1(31)/0.1
C                ********mb=0.1*fm, YP is in fm,HIPR1(31) is in mb
                GS=(1.0-EXP(-(HIPR1(30)+HINT1(11))/HIPR1(31)/2.0
     &                        *ROMG(R2)))**2
                GS0=(1.0-EXP(-(HIPR1(30)+HINT1(11))/HIPR1(31)/2.0
     &                        *ROMG(0.0)))**2
                IF(RANART(NSEED).GT.GS/GS0) GO TO 70
                DO 60 K=1,5
                        PSC1(K)=PT(JT,K)
                        PSC2(K)=PT(I,K)
60                CONTINUE
                CALL HIJELS(PSC1,PSC2)
                DPP1=PSC1(1)-PT(JT,1)
                DPP2=PSC1(2)-PT(JT,2)
                DPT1=PSC2(1)-PT(I,1)
                DPT2=PSC2(2)-PT(I,2)
                PT(JT,6)=PT(JT,6)+DPP1/2.0
                PT(JT,7)=PT(JT,7)+DPP2/2.0
                PT(JT,8)=PT(JT,8)+DPP1/2.0
                PT(JT,9)=PT(JT,9)+DPP2/2.0
                PT(I,6)=PT(I,6)+DPT1/2.0
                PT(I,7)=PT(I,7)+DPT2/2.0
                PT(I,8)=PT(I,8)+DPT1/2.0
                PT(I,9)=PT(I,9)+DPT2/2.0
                DO 65 K=1,5
                        PT(JT,K)=PSC1(K)
                        PT(I,K)=PSC2(K)
65                CONTINUE
                NFT(I,5)=MAX(1,NFT(I,5))
                GO TO 80
70        CONTINUE
80        RETURN
        END
C
C
C*******************************************************************
CThis subroutine performs elastic scattering between two nucleons
C
C*******************************************************************
        SUBROUTINE HIJELS(PSC1,PSC2)
        IMPLICIT DOUBLE PRECISION(D)
        DIMENSION PSC1(5),PSC2(5)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
C
        CC=1.0-HINT1(12)/HINT1(13)
        RR=(1.0-CC)*HINT1(13)/HINT1(12)/(1.0-HIPR1(33))-1.0
        BB=0.5*(3.0+RR+SQRT(9.0+10.0*RR+RR**2))
        EP=SQRT((PSC1(1)-PSC2(1))**2+(PSC1(2)-PSC2(2))**2
     &                +(PSC1(3)-PSC2(3))**2)
        IF(EP.LE.0.1) RETURN
        ELS0=98.0/EP+52.0*(1.0+RR)**2
        PCM1=PSC1(1)+PSC2(1)
        PCM2=PSC1(2)+PSC2(2)
        PCM3=PSC1(3)+PSC2(3)
        ECM=PSC1(4)+PSC2(4)
        AM1=PSC1(5)**2
        AM2=PSC2(5)**2
        AMM=ECM**2-PCM1**2-PCM2**2-PCM3**2
        IF(AMM.LE.PSC1(5)+PSC2(5)) RETURN
C                ********elastic scattering only when approaching
C                                to each other
        PMAX=(AMM**2+AM1**2+AM2**2-2.0*AMM*AM1-2.0*AMM*AM2
     &                        -2.0*AM1*AM2)/4.0/AMM
        PMAX=ABS(PMAX)
20        TT=RANART(NSEED)*MIN(PMAX,1.5)
        ELS=98.0*EXP(-2.8*TT)/EP
     &         +52.0*EXP(-9.2*TT)*(1.0+RR*EXP(-4.6*(BB-1.0)*TT))**2
        IF(RANART(NSEED).GT.ELS/ELS0) GO TO 20
        PHI=2.0*HIPR1(40)*RANART(NSEED)
C
        DBX=dble(PCM1/ECM)
        DBY=dble(PCM2/ECM)
        DBZ=dble(PCM3/ECM)
        DB=dSQRT(DBX**2+DBY**2+DBZ**2)
        IF(DB.GT.0.99999999D0) THEN 
          DBX=DBX*(0.99999999D0/DB) 
          DBY=DBY*(0.99999999D0/DB) 
          DBZ=DBZ*(0.99999999D0/DB) 
          DB=0.99999999D0   
          WRITE(6,*) ' (HIJELS) boost vector too large' 
C                ********Rescale boost vector if too close to unity. 
        ENDIF   
        DGA=1D0/SQRT(1D0-DB**2)      
C
        DP1=dble(SQRT(TT)*SIN(PHI))
        DP2=dble(SQRT(TT)*COS(PHI))
        DP3=dble(SQRT(PMAX-TT))
        DP4=dble(SQRT(PMAX+AM1))
        DBP=DBX*DP1+DBY*DP2+DBZ*DP3   
        DGABP=DGA*(DGA*DBP/(1D0+DGA)+DP4) 
        PSC1(1)=sngl(DP1+DGABP*DBX)
        PSC1(2)=sngl(DP2+DGABP*DBY) 
        PSC1(3)=sngl(DP3+DGABP*DBZ) 
        PSC1(4)=sngl(DGA*(DP4+DBP))
C        
        DP1=-dble(SQRT(TT)*SIN(PHI))
        DP2=-dble(SQRT(TT)*COS(PHI))
        DP3=-dble(SQRT(PMAX-TT))
        DP4=dble(SQRT(PMAX+AM2))
        DBP=DBX*DP1+DBY*DP2+DBZ*DP3   
        DGABP=DGA*(DGA*DBP/(1D0+DGA)+DP4) 
        PSC2(1)=sngl(DP1+DGABP*DBX)
        PSC2(2)=sngl(DP2+DGABP*DBY)
        PSC2(3)=sngl(DP3+DGABP*DBZ)
        PSC2(4)=sngl(DGA*(DP4+DBP))
        RETURN
        END
C
C        
C*******************************************************************
C                                                                      *
C                Subroutine HIJSFT                                   *
C                                                                   *
C  Scatter two excited strings, JP from proj and JT from target    *
C*******************************************************************
        SUBROUTINE HIJSFT(JP,JT,JOUT,IERROR)
        PARAMETER (MAXSTR=150001)
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HIJDAT/HIDAT0(10,10),HIDAT(10)
cc      SAVE /HIJDAT/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        COMMON/HJJET1/NPJ(300),KFPJ(300,500),PJPX(300,500),
     &               PJPY(300,500),PJPZ(300,500),PJPE(300,500),
     &               PJPM(300,500),NTJ(300),KFTJ(300,500),
     &               PJTX(300,500),PJTY(300,500),PJTZ(300,500),
     &               PJTE(300,500),PJTM(300,500)
cc      SAVE /HJJET1/
clin-4/25/01
c        COMMON/HJJET2/NSG,NJSG(900),IASG(900,3),K1SG(900,100),
c     &                K2SG(900,100),PXSG(900,100),PYSG(900,100),
c     &                PZSG(900,100),PESG(900,100),PMSG(900,100)
cc      SAVE /HJJET2/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/DPMCM1/JJP,JJT,AMP,AMT,APX0,ATX0,AMPN,AMTN,AMP0,AMT0,
     &       NFDP,NFDT,WP,WM,SW,XREMP,XREMT,DPKC1,DPKC2,PP11,PP12,
     &       PT11,PT12,PTP2,PTT2
cc      SAVE /DPMCM1/
        COMMON/DPMCM2/NDPM,KDPM(20,2),PDPM1(20,5),PDPM2(20,5)
cc      SAVE /DPMCM2/
        SAVE   
C*******************************************************************
C        JOUT-> the number
C        of hard scatterings preceding this soft collision. 
C       IHNT2(13)-> 1=
C        double diffrac 2=single diffrac, 3=non-single diffrac.
C*******************************************************************
        IERROR=0
        JJP=JP
        JJT=JT
        NDPM=0
c        IOPMAIN=0
        IF(JP.GT.IHNT2(1) .OR. JT.GT.IHNT2(3)) RETURN

        EPP=PP(JP,4)+PP(JP,3)
        EPM=PP(JP,4)-PP(JP,3)
        ETP=PT(JT,4)+PT(JT,3)
        ETM=PT(JT,4)-PT(JT,3)

        WP=EPP+ETP
        WM=EPM+ETM
        SW=WP*WM
C                ********total W+,W- and center-of-mass energy

        IF(WP.LT.0.0 .OR. WM.LT.0.0) GO TO 1000

        IF(JOUT.EQ.0) THEN
                IF(EPP.LT.0.0) GO TO 1000
                IF(EPM.LT.0.0) GO TO 1000
                IF(ETP.LT.0.0) GO TO 1000
                IF(ETM.LT.0.0) GO TO 1000    
                IF(EPP/(EPM+0.01).LE.ETP/(ETM+0.01)) RETURN
        ENDIF
C                ********For strings which does not follow a jet-prod,
C                        scatter only if Ycm(JP)>Ycm(JT). When jets
C                        are produced just before this collision
C                        this requirement has already be enforced
C                        (see SUBROUTINE HIJHRD)
        IHNT2(11)=JP
        IHNT2(12)=JT
C
C
C
        MISS=0
        PKC1=0.0
        PKC2=0.0
        PKC11=0.0
        PKC12=0.0
        PKC21=0.0
        PKC22=0.0
        DPKC11=0.0
        DPKC12=0.0
        DPKC21=0.0
        DPKC22=0.0
        IF(NFP(JP,10).EQ.1.OR.NFT(JT,10).EQ.1) THEN
           IF(NFP(JP,10).EQ.1) THEN
              PHI1=ULANGL(PP(JP,10),PP(JP,11))
              PPJET=SQRT(PP(JP,10)**2+PP(JP,11)**2)
              PKC1=PPJET
              PKC11=PP(JP,10)
              PKC12=PP(JP,11)
           ENDIF
           IF(NFT(JT,10).EQ.1) THEN
              PHI2=ULANGL(PT(JT,10),PT(JT,11))
              PTJET=SQRT(PT(JT,10)**2+PT(JT,11)**2)
              PKC2=PTJET
              PKC21=PT(JT,10)
              PKC22=PT(JT,11)
           ENDIF
           IF(IHPR2(4).GT.0.AND.IHNT2(1).GT.1.AND.IHNT2(3).GT.1) THEN
              IF(NFP(JP,10).EQ.0) THEN
                 PHI=-PHI2
              ELSE IF(NFT(JT,10).EQ.0) THEN
                 PHI=PHI1
              ELSE
                 PHI=(PHI1+PHI2-HIPR1(40))/2.0
              ENDIF
              BX=HINT1(19)*COS(HINT1(20))
              BY=HINT1(19)*SIN(HINT1(20))
              XP0=YP(1,JP)
              YP0=YP(2,JP)
              XT0=YT(1,JT)+BX
              YT0=YT(2,JT)+BY
              R1=MAX(1.2*IHNT2(1)**0.3333333,
     &               SQRT(XP0**2+YP0**2))
              R2=MAX(1.2*IHNT2(3)**0.3333333,
     &               SQRT((XT0-BX)**2+(YT0-BY)**2))
              IF(ABS(COS(PHI)).LT.1.0E-5) THEN
                 DD1=R1
                 DD2=R1
                 DD3=ABS(BY+SQRT(R2**2-(XP0-BX)**2)-YP0)
                 DD4=ABS(BY-SQRT(R2**2-(XP0-BX)**2)-YP0)
                 GO TO 5
              ENDIF
              BB=2.0*SIN(PHI)*(COS(PHI)*YP0-SIN(PHI)*XP0)
              CC=(YP0**2-R1**2)*COS(PHI)**2+XP0*SIN(PHI)*(
     &                                XP0*SIN(PHI)-2.0*YP0*COS(PHI))
              DD=BB**2-4.0*CC
              IF(DD.LT.0.0) GO TO 10
              XX1=(-BB+SQRT(DD))/2.0
              XX2=(-BB-SQRT(DD))/2.0
              DD1=ABS((XX1-XP0)/COS(PHI))
              DD2=ABS((XX2-XP0)/COS(PHI))
C                        
              BB=2.0*SIN(PHI)*(COS(PHI)*(YT0-BY)-SIN(PHI)*XT0)-2.0*BX
              CC=(BX**2+(YT0-BY)**2-R2**2)*COS(PHI)**2+XT0*SIN(PHI)
     &           *(XT0*SIN(PHI)-2.0*COS(PHI)*(YT0-BY))
     &                 -2.0*BX*SIN(PHI)*(COS(PHI)*(YT0-BY)-SIN(PHI)*XT0)
              DD=BB**2-4.0*CC
              IF(DD.LT.0.0) GO TO 10
              XX1=(-BB+SQRT(DD))/2.0
              XX2=(-BB-SQRT(DD))/2.0
              DD3=ABS((XX1-XT0)/COS(PHI))
              DD4=ABS((XX2-XT0)/COS(PHI))
C
 5              DD1=MIN(DD1,DD3)
              DD2=MIN(DD2,DD4)
              IF(DD1.LT.HIPR1(13)) DD1=0.0
              IF(DD2.LT.HIPR1(13)) DD2=0.0
              IF(NFP(JP,10).EQ.1.AND.PPJET.GT.HIPR1(11)) THEN
                 DP1=DD1*HIPR1(14)/2.0
                 DP1=MIN(DP1,PPJET-HIPR1(11))
                 PKC1=PPJET-DP1
                 DPX1=COS(PHI1)*DP1
                 DPY1=SIN(PHI1)*DP1
                 PKC11=PP(JP,10)-DPX1
                 PKC12=PP(JP,11)-DPY1
                 IF(DP1.GT.0.0) THEN
                    CTHEP=PP(JP,12)/SQRT(PP(JP,12)**2+PPJET**2)
                    DPZ1=DP1*CTHEP/SQRT(1.0-CTHEP**2)
                    DPE1=SQRT(DPX1**2+DPY1**2+DPZ1**2)
                    EPPPRM=PP(JP,4)+PP(JP,3)-DPE1-DPZ1
                    EPMPRM=PP(JP,4)-PP(JP,3)-DPE1+DPZ1
                    IF(EPPPRM.LE.0.0.OR.EPMPRM.LE.0.0) GO TO 15
                    EPP=EPPPRM
                    EPM=EPMPRM
                    PP(JP,10)=PKC11
                    PP(JP,11)=PKC12
                    NPJ(JP)=NPJ(JP)+1
                    KFPJ(JP,NPJ(JP))=21
                    PJPX(JP,NPJ(JP))=DPX1
                    PJPY(JP,NPJ(JP))=DPY1
                    PJPZ(JP,NPJ(JP))=DPZ1
                    PJPE(JP,NPJ(JP))=DPE1
                    PJPM(JP,NPJ(JP))=0.0
                    PP(JP,3)=PP(JP,3)-DPZ1
                    PP(JP,4)=PP(JP,4)-DPE1
                 ENDIF
              ENDIF
 15              IF(NFT(JT,10).EQ.1.AND.PTJET.GT.HIPR1(11)) THEN
                 DP2=DD2*HIPR1(14)/2.0
                 DP2=MIN(DP2,PTJET-HIPR1(11))
                 PKC2=PTJET-DP2
                 DPX2=COS(PHI2)*DP2
                 DPY2=SIN(PHI2)*DP2
                 PKC21=PT(JT,10)-DPX2
                 PKC22=PT(JT,11)-DPY2
                 IF(DP2.GT.0.0) THEN
                    CTHET=PT(JT,12)/SQRT(PT(JT,12)**2+PTJET**2)
                    DPZ2=DP2*CTHET/SQRT(1.0-CTHET**2)
                    DPE2=SQRT(DPX2**2+DPY2**2+DPZ2**2)
                    ETPPRM=PT(JT,4)+PT(JT,3)-DPE2-DPZ2
                    ETMPRM=PT(JT,4)-PT(JT,3)-DPE2+DPZ2
                    IF(ETPPRM.LE.0.0.OR.ETMPRM.LE.0.0) GO TO 16
                    ETP=ETPPRM
                    ETM=ETMPRM
                    PT(JT,10)=PKC21
                    PT(JT,11)=PKC22
                    NTJ(JT)=NTJ(JT)+1
                    KFTJ(JT,NTJ(JT))=21
                    PJTX(JT,NTJ(JT))=DPX2
                    PJTY(JT,NTJ(JT))=DPY2
                    PJTZ(JT,NTJ(JT))=DPZ2
                    PJTE(JT,NTJ(JT))=DPE2
                    PJTM(JT,NTJ(JT))=0.0
                    PT(JT,3)=PT(JT,3)-DPZ2
                    PT(JT,4)=PT(JT,4)-DPE2
                 ENDIF
              ENDIF
 16              DPKC11=-(PP(JP,10)-PKC11)/2.0
              DPKC12=-(PP(JP,11)-PKC12)/2.0
              DPKC21=-(PT(JT,10)-PKC21)/2.0
              DPKC22=-(PT(JT,11)-PKC22)/2.0
              WP=EPP+ETP
              WM=EPM+ETM
              SW=WP*WM
           ENDIF
        ENDIF
C                ********If jet is quenched the pt from valence quark
C                        hard scattering has to reduced by d*kapa
C
C   
10        PTP02=PP(JP,1)**2+PP(JP,2)**2
        PTT02=PT(JT,1)**2+PT(JT,2)**2
C        
        AMQ=MAX(PP(JP,14)+PP(JP,15),PT(JT,14)+PT(JT,15))
        AMX=HIPR1(1)+AMQ
C                ********consider mass cut-off for strings which
C                        must also include quark's mass
        AMP0=AMX
        DPM0=AMX
        NFDP=0
        IF(NFP(JP,5).LE.2.AND.NFP(JP,3).NE.0) THEN
                AMP0=ULMASS(NFP(JP,3))
                NFDP=NFP(JP,3)+2*NFP(JP,3)/ABS(NFP(JP,3))
                DPM0=ULMASS(NFDP)
                IF(DPM0.LE.0.0) THEN
                        NFDP=NFDP-2*NFDP/ABS(NFDP)
                        DPM0=ULMASS(NFDP)
                ENDIF
        ENDIF
        AMT0=AMX
        DTM0=AMX
        NFDT=0
        IF(NFT(JT,5).LE.2.AND.NFT(JT,3).NE.0) THEN
                AMT0=ULMASS(NFT(JT,3))
                NFDT=NFT(JT,3)+2*NFT(JT,3)/ABS(NFT(JT,3))
                DTM0=ULMASS(NFDT)
                IF(DTM0.LE.0.0) THEN
                        NFDT=NFDT-2*NFDT/ABS(NFDT)
                        DTM0=ULMASS(NFDT)
                ENDIF
        ENDIF
C        
        AMPN=SQRT(AMP0**2+PTP02)
        AMTN=SQRT(AMT0**2+PTT02)
        SNN=(AMPN+AMTN)**2+0.001
C
        IF(SW.LT.SNN+0.001) GO TO 4000
C                ********Scatter only if SW>SNN
C*****give some PT kick to the two exited strings******************
clin 20        SWPTN=4.0*(MAX(AMP0,AMT0)**2+MAX(PTP02,PTT02))
        SWPTN=4.0*(MAX(AMP0,AMT0)**2+MAX(PTP02,PTT02))
        SWPTD=4.0*(MAX(DPM0,DTM0)**2+MAX(PTP02,PTT02))
        SWPTX=4.0*(AMX**2+MAX(PTP02,PTT02))
        IF(SW.LE.SWPTN) THEN
                PKCMX=0.0
        ELSE IF(SW.GT.SWPTN .AND. SW.LE.SWPTD
     &                .AND.NPJ(JP).EQ.0.AND.NTJ(JT).EQ.0) THEN
           PKCMX=SQRT(SW/4.0-MAX(AMP0,AMT0)**2)
     &           -SQRT(MAX(PTP02,PTT02))
        ELSE IF(SW.GT.SWPTD .AND. SW.LE.SWPTX
     &                .AND.NPJ(JP).EQ.0.AND.NTJ(JT).EQ.0) THEN
           PKCMX=SQRT(SW/4.0-MAX(DPM0,DTM0)**2)
     &           -SQRT(MAX(PTP02,PTT02))
        ELSE IF(SW.GT.SWPTX) THEN
           PKCMX=SQRT(SW/4.0-AMX**2)-SQRT(MAX(PTP02,PTT02))
        ENDIF
C                ********maximun PT kick
C*********************************************************
C
        IF(NFP(JP,10).EQ.1.OR.NFT(JT,10).EQ.1) THEN
                IF(PKC1.GT.PKCMX) THEN
                        PKC1=PKCMX
                        PKC11=PKC1*COS(PHI1)
                        PKC12=PKC1*SIN(PHI1)
                        DPKC11=-(PP(JP,10)-PKC11)/2.0
                        DPKC12=-(PP(JP,11)-PKC12)/2.0
                ENDIF
                IF(PKC2.GT.PKCMX) THEN
                        PKC2=PKCMX
                        PKC21=PKC2*COS(PHI2)
                        PKC22=PKC2*SIN(PHI2)
                        DPKC21=-(PT(JT,10)-PKC21)/2.0
                        DPKC22=-(PT(JT,11)-PKC22)/2.0
                ENDIF
                DPKC1=DPKC11+DPKC21
                DPKC2=DPKC12+DPKC22
                NFP(JP,10)=-NFP(JP,10)
                NFT(JT,10)=-NFT(JT,10)
                GO TO 40
        ENDIF
C                ********If the valence quarks had a hard-collision
C                        the pt kick is the pt from hard-collision.
        isng=0
        IF(IHPR2(13).NE.0 .AND. RANART(NSEED).LE.HIDAT(4)) isng=1
        IF((NFP(JP,5).EQ.3 .OR.NFT(JT,5).EQ.3).OR.
     &                (NPJ(JP).NE.0.OR.NFP(JP,10).NE.0).OR.
     &                (NTJ(JT).NE.0.OR.NFT(JT,10).NE.0)) isng=0
C
C               ********decite whether to have single-diffractive
        IF(IHPR2(5).EQ.0) THEN
                PKC=HIPR1(2)*SQRT(-ALOG(1.0-RANART(NSEED)
     &                        *(1.0-EXP(-PKCMX**2/HIPR1(2)**2))))
                GO TO 30
        ENDIF

clin-10/28/02 get rid of argument usage mismatch in HIRND2():
c        PKC=HIRND2(3,0.0,PKCMX**2)
        xminhi=0.0
        xmaxhi=PKCMX**2
        PKC=HIRND2(3,xminhi,xmaxhi)

        PKC=SQRT(PKC)
        IF(PKC.GT.HIPR1(20)) 
     &           PKC=HIPR1(2)*SQRT(-ALOG(EXP(-HIPR1(20)**2/HIPR1(2)**2)
     &               -RANART(NSEED)*(EXP(-HIPR1(20)**2/HIPR1(2)**2)-
     &               EXP(-PKCMX**2/HIPR1(2)**2))))
C
        IF(isng.EQ.1) PKC=0.65*SQRT(
     &       -ALOG(1.0-RANART(NSEED)*(1.0-EXP(-PKCMX**2/0.65**2))))
C                        ********select PT kick
30        PHI0=2.0*HIPR1(40)*RANART(NSEED)
        PKC11=PKC*SIN(PHI0)
        PKC12=PKC*COS(PHI0)
        PKC21=-PKC11
        PKC22=-PKC12
        DPKC1=0.0
        DPKC2=0.0
40        PP11=PP(JP,1)+PKC11-DPKC1
        PP12=PP(JP,2)+PKC12-DPKC2
        PT11=PT(JT,1)+PKC21-DPKC1
        PT12=PT(JT,2)+PKC22-DPKC2
        PTP2=PP11**2+PP12**2
        PTT2=PT11**2+PT12**2
C
        AMPN=SQRT(AMP0**2+PTP2)
        AMTN=SQRT(AMT0**2+PTT2)
        SNN=(AMPN+AMTN)**2+0.001
C***************************************
        WP=EPP+ETP
        WM=EPM+ETM
        SW=WP*WM
C****************************************
        IF(SW.LT.SNN) THEN
           MISS=MISS+1
           IF(MISS.LE.100) then
              PKC=0.0
              GO TO 30
           ENDIF
           IF(IHPR2(10).NE.0) 
     &          WRITE(6,*) 'Error occured in Pt kick section of HIJSFT'
           GO TO 4000
        ENDIF
C******************************************************************
        AMPD=SQRT(DPM0**2+PTP2)
        AMTD=SQRT(DTM0**2+PTT2)

        AMPX=SQRT(AMX**2+PTP2)
        AMTX=SQRT(AMX**2+PTT2)

        DPN=AMPN**2/SW
        DTN=AMTN**2/SW
        DPD=AMPD**2/SW
        DTD=AMTD**2/SW
        DPX=AMPX**2/SW
        DTX=AMTX**2/SW
C
        SPNTD=(AMPN+AMTD)**2
        SPNTX=(AMPN+AMTX)**2
C                        ********CM energy if proj=N,targ=N*
        SPDTN=(AMPD+AMTN)**2
        SPXTN=(AMPX+AMTN)**2
C                        ********CM energy if proj=N*,targ=N
        SPDTX=(AMPD+AMTX)**2
        SPXTD=(AMPX+AMTD)**2
        SDD=(AMPD+AMTD)**2
        SXX=(AMPX+AMTX)**2

C
C        
C                ********CM energy if proj=delta, targ=delta
C****************There are many different cases**********
c        IF(IHPR2(15).EQ.1) GO TO 500
C
C                ********to have DPM type soft interactions
C
clin 45        CONTINUE
        IF(SW.GT.SXX+0.001) THEN
           IF(isng.EQ.0) THEN
               D1=DPX
              D2=DTX
              NFP3=0
              NFT3=0
              GO TO 400
           ELSE
c**** 5/30/1998 this is identical to the above statement. Added to
c**** avoid questional branching to block.
              IF((NFP(JP,5).EQ.3 .AND.NFT(JT,5).EQ.3).OR.
     &                 (NPJ(JP).NE.0.OR.NFP(JP,10).NE.0).OR.
     &                 (NTJ(JT).NE.0.OR.NFT(JT,10).NE.0)) THEN
                 D1=DPX
                 D2=DTX
                 NFP3=0
                 NFT3=0
                 GO TO 400
              ENDIF
C                ********do not allow excited strings to have 
C                        single-diffr 
              IF(RANART(NSEED).GT.0.5.OR.(NFT(JT,5).GT.2.OR.
     &                      NTJ(JT).NE.0.OR.NFT(JT,10).NE.0)) THEN
                 D1=DPN
                 D2=DTX
                 NFP3=NFP(JP,3)
                 NFT3=0
                 GO TO 220
              ELSE
                 D1=DPX
                 D2=DTN
                 NFP3=0
                 NFT3=NFT(JT,3)
                 GO TO 240
              ENDIF
C                ********have single diffractive collision
           ENDIF
        ELSE IF(SW.GT.MAX(SPDTX,SPXTD)+0.001 .AND.
     &                                SW.LE.SXX+0.001) THEN
           IF(((NPJ(JP).EQ.0.AND.NTJ(JT).EQ.0.AND.
     &         RANART(NSEED).GT.0.5).OR.(NPJ(JP).EQ.0
     &         .AND.NTJ(JT).NE.0)).AND.NFP(JP,5).LE.2) THEN
              D1=DPD
              D2=DTX
              NFP3=NFDP
              NFT3=0
              GO TO 220
           ELSE IF(NTJ(JT).EQ.0.AND.NFT(JT,5).LE.2) THEN
              D1=DPX
              D2=DTD
              NFP3=0
              NFT3=NFDT
              GO TO 240
           ENDIF
           GO TO 4000
        ELSE IF(SW.GT.MIN(SPDTX,SPXTD)+0.001.AND.
     &                        SW.LE.MAX(SPDTX,SPXTD)+0.001) THEN
           IF(SPDTX.LE.SPXTD.AND.NPJ(JP).EQ.0
     &                       .AND.NFP(JP,5).LE.2) THEN
              D1=DPD
              D2=DTX
              NFP3=NFDP
              NFT3=0
              GO TO 220
           ELSE IF(SPDTX.GT.SPXTD.AND.NTJ(JT).EQ.0
     &                       .AND.NFT(JT,5).LE.2) THEN
              D1=DPX
              D2=DTD
              NFP3=0
              NFT3=NFDT
              GO TO 240
           ENDIF
c*** 5/30/1998 added to avoid questional branching to another block
c*** this is identical to the statement following the next ELSE IF
           IF(((NPJ(JP).EQ.0.AND.NTJ(JT).EQ.0
     &       .AND.RANART(NSEED).GT.0.5).OR.(NPJ(JP).EQ.0
     &        .AND.NTJ(JT).NE.0)).AND.NFP(JP,5).LE.2) THEN
              D1=DPN
              D2=DTX
              NFP3=NFP(JP,3)
              NFT3=0
              GO TO 220
           ELSE IF(NTJ(JT).EQ.0.AND.NFT(JT,5).LE.2) THEN
              D1=DPX
              D2=DTN
              NFP3=0
              NFT3=NFT(JT,3)
              GO TO 240
           ENDIF
           GO TO 4000
        ELSE IF(SW.GT.MAX(SPNTX,SPXTN)+0.001 .AND.
     &                        SW.LE.MIN(SPDTX,SPXTD)+0.001) THEN
           IF(((NPJ(JP).EQ.0.AND.NTJ(JT).EQ.0
     &       .AND.RANART(NSEED).GT.0.5).OR.(NPJ(JP).EQ.0
     &        .AND.NTJ(JT).NE.0)).AND.NFP(JP,5).LE.2) THEN
              D1=DPN
              D2=DTX
              NFP3=NFP(JP,3)
              NFT3=0
              GO TO 220
           ELSE IF(NTJ(JT).EQ.0.AND.NFT(JT,5).LE.2) THEN
              D1=DPX
              D2=DTN
              NFP3=0
              NFT3=NFT(JT,3)
              GO TO 240
           ENDIF
           GO TO 4000
        ELSE IF(SW.GT.MIN(SPNTX,SPXTN)+0.001 .AND.
     &                        SW.LE.MAX(SPNTX,SPXTN)+0.001) THEN
           IF(SPNTX.LE.SPXTN.AND.NPJ(JP).EQ.0
     &                           .AND.NFP(JP,5).LE.2) THEN
              D1=DPN
              D2=DTX
              NFP3=NFP(JP,3)
              NFT3=0
              GO TO 220
           ELSEIF(SPNTX.GT.SPXTN.AND.NTJ(JT).EQ.0
     &                           .AND.NFT(JT,5).LE.2) THEN
              D1=DPX
              D2=DTN
              NFP3=0
              NFT3=NFT(JT,3)
              GO TO 240
           ENDIF
           GO TO 4000
        ELSE IF(SW.LE.MIN(SPNTX,SPXTN)+0.001 .AND.
     &                        (NPJ(JP).NE.0 .OR.NTJ(JT).NE.0)) THEN
           GO TO 4000
        ELSE IF(SW.LE.MIN(SPNTX,SPXTN)+0.001 .AND.
     &                NFP(JP,5).GT.2.AND.NFT(JT,5).GT.2) THEN
           GO TO 4000
        ELSE IF(SW.GT.SDD+0.001.AND.SW.LE.
     &                     MIN(SPNTX,SPXTN)+0.001) THEN
           D1=DPD
           D2=DTD
           NFP3=NFDP
           NFT3=NFDT
           GO TO 100
        ELSE IF(SW.GT.MAX(SPNTD,SPDTN)+0.001 
     &                      .AND. SW.LE.SDD+0.001) THEN
           IF(RANART(NSEED).GT.0.5) THEN
              D1=DPD
              D2=DTN
              NFP3=NFDP
              NFT3=NFT(JT,3)
              GO TO 100
           ELSE
              D1=DPN
              D2=DTD
              NFP3=NFP(JP,3)
              NFT3=NFDT
              GO TO 100
           ENDIF
        ELSE IF(SW.GT.MIN(SPNTD,SPDTN)+0.001
     &                .AND. SW.LE.MAX(SPNTD,SPDTN)+0.001) THEN
           IF(SPNTD.GT.SPDTN) THEN
              D1=DPD
              D2=DTN
              NFP3=NFDP
              NFT3=NFT(JT,3)
              GO TO 100
           ELSE
              D1=DPN
              D2=DTD
              NFP3=NFP(JP,3)
              NFT3=NFDT
              GO TO 100
           ENDIF
        ELSE IF(SW.LE.MIN(SPNTD,SPDTN)+0.001) THEN
           D1=DPN
           D2=DTN
           NFP3=NFP(JP,3)
           NFT3=NFT(JT,3)
           GO TO 100
        ENDIF
        WRITE(6,*) ' Error in HIJSFT: There is no path to here'
        RETURN
C
C***************  elastic scattering ***************
C        this is like elastic, both proj and targ mass
C        must be fixed
C***************************************************
100        NFP5=MAX(2,NFP(JP,5))
        NFT5=MAX(2,NFT(JT,5))
        BB1=1.0+D1-D2
        BB2=1.0+D2-D1
        IF(BB1**2.LT.4.0*D1 .OR. BB2**2.LT.4.0*D2) THEN
                MISS=MISS+1
                IF(MISS.GT.100.OR.PKC.EQ.0.0) GO TO 3000
                PKC=PKC*0.5
                GO TO 30
        ENDIF
        IF(RANART(NSEED).LT.0.5) THEN
                X1=(BB1-SQRT(BB1**2-4.0*D1))/2.0
                X2=(BB2-SQRT(BB2**2-4.0*D2))/2.0
        ELSE
                X1=(BB1+SQRT(BB1**2-4.0*D1))/2.0
                X2=(BB2+SQRT(BB2**2-4.0*D2))/2.0
        ENDIF
        IHNT2(13)=2
        GO TO 600
C
C********** Single diffractive ***********************
C either proj or targ's mass is fixed
C*****************************************************
220        NFP5=MAX(2,NFP(JP,5))
        NFT5=3
        IF(NFP3.EQ.0) NFP5=3
        BB2=1.0+D2-D1
        IF(BB2**2.LT.4.0*D2) THEN
                MISS=MISS+1
                IF(MISS.GT.100.OR.PKC.EQ.0.0) GO TO 3000
                PKC=PKC*0.5
                GO TO 30
        ENDIF
        XMIN=(BB2-SQRT(BB2**2-4.0*D2))/2.0
        XMAX=(BB2+SQRT(BB2**2-4.0*D2))/2.0
        MISS4=0
222        X2=HIRND2(6,XMIN,XMAX)
        X1=D1/(1.0-X2)
        IF(X2*(1.0-X1).LT.(D2+1.E-4/SW)) THEN
                MISS4=MISS4+1
                IF(MISS4.LE.1000) GO TO 222
                GO TO 5000
        ENDIF
        IHNT2(13)=2
        GO TO 600
C                        ********Fix proj mass*********
240        NFP5=3
        NFT5=MAX(2,NFT(JT,5))
        IF(NFT3.EQ.0) NFT5=3
        BB1=1.0+D1-D2
        IF(BB1**2.LT.4.0*D1) THEN
                MISS=MISS+1
                IF(MISS.GT.100.OR.PKC.EQ.0.0) GO TO 3000
                PKC=PKC*0.5
                GO TO 30
        ENDIF
        XMIN=(BB1-SQRT(BB1**2-4.0*D1))/2.0
        XMAX=(BB1+SQRT(BB1**2-4.0*D1))/2.0
        MISS4=0
242        X1=HIRND2(6,XMIN,XMAX)
        X2=D2/(1.0-X1)
        IF(X1*(1.0-X2).LT.(D1+1.E-4/SW)) THEN
                MISS4=MISS4+1
                IF(MISS4.LE.1000) GO TO 242
                GO TO 5000
        ENDIF
        IHNT2(13)=2
        GO TO 600
C                        ********Fix targ mass*********
C
C*************non-single diffractive**********************
C        both proj and targ may not be fixed in mass 
C*********************************************************
C
400        NFP5=3
        NFT5=3
        BB1=1.0+D1-D2
        BB2=1.0+D2-D1
        IF(BB1**2.LT.4.0*D1 .OR. BB2**2.LT.4.0*D2) THEN
                MISS=MISS+1
                IF(MISS.GT.100.OR.PKC.EQ.0.0) GO TO 3000
                PKC=PKC*0.5
                GO TO 30
        ENDIF
        XMIN1=(BB1-SQRT(BB1**2-4.0*D1))/2.0
        XMAX1=(BB1+SQRT(BB1**2-4.0*D1))/2.0
        XMIN2=(BB2-SQRT(BB2**2-4.0*D2))/2.0
        XMAX2=(BB2+SQRT(BB2**2-4.0*D2))/2.0
        MISS4=0        
410        X1=HIRND2(4,XMIN1,XMAX1)
        X2=HIRND2(4,XMIN2,XMAX2)
        IF(NFP(JP,5).EQ.3.OR.NFT(JT,5).EQ.3) THEN
                X1=HIRND2(6,XMIN1,XMAX1)
                X2=HIRND2(6,XMIN2,XMAX2)
        ENDIF
C                        ********
        IF(ABS(NFP(JP,1)*NFP(JP,2)).GT.1000000.OR.
     &                        ABS(NFP(JP,1)*NFP(JP,2)).LT.100) THEN
                X1=HIRND2(5,XMIN1,XMAX1)
        ENDIF
        IF(ABS(NFT(JT,1)*NFT(JT,2)).GT.1000000.OR.
     &                        ABS(NFT(JT,1)*NFT(JT,2)).LT.100) THEN
                X2=HIRND2(5,XMIN2,XMAX2)
        ENDIF
c        IF(IOPMAIN.EQ.3) X1=HIRND2(6,XMIN1,XMAX1)
c        IF(IOPMAIN.EQ.2) X2=HIRND2(6,XMIN2,XMAX2) 
C        ********For q-qbar or (qq)-(qq)bar system use symetric
C                distribution, for q-(qq) or qbar-(qq)bar use
C                unsymetrical distribution
C
        IF(ABS(NFP(JP,1)*NFP(JP,2)).GT.1000000) X1=1.0-X1
        XXP=X1*(1.0-X2)
        XXT=X2*(1.0-X1)
        IF(XXP.LT.(D1+1.E-4/SW) .OR. XXT.LT.(D2+1.E-4/SW)) THEN
                MISS4=MISS4+1
                IF(MISS4.LE.1000) GO TO 410
                GO TO 5000
        ENDIF
        IHNT2(13)=3
C***************************************************
C***************************************************
600        CONTINUE
        IF(X1*(1.0-X2).LT.(AMPN**2-1.E-4)/SW.OR.
     &                        X2*(1.0-X1).LT.(AMTN**2-1.E-4)/SW) THEN
                MISS=MISS+1
                IF(MISS.GT.100.OR.PKC.EQ.0.0) GO TO 2000
                PKC=0.0
                GO TO 30
        ENDIF
C
        EPP=(1.0-X2)*WP
        EPM=X1*WM
        ETP=X2*WP
        ETM=(1.0-X1)*WM
        PP(JP,3)=(EPP-EPM)/2.0
        PP(JP,4)=(EPP+EPM)/2.0
        IF(EPP*EPM-PTP2.LT.0.0) GO TO 6000
        PP(JP,5)=SQRT(EPP*EPM-PTP2)
        NFP(JP,3)=NFP3
        NFP(JP,5)=NFP5

        PT(JT,3)=(ETP-ETM)/2.0
        PT(JT,4)=(ETP+ETM)/2.0
        IF(ETP*ETM-PTT2.LT.0.0) GO TO 6000
        PT(JT,5)=SQRT(ETP*ETM-PTT2)
        NFT(JT,3)=NFT3
        NFT(JT,5)=NFT5
C*****recoil PT from hard-inter is shared by two end-partons 
C       so that pt=p1+p2
        PP(JP,1)=PP11-PKC11
        PP(JP,2)=PP12-PKC12

        KCDIP=1
        KCDIT=1
        IF(ABS(NFP(JP,1)*NFP(JP,2)).GT.1000000.OR.
     &                        ABS(NFP(JP,1)*NFP(JP,2)).LT.100) THEN
                KCDIP=0
        ENDIF
        IF(ABS(NFT(JT,1)*NFT(JT,2)).GT.1000000.OR.
     &                        ABS(NFT(JT,1)*NFT(JT,2)).LT.100) THEN
                KCDIT=0
        ENDIF
        IF((KCDIP.EQ.0.AND.RANART(NSEED).LT.0.5)
     &     .OR.(KCDIP.NE.0.AND.RANART(NSEED)
     &     .LT.0.5/(1.0+(PKC11**2+PKC12**2)/HIPR1(22)**2))) THEN
           PP(JP,6)=(PP(JP,1)-PP(JP,6)-PP(JP,8)-DPKC1)/2.0+PP(JP,6)
           PP(JP,7)=(PP(JP,2)-PP(JP,7)-PP(JP,9)-DPKC2)/2.0+PP(JP,7)
           PP(JP,8)=(PP(JP,1)-PP(JP,6)-PP(JP,8)-DPKC1)/2.0
     &              +PP(JP,8)+PKC11
           PP(JP,9)=(PP(JP,2)-PP(JP,7)-PP(JP,9)-DPKC2)/2.0
     &              +PP(JP,9)+PKC12
        ELSE
           PP(JP,8)=(PP(JP,1)-PP(JP,6)-PP(JP,8)-DPKC1)/2.0+PP(JP,8)
           PP(JP,9)=(PP(JP,2)-PP(JP,7)-PP(JP,9)-DPKC2)/2.0+PP(JP,9)
           PP(JP,6)=(PP(JP,1)-PP(JP,6)-PP(JP,8)-DPKC1)/2.0
     &              +PP(JP,6)+PKC11
           PP(JP,7)=(PP(JP,2)-PP(JP,7)-PP(JP,9)-DPKC2)/2.0
     &              +PP(JP,7)+PKC12
        ENDIF
        PP(JP,1)=PP(JP,6)+PP(JP,8)
        PP(JP,2)=PP(JP,7)+PP(JP,9)
C                                ********pt kick for proj
        PT(JT,1)=PT11-PKC21
        PT(JT,2)=PT12-PKC22
        IF((KCDIT.EQ.0.AND.RANART(NSEED).LT.0.5)
     &     .OR.(KCDIT.NE.0.AND.RANART(NSEED)
     &     .LT.0.5/(1.0+(PKC21**2+PKC22**2)/HIPR1(22)**2))) THEN
           PT(JT,6)=(PT(JT,1)-PT(JT,6)-PT(JT,8)-DPKC1)/2.0+PT(JT,6)
           PT(JT,7)=(PT(JT,2)-PT(JT,7)-PT(JT,9)-DPKC2)/2.0+PT(JT,7)
           PT(JT,8)=(PT(JT,1)-PT(JT,6)-PT(JT,8)-DPKC1)/2.0
     &              +PT(JT,8)+PKC21
           PT(JT,9)=(PT(JT,2)-PT(JT,7)-PT(JT,9)-DPKC2)/2.0
     &              +PT(JT,9)+PKC22
        ELSE
           PT(JT,8)=(PT(JT,1)-PT(JT,6)-PT(JT,8)-DPKC1)/2.0+PT(JT,8)
           PT(JT,9)=(PT(JT,2)-PT(JT,7)-PT(JT,9)-DPKC2)/2.0+PT(JT,9)
           PT(JT,6)=(PT(JT,1)-PT(JT,6)-PT(JT,8)-DPKC1)/2.0
     &              +PT(JT,6)+PKC21
           PT(JT,7)=(PT(JT,2)-PT(JT,7)-PT(JT,9)-DPKC2)/2.0
     &              +PT(JT,7)+PKC22
        ENDIF
        PT(JT,1)=PT(JT,6)+PT(JT,8)
        PT(JT,2)=PT(JT,7)+PT(JT,9)
C                        ********pt kick for targ

        IF(NPJ(JP).NE.0) NFP(JP,5)=3
        IF(NTJ(JT).NE.0) NFT(JT,5)=3
C                        ********jets must be connected to string
        IF(EPP/(EPM+0.0001).LT.ETP/(ETM+0.0001).AND.
     &                        ABS(NFP(JP,1)*NFP(JP,2)).LT.1000000)THEN
                DO 620 JSB=1,15
                PSB=PP(JP,JSB)
                PP(JP,JSB)=PT(JT,JSB)
                PT(JT,JSB)=PSB
                NSB=NFP(JP,JSB)
                NFP(JP,JSB)=NFT(JT,JSB)
                NFT(JT,JSB)=NSB
620                CONTINUE
C                ********when Ycm(JP)<Ycm(JT) after the collision
C                        exchange the positions of the two   
        ENDIF
C
        RETURN
C**************************************************
C**************************************************
1000        IERROR=1
        IF(IHPR2(10).EQ.0) RETURN
        WRITE(6,*) '     Fatal HIJSFT start error,abandon this event'
        WRITE(6,*) '     PROJ E+,E-,W+',EPP,EPM,WP
        WRITE(6,*) '     TARG E+,E-,W-',ETP,ETM,WM
        WRITE(6,*) '     W+*W-, (APN+ATN)^2',SW,SNN
        RETURN
2000        IERROR=0
        IF(IHPR2(10).EQ.0) RETURN
        WRITE(6,*) '     (2)energy partition fail,'
        WRITE(6,*) '     HIJSFT not performed, but continue'
        WRITE(6,*) '     MP1,MPN',X1*(1.0-X2)*SW,AMPN**2
        WRITE(6,*) '     MT2,MTN',X2*(1.0-X1)*SW,AMTN**2
        RETURN
3000        IERROR=0
        IF(IHPR2(10).EQ.0) RETURN
        WRITE(6,*) '     (3)something is wrong with the pt kick, '
        WRITE(6,*) '     HIJSFT not performed, but continue'
        WRITE(6,*) '     D1=',D1,' D2=',D2,' SW=',SW
        WRITE(6,*) '     HISTORY NFP5=',NFP(JP,5),' NFT5=',NFT(JT,5)
        WRITE(6,*) '     THIS COLLISON NFP5=',NFP5, ' NFT5=',NFT5
        WRITE(6,*) '     # OF JET IN PROJ',NPJ(JP),' IN TARG',NTJ(JT)
        RETURN
4000        IERROR=0
        IF(IHPR2(10).EQ.0) RETURN
        WRITE(6,*) '     (4)unable to choose process, but not harmful'
        WRITE(6,*) '     HIJSFT not performed, but continue'
        WRITE(6,*) '     PTP=',SQRT(PTP2),' PTT=',SQRT(PTT2),' SW=',SW
        WRITE(6,*) '     AMCUT=',AMX,' JP=',JP,' JT=',JT
        WRITE(6,*) '     HISTORY NFP5=',NFP(JP,5),' NFT5=',NFT(JT,5)
        RETURN
5000        IERROR=0
        IF(IHPR2(10).EQ.0) RETURN
        WRITE(6,*) '     energy partition failed(5),for limited try'
        WRITE(6,*) '     HIJSFT not performed, but continue'
        WRITE(6,*) '     NFP5=',NFP5,' NFT5=',NFT5
        WRITE(6,*) '     D1',D1,' X1(1-X2)',X1*(1.0-X2)
        WRITE(6,*) '     D2',D2,' X2(1-X1)',X2*(1.0-X1)
        RETURN
6000        PKC=0.0
        MISS=MISS+1
        IF(MISS.LT.100) GO TO 30
        IERROR=1
        IF(IHPR2(10).EQ.0) RETURN
        WRITE(6,*) ' ERROR OCCURED, HIJSFT NOT PERFORMED'
        WRITE(6,*) ' Abort this event'
        WRITE(6,*) 'MTP,PTP2',EPP*EPM,PTP2,'  MTT,PTT2',ETP*ETM,PTT2 
        RETURN
        END
C
C
C
C ********************************************************
C ************************              WOOD-SAX
        SUBROUTINE HIJWDS(IA,IDH,XHIGH)
C     SETS UP HISTOGRAM IDH WITH RADII FOR
C     NUCLEUS IA DISTRIBUTED ACCORDING TO THREE PARAM WOOD SAXON
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/WOOD/R,D,FNORM,W
cc      SAVE /WOOD/
c        DIMENSION IAA(20),RR(20),DD(20),WW(20),RMS(20)
        DIMENSION IAA(20),RR(20),DD(20),WW(20)
        EXTERNAL RWDSAX,WDSAX
        SAVE   
C
C   PARAMETERS OF SPECIAL NUCLEI FROM ATOMIC DATA AND NUC DATA TABLES
C     VOL 14, 5-6 1974
        DATA IAA/2,4,12,16,27,32,40,56,63,93,184,197,208,7*0./
        DATA RR/0.01,.964,2.355,2.608,2.84,3.458,3.766,3.971,4.214,
     1        4.87,6.51,6.38,6.624,7*0./
        DATA DD/0.5882,.322,.522,.513,.569,.61,.586,.5935,.586,.573,
     1        .535,.535,.549,7*0./
        DATA WW/0.0,.517,-0.149,-0.051,0.,-0.208,-0.161,13*0./
c        DATA RMS/2.11,1.71,2.46,2.73,3.05,3.247,3.482,3.737,3.925,4.31,
c     1        5.42,5.33,5.521,7*0./
C
              A=IA
C
C                 ********SET WOOD-SAX PARAMS FIRST  AS IN DATE ET AL
              D=0.54
C                        ********D IS WOOD SAX DIFFUSE PARAM IN FM
        R=1.19*A**(1./3.) - 1.61*A**(-1./3.)
C                         ********R IS RADIUS PARAM
        W=0.
C                 ********W IS The third of three WOOD-SAX PARAM
C
C                      ********CHECK TABLE FOR SPECIAL CASES
        DO 10 I=1,13
                IF (IA.EQ.IAA(I)) THEN
                        R=RR(I)
                             D=DD(I)
                              W=WW(I)
clin RS not used                              RS=RMS(I)
                      END IF
10            CONTINUE
C                             ********FNORM is the normalize factor
              FNORM=1.0
              XLOW=0.
              XHIGH=R+ 12.*D
              IF (W.LT.-0.01)  THEN
                      IF (XHIGH.GT.R/SQRT(ABS(W))) XHIGH=R/SQRT(ABS(W))
              END IF
              FGAUS=GAUSS1(RWDSAX,XLOW,XHIGH,0.001)
              FNORM=1./FGAUS
C
        IF (IDH.EQ.1) THEN
           HINT1(72)=R
           HINT1(73)=D
           HINT1(74)=W
           HINT1(75)=FNORM/4.0/HIPR1(40)
        ELSE IF (IDH.EQ.2) THEN
           HINT1(76)=R
           HINT1(77)=D
           HINT1(78)=W
           HINT1(79)=FNORM/4.0/HIPR1(40)
        ENDIF
C
C             NOW SET UP HBOOK FUNCTIONS IDH FOR  R**2*RHO(R)
C             THESE HISTOGRAMS ARE USED TO GENERATE RANDOM RADII
              CALL HIFUN(IDH,XLOW,XHIGH,RWDSAX)
              RETURN
              END
C
C
        FUNCTION WDSAX(X)
C                             ********THREE PARAMETER WOOD SAXON
              COMMON/WOOD/R,D,FNORM,W
cc      SAVE /WOOD/
        SAVE   
              WDSAX=FNORM*(1.+W*(X/R)**2)/(1+EXP((X-R)/D))
               IF (W.LT.0.) THEN
                       IF (X.GE.R/SQRT(ABS(W))) WDSAX=0.
               ENDIF
              RETURN
              END
C
C
        FUNCTION RWDSAX(X)
        SAVE   
              RWDSAX=X*X*WDSAX(X)
              RETURN
              END
C
C
C
C
C The next three subroutines are for Monte Carlo generation 
C according to a given function FHB. One calls first HIFUN 
C with assigned channel number I, low and up limits. Then to 
C generate the distribution one can call HIRND(I) which gives 
C you a random number generated according to the given function.
C 
        SUBROUTINE HIFUN(I,XMIN,XMAX,FHB)
        COMMON/HIJHB/RR(10,201),XX(10,201)
cc      SAVE /HIJHB/
        EXTERNAL FHB
        SAVE   
        FNORM=GAUSS1(FHB,XMIN,XMAX,0.001)
        DO 100 J=1,201
                XX(I,J)=XMIN+(XMAX-XMIN)*(J-1)/200.0
                XDD=XX(I,J)
                RR(I,J)=GAUSS1(FHB,XMIN,XDD,0.001)/FNORM
100        CONTINUE
        RETURN
        END
C
C
C
        FUNCTION HIRND(I)
        COMMON/HIJHB/RR(10,201),XX(10,201)
cc      SAVE /HIJHB/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
        RX=RANART(NSEED)
        JL=0
        JU=202
10        IF(JU-JL.GT.1) THEN
           JM=(JU+JL)/2
           IF((RR(I,201).GT.RR(I,1)).EQV.(RX.GT.RR(I,JM))) THEN
              JL=JM
           ELSE
              JU=JM
           ENDIF
        GO TO 10
        ENDIF
        J=JL
        IF(J.LT.1) J=1
        IF(J.GE.201) J=200
        HIRND=(XX(I,J)+XX(I,J+1))/2.0
        RETURN
        END        
C
C
C
C
C        This generate random number between XMIN and XMAX
        FUNCTION HIRND2(I,XMIN,XMAX)
        COMMON/HIJHB/RR(10,201),XX(10,201)
cc      SAVE /HIJHB/
      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   
        IF(XMIN.LT.XX(I,1)) XMIN=XX(I,1)
        IF(XMAX.GT.XX(I,201)) XMAX=XX(I,201)
        JMIN=1+int(200*(XMIN-XX(I,1))/(XX(I,201)-XX(I,1)))
        JMAX=1+int(200*(XMAX-XX(I,1))/(XX(I,201)-XX(I,1)))
        RX=RR(I,JMIN)+(RR(I,JMAX)-RR(I,JMIN))*RANART(NSEED)
        JL=0
        JU=202
10        IF(JU-JL.GT.1) THEN
           JM=(JU+JL)/2
           IF((RR(I,201).GT.RR(I,1)).EQV.(RX.GT.RR(I,JM))) THEN
              JL=JM
           ELSE
              JU=JM
           ENDIF
        GO TO 10
        ENDIF
        J=JL
        IF(J.LT.1) J=1
        IF(J.GE.201) J=200
        HIRND2=(XX(I,J)+XX(I,J+1))/2.0
        RETURN
        END        
C
C
C
C
        SUBROUTINE HIJCRS
C        THIS IS TO CALCULATE THE CROSS SECTIONS OF JET PRODUCTION AND
C        THE TOTAL INELASTIC CROSS SECTIONS.
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/NJET/N,ipcrs
cc      SAVE /NJET/
        EXTERNAL FHIN,FTOT,FNJET,FTOTJT,FTOTRG
        SAVE   
        IF(HINT1(1).GE.10.0) CALL CRSJET
C                        ********calculate jet cross section(in mb)
C
clin-7/2009 these are related to nuclear shadowing:
        APHX1=HIPR1(6)*(IHNT2(1)**0.3333333-1.0)
        APHX2=HIPR1(6)*(IHNT2(3)**0.3333333-1.0)
        HINT1(11)=HINT1(14)-APHX1*HINT1(15)
     &                        -APHX2*HINT1(16)+APHX1*APHX2*HINT1(17)
        HINT1(10)=GAUSS1(FTOTJT,0.0,20.0,0.01)
        HINT1(12)=GAUSS1(FHIN,0.0,20.0,0.01)
        HINT1(13)=GAUSS1(FTOT,0.0,20.0,0.01)
        HINT1(60)=HINT1(61)-APHX1*HINT1(62)
     &                        -APHX2*HINT1(63)+APHX1*APHX2*HINT1(64)
        HINT1(59)=GAUSS1(FTOTRG,0.0,20.0,0.01)
        IF(HINT1(59).EQ.0.0) HINT1(59)=HINT1(60)
        IF(HINT1(1).GE.10.0) Then
           DO 20 I=0,20
              N=I
              HINT1(80+I)=GAUSS1(FNJET,0.0,20.0,0.01)/HINT1(12)
 20           CONTINUE
        ENDIF
        HINT1(10)=HINT1(10)*HIPR1(31)
        HINT1(12)=HINT1(12)*HIPR1(31)
        HINT1(13)=HINT1(13)*HIPR1(31)
        HINT1(59)=HINT1(59)*HIPR1(31)
C                ********Total and Inel cross section are calculated
C                        by Gaussian integration.
        IF(IHPR2(13).NE.0) THEN
        HIPR1(33)=1.36*(1.0+36.0/HINT1(1)**2)
     &             *ALOG(0.6+0.1*HINT1(1)**2)
        HIPR1(33)=HIPR1(33)/HINT1(12)
        ENDIF
C                ********Parametrized cross section for single
C                        diffractive reaction(Goulianos)
        RETURN
        END
C
C
C
C
        FUNCTION FTOT(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        OMG=OMG0(X)*(HIPR1(30)+HINT1(11))/HIPR1(31)/2.0
        FTOT=2.0*(1.0-EXP(-OMG))
        RETURN
        END
C
C
C
        FUNCTION FHIN(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        OMG=OMG0(X)*(HIPR1(30)+HINT1(11))/HIPR1(31)/2.0
        FHIN=1.0-EXP(-2.0*OMG)
        RETURN
        END
C
C
C
        FUNCTION FTOTJT(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        OMG=OMG0(X)*HINT1(11)/HIPR1(31)/2.0
        FTOTJT=1.0-EXP(-2.0*OMG)
        RETURN
        END
C
C
C
        FUNCTION FTOTRG(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        SAVE   
        OMG=OMG0(X)*HINT1(60)/HIPR1(31)/2.0
        FTOTRG=1.0-EXP(-2.0*OMG)
        RETURN
        END
C
C
C
C
        FUNCTION FNJET(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/NJET/N,ipcrs
cc      SAVE /NJET/
        SAVE   
        OMG1=OMG0(X)*HINT1(11)/HIPR1(31)
        C0=EXP(N*ALOG(OMG1)-SGMIN(N+1))
        IF(N.EQ.0) C0=1.0-EXP(-2.0*OMG0(X)*HIPR1(30)/HIPR1(31)/2.0)
        FNJET=C0*EXP(-OMG1)
        RETURN
        END
C
C
C
C
C
        FUNCTION SGMIN(N)
        SAVE   
        GA=0.
        IF(N.LE.2) GO TO 20
        DO 10 I=1,N-1
        Z=I
        GA=GA+ALOG(Z)
10      CONTINUE
20      SGMIN=GA
        RETURN
        END
C
C
C
        FUNCTION OMG0(X)
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON /BESEL/X4
cc      SAVE /BESEL/
        EXTERNAL BK
        SAVE   
        X4=HIPR1(32)*SQRT(X)
        OMG0=HIPR1(32)**2*GAUSS2(BK,X4,X4+20.0,0.01)/96.0
        RETURN
        END
C
C
C
        FUNCTION ROMG(X)
C                ********This gives the eikonal function from a table
C                        calculated in the first call
        DIMENSION FR(0:1000)
clin-10/29/02 unsaved FR causes wrong values for ROMG with f77 compiler:
cc        SAVE FR
        SAVE   
        DATA I0/0/

        IF(I0.NE.0) GO TO 100
        DO 50 I=1,1001
        XR=(I-1)*0.01
        FR(I-1)=OMG0(XR)
50        CONTINUE
100        I0=1
        IF(X.GE.10.0) THEN
                ROMG=0.0
                RETURN
        ENDIF
        IX=INT(X*100)
        ROMG=(FR(IX)*((IX+1)*0.01-X)+FR(IX+1)*(X-IX*0.01))/0.01
        RETURN
        END
C
C
C
        FUNCTION BK(X)
        COMMON /BESEL/X4
cc      SAVE /BESEL/
        SAVE   
        BK=EXP(-X)*(X**2-X4**2)**2.50/15.0
        RETURN
        END
C
C
C        THIS PROGRAM IS TO CALCULATE THE JET CROSS SECTION
C        THE INTEGRATION IS DONE BY USING VEGAS
C
        SUBROUTINE CRSJET
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        REAL HIPR1(100),HINT1(100)
        COMMON/HPARNT/HIPR1,IHPR2(50),HINT1,IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/NJET/N,ipcrs
cc      SAVE /NJET/
        COMMON/BVEG1/XL(10),XU(10),ACC,NDIM,NCALL,ITMX,NPRN
cc      SAVE /BVEG1/
        COMMON/BVEG2/XI(50,10),SI,SI2,SWGT,SCHI,NDO,IT
cc      SAVE /BVEG2/
        COMMON/BVEG3/F,TI,TSI
cc      SAVE /BVEG3/
        COMMON/SEDVAX/NUM1
cc      SAVE /SEDVAX/
        EXTERNAL FJET,FJETRG
        SAVE   
C
c************************
c        NCALL give the number of inner-iteration, ITMX 
C       gives the limit of out-iteration. Nprn is an option
C       ( 1: print the integration process. 0: do not print)
C
        NDIM=3
        ipcrs=0
        CALL VEGAS(FJET,AVGI,SD,CHI2A)
        HINT1(14)=sngl(AVGI)/2.5682
        IF(IHPR2(6).EQ.1 .AND. IHNT2(1).GT.1) THEN
                ipcrs=1
                CALL VEGAS(FJET,AVGI,SD,CHI2A)
                HINT1(15)=sngl(AVGI)/2.5682
        ENDIF
        IF(IHPR2(6).EQ.1 .AND. IHNT2(3).GT.1) THEN
                ipcrs=2
                CALL VEGAS(FJET,AVGI,SD,CHI2A)
                HINT1(16)=sngl(AVGI)/2.5682
        ENDIF
        IF(IHPR2(6).EQ.1.AND.IHNT2(1).GT.1.AND.IHNT2(3).GT.1) THEN
                ipcrs=3
                CALL VEGAS(FJET,AVGI,SD,CHI2A)
                HINT1(17)=sngl(AVGI)/2.5682
        ENDIF
C                ********Total inclusive jet cross section(Pt>P0) 
C
        IF(IHPR2(3).NE.0) THEN
           ipcrs=0
           CALL VEGAS(FJETRG,AVGI,SD,CHI2A)
           HINT1(61)=sngl(AVGI)/2.5682
           IF(IHPR2(6).EQ.1 .AND. IHNT2(1).GT.1) THEN
              ipcrs=1
              CALL VEGAS(FJETRG,AVGI,SD,CHI2A)
              HINT1(62)=sngl(AVGI)/2.5682
           ENDIF
           IF(IHPR2(6).EQ.1 .AND. IHNT2(3).GT.1) THEN
              ipcrs=2
              CALL VEGAS(FJETRG,AVGI,SD,CHI2A)
              HINT1(63)=sngl(AVGI)/2.5682
           ENDIF
           IF(IHPR2(6).EQ.1.AND.IHNT2(1).GT.1.AND.IHNT2(3).GT.1) THEN
              ipcrs=3
              CALL VEGAS(FJETRG,AVGI,SD,CHI2A)
              HINT1(64)=sngl(AVGI)/2.5682
           ENDIF
        ENDIF
C                        ********cross section of trigger jet
C
        RETURN
        END
C
C
C
        FUNCTION FJET(X,WGT)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        REAL HIPR1(100),HINT1(100)
        COMMON/HPARNT/HIPR1,IHPR2(50),HINT1,IHNT2(50)
cc      SAVE /HPARNT/
        DIMENSION X(10)
        SAVE   
        PT2=dble(HINT1(1)**2/4.0-HIPR1(8)**2)*X(1)+dble(HIPR1(8))**2
        XT=2.0d0*DSQRT(PT2)/dble(HINT1(1))
        YMX1=DLOG(1.0d0/XT+DSQRT(1.0d0/XT**2-1.0d0))
        Y1=2.0d0*YMX1*X(2)-YMX1
        YMX2=DLOG(2.0d0/XT-DEXP(Y1))
        YMN2=DLOG(2.0d0/XT-DEXP(-Y1))
        Y2=(YMX2+YMN2)*X(3)-YMN2
        FJET=2.0d0*YMX1*(YMX2+YMN2)*dble(HINT1(1)**2/4.0-HIPR1(8)**2)
     &                *G(Y1,Y2,PT2)/2.0d0
        RETURN
        END
C
C
C
        FUNCTION FJETRG(X,WGT)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        REAL HIPR1(100),HINT1(100),PTMAX,PTMIN
        COMMON/HPARNT/HIPR1,IHPR2(50),HINT1,IHNT2(50)
cc      SAVE /HPARNT/
        DIMENSION X(10)
        SAVE   
        PTMIN=ABS(HIPR1(10))-0.25
        PTMIN=MAX(PTMIN,HIPR1(8))
        AM2=0.D0
        IF(IHPR2(3).EQ.3) THEN
           AM2=dble(HIPR1(7)**2)
           PTMIN=MAX(0.0,HIPR1(10))
        ENDIF
        PTMAX=ABS(HIPR1(10))+0.25
        IF(HIPR1(10).LE.0.0) PTMAX=HINT1(1)/2.0-sngl(AM2)
        IF(PTMAX.LE.PTMIN) PTMAX=PTMIN+0.25
        PT2=dble(PTMAX**2-PTMIN**2)*X(1)+dble(PTMIN)**2
        AMT2=PT2+AM2
        XT=2.0d0*DSQRT(AMT2)/dble(HINT1(1))
        YMX1=DLOG(1.0d0/XT+DSQRT(1.0d0/XT**2-1.0d0))
        Y1=2.0d0*YMX1*X(2)-YMX1
        YMX2=DLOG(2.0d0/XT-DEXP(Y1))
        YMN2=DLOG(2.0d0/XT-DEXP(-Y1))
        Y2=(YMX2+YMN2)*X(3)-YMN2
        IF(IHPR2(3).EQ.3) THEN
           GTRIG=2.0d0*GHVQ(Y1,Y2,AMT2)
        ELSE IF(IHPR2(3).EQ.2) THEN
           GTRIG=2.0d0*GPHOTN(Y1,Y2,PT2)
        ELSE
           GTRIG=G(Y1,Y2,PT2)
        ENDIF
        FJETRG=2.0d0*YMX1*(YMX2+YMN2)*dble(PTMAX**2-PTMIN**2)
     &                *GTRIG/2.0d0
        RETURN
        END
C
C
C
        FUNCTION GHVQ(Y1,Y2,AMT2)
        IMPLICIT DOUBLE PRECISION  (A-H,O-Z)
        REAL HIPR1(100),HINT1(100)
        COMMON/HPARNT/HIPR1,IHPR2(50),HINT1,IHNT2(50)
cc      SAVE /HPARNT/
        DIMENSION F(2,7)
        SAVE   
        XT=2.0d0*DSQRT(AMT2)/dble(HINT1(1))
        X1=0.5d0*XT*(DEXP(Y1)+DEXP(Y2))
        X2=0.5d0*XT*(DEXP(-Y1)+DEXP(-Y2))
        SS=X1*X2*dble(HINT1(1))**2
        AF=4.0d0
        IF(IHPR2(18).NE.0) AF=5.0d0
        DLAM=dble(HIPR1(15))
        APH=12.0d0*3.1415926d0/(33.d0-2.d0*AF)/DLOG(AMT2/DLAM**2)
C
        CALL PARTON(F,X1,X2,AMT2)
C
        Gqq=4.d0*(DCOSH(Y1-Y2)+dble(HIPR1(7))**2/AMT2)
     &       /(1.D0+DCOSH(Y1-Y2))
     &       /9.d0*(F(1,1)*F(2,2)+F(1,2)*F(2,1)+F(1,3)*F(2,4)
     &       +F(1,4)*F(2,3)+F(1,5)*F(2,6)+F(1,6)*F(2,5))
        Ggg=(8.D0*DCOSH(Y1-Y2)-1.D0)
     &       *(DCOSH(Y1-Y2)+2.d0*dble(HIPR1(7))**2
     &       /AMT2-2.d0*dble(HIPR1(7))**4/AMT2**2)/(1.d0+DCOSH(Y1-Y2))
     &       /24.d0*F(1,7)*F(2,7)
C
        GHVQ=(Gqq+Ggg)*dble(HIPR1(23))*3.14159d0*APH**2/SS**2
        RETURN
        END
C
C
C
        FUNCTION GPHOTN(Y1,Y2,PT2)
        IMPLICIT DOUBLE PRECISION  (A-H,O-Z)
        REAL HIPR1(100),HINT1(100)
        COMMON/HPARNT/HIPR1,IHPR2(50),HINT1,IHNT2(50)
cc      SAVE /HPARNT/
        DIMENSION F(2,7)
        SAVE   
        XT=2.d0*DSQRT(PT2)/dble(HINT1(1))
        X1=0.5d0*XT*(DEXP(Y1)+DEXP(Y2))
        X2=0.5d0*XT*(DEXP(-Y1)+DEXP(-Y2))
        Z=DSQRT(1.D0-XT**2/X1/X2)
        SS=X1*X2*dble(HINT1(1))**2
        T=-(1.d0-Z)/2.d0
        U=-(1.d0+Z)/2.d0
        AF=3.d0
        DLAM=dble(HIPR1(15))
        APH=12.d0*3.1415926d0/(33.d0-2.d0*AF)/DLOG(PT2/DLAM**2)
        APHEM=1.d0/137.d0
C
        CALL PARTON(F,X1,X2,PT2)
C
        G11=-(U**2+1.d0)/U/3.d0*F(1,7)*(4.d0*F(2,1)+4.d0*F(2,2)
     &      +F(2,3)+F(2,4)+F(2,5)+F(2,6))/9.d0
        G12=-(T**2+1.d0)/T/3.d0*F(2,7)*(4.d0*F(1,1)+4.d0*F(1,2)
     &      +F(1,3)+F(1,4)+F(1,5)+F(1,6))/9.d0
        G2=8.d0*(U**2+T**2)/U/T/9.d0*(4.d0*F(1,1)*F(2,2)
     &     +4.d0*F(1,2)*F(2,1)+F(1,3)*F(2,4)+F(1,4)*F(2,3)
     &     +F(1,5)*F(2,6)+F(1,6)*F(2,5))/9.d0
C
        GPHOTN=(G11+G12+G2)*dble(HIPR1(23))*3.14159d0*APH*APHEM/SS**2
        RETURN
        END
C
C
C
C
        FUNCTION G(Y1,Y2,PT2)
        IMPLICIT DOUBLE PRECISION  (A-H,O-Z)
        REAL HIPR1(100),HINT1(100)
        COMMON/HPARNT/HIPR1,IHPR2(50),HINT1,IHNT2(50)
cc      SAVE /HPARNT/
        DIMENSION F(2,7)
        SAVE   
        XT=2.d0*DSQRT(PT2)/dble(HINT1(1))
        X1=0.5d0*XT*(DEXP(Y1)+DEXP(Y2))
        X2=0.5d0*XT*(DEXP(-Y1)+DEXP(-Y2))
        Z=DSQRT(1.D0-XT**2/X1/X2)
        SS=X1*X2*dble(HINT1(1))**2
        T=-(1.d0-Z)/2.d0
        U=-(1.d0+Z)/2.d0
        AF=3.d0
        DLAM=dble(HIPR1(15))
        APH=12.d0*3.1415926d0/(33.d0-2.d0*AF)/DLOG(PT2/DLAM**2)
C
        CALL PARTON(F,X1,X2,PT2)
C
        G11=( (F(1,1)+F(1,2))*(F(2,3)+F(2,4)+F(2,5)+F(2,6))
     &      +(F(1,3)+F(1,4))*(F(2,5)+F(2,6)) )*SUBCR1(T,U)
C
        G12=( (F(2,1)+F(2,2))*(F(1,3)+F(1,4)+F(1,5)+F(1,6))
     &      +(F(2,3)+F(2,4))*(F(1,5)+F(1,6)) )*SUBCR1(U,T)
C
        G13=(F(1,1)*F(2,1)+F(1,2)*F(2,2)+F(1,3)*F(2,3)+F(1,4)*F(2,4)
     &      +F(1,5)*F(2,5)+F(1,6)*F(2,6))*(SUBCR1(U,T)
     &      +SUBCR1(T,U)-8.D0/T/U/27.D0)
C
        G2=(AF-1)*(F(1,1)*F(2,2)+F(2,1)*F(1,2)+F(1,3)*F(2,4)
     &     +F(2,3)*F(1,4)+F(1,5)*F(2,6)+F(2,5)*F(1,6))*SUBCR2(T,U)
C
        G31=(F(1,1)*F(2,2)+F(1,3)*F(2,4)+F(1,5)*F(2,6))*SUBCR3(T,U)
        G32=(F(2,1)*F(1,2)+F(2,3)*F(1,4)+F(2,5)*F(1,6))*SUBCR3(U,T)
C
        G4=(F(1,1)*F(2,2)+F(2,1)*F(1,2)+F(1,3)*F(2,4)+F(2,3)*F(1,4)+
     1        F(1,5)*F(2,6)+F(2,5)*F(1,6))*SUBCR4(T,U)
C
        G5=AF*F(1,7)*F(2,7)*SUBCR5(T,U)
C
        G61=F(1,7)*(F(2,1)+F(2,2)+F(2,3)+F(2,4)+F(2,5)
     &      +F(2,6))*SUBCR6(T,U)
        G62=F(2,7)*(F(1,1)+F(1,2)+F(1,3)+F(1,4)+F(1,5)
     &      +F(1,6))*SUBCR6(U,T)
C
        G7=F(1,7)*F(2,7)*SUBCR7(T,U)
C
        G=(G11+G12+G13+G2+G31+G32+G4+G5+G61+G62+G7)*dble(HIPR1(17))*
     1        3.14159D0*APH**2/SS**2
        RETURN
        END
C
C
C
        FUNCTION SUBCR1(T,U)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SUBCR1=4.D0/9.D0*(1.D0+U**2)/T**2
        RETURN
        END
C
C
        FUNCTION SUBCR2(T,U)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SUBCR2=4.D0/9.D0*(T**2+U**2)
        RETURN
        END
C
C
        FUNCTION SUBCR3(T,U)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SUBCR3=4.D0/9.D0*(T**2+U**2+(1.D0+U**2)/T**2
     1        -2.D0*U**2/3.D0/T)
        RETURN
        END
C
C
        FUNCTION SUBCR4(T,U)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SUBCR4=8.D0/3.D0*(T**2+U**2)*(4.D0/9.D0/T/U-1.D0)
        RETURN
        END
C
C
C
        FUNCTION SUBCR5(T,U)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SUBCR5=3.D0/8.D0*(T**2+U**2)*(4.D0/9.D0/T/U-1.D0)
        RETURN
        END
C
C
        FUNCTION SUBCR6(T,U)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SUBCR6=(1.D0+U**2)*(1.D0/T**2-4.D0/U/9.D0)
        RETURN
        END
C
C
        FUNCTION SUBCR7(T,U)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SUBCR7=9.D0/2.D0*(3.D0-T*U-U/T**2-T/U**2)
        RETURN
        END
C
C
C
        SUBROUTINE PARTON(F,X1,X2,QQ)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        REAL HIPR1(100),HINT1(100)
        COMMON/HPARNT/HIPR1,IHPR2(50),HINT1,IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/NJET/N,ipcrs
cc      SAVE /NJET/
clin-7/2009:
        common/cmsflag/dshadow,ishadow
        DIMENSION F(2,7) 
        SAVE   
        DLAM=dble(HIPR1(15))
        Q0=dble(HIPR1(16))
        S=DLOG(DLOG(QQ/DLAM**2)/DLOG(Q0**2/DLAM**2))
        IF(IHPR2(7).EQ.2) GO TO 200
C*******************************************************
        AT1=0.419d0+0.004d0*S-0.007d0*S**2
        AT2=3.460d0+0.724d0*S-0.066d0*S**2
        GMUD=4.40d0-4.86d0*S+1.33d0*S**2
        AT3=0.763d0-0.237d0*S+0.026d0*S**2
        AT4=4.00d0+0.627d0*S-0.019d0*S**2
        GMD=-0.421d0*S+0.033d0*S**2
C*******************************************************
        CAS=1.265d0-1.132d0*S+0.293d0*S**2
        AS=-0.372d0*S-0.029d0*S**2
        BS=8.05d0+1.59d0*S-0.153d0*S**2
        APHS=6.31d0*S-0.273d0*S**2
        BTAS=-10.5d0*S-3.17d0*S**2
        GMS=14.7d0*S+9.80d0*S**2
C********************************************************
C        CAC=0.135*S-0.075*S**2
C        AC=-0.036-0.222*S-0.058*S**2
C        BC=6.35+3.26*S-0.909*S**2
C        APHC=-3.03*S+1.50*S**2
C        BTAC=17.4*S-11.3*S**2
C        GMC=-17.9*S+15.6*S**2
C***********************************************************
        CAG=1.56d0-1.71d0*S+0.638d0*S**2
        AG=-0.949d0*S+0.325d0*S**2
        BG=6.0d0+1.44d0*S-1.05d0*S**2
        APHG=9.0d0-7.19d0*S+0.255d0*S**2
        BTAG=-16.5d0*S+10.9d0*S**2
        GMG=15.3d0*S-10.1d0*S**2
        GO TO 300
C********************************************************
200        AT1=0.374d0+0.014d0*S
        AT2=3.33d0+0.753d0*S-0.076d0*S**2
        GMUD=6.03d0-6.22d0*S+1.56d0*S**2
        AT3=0.761d0-0.232d0*S+0.023d0*S**2
        AT4=3.83d0+0.627d0*S-0.019d0*S**2
        GMD=-0.418d0*S+0.036d0*S**2
C************************************
        CAS=1.67d0-1.92d0*S+0.582d0*S**2
        AS=-0.273d0*S-0.164d0*S**2
        BS=9.15d0+0.530d0*S-0.763d0*S**2
        APHS=15.7d0*S-2.83d0*S**2
        BTAS=-101.0d0*S+44.7d0*S**2
        GMS=223.0d0*S-117.0d0*S**2
C*********************************
C        CAC=0.067*S-0.031*S**2
C        AC=-0.120-0.233*S-0.023*S**2
C        BC=3.51+3.66*S-0.453*S**2
C        APHC=-0.474*S+0.358*S**2
C        BTAC=9.50*S-5.43*S**2
C        GMC=-16.6*S+15.5*S**2
C**********************************
        CAG=0.879d0-0.971d0*S+0.434d0*S**2
        AG=-1.16d0*S+0.476d0*S**2
        BG=4.0d0+1.23d0*S-0.254d0*S**2
        APHG=9.0d0-5.64d0*S-0.817d0*S**2
        BTAG=-7.54d0*S+5.50d0*S**2
        GMG=-0.596d0*S+1.26d0*S**2
C*********************************
300        B12=DEXP(GMRE(AT1)+GMRE(AT2+1.D0)-GMRE(AT1+AT2+1.D0))
        B34=DEXP(GMRE(AT3)+GMRE(AT4+1.D0)-GMRE(AT3+AT4+1.D0))
        CNUD=3.D0/B12/(1.D0+GMUD*AT1/(AT1+AT2+1.D0))
        CND=1.D0/B34/(1.D0+GMD*AT3/(AT3+AT4+1.D0))
C********************************************************
C        FUD=X*(U+D)
C        FS=X*2(UBAR+DBAR+SBAR)  AND UBAR=DBAR=SBAR
C*******************************************************
        FUD1=CNUD*X1**AT1*(1.D0-X1)**AT2*(1.D0+GMUD*X1)
        FS1=CAS*X1**AS*(1.D0-X1)**BS*(1.D0+APHS*X1
     &      +BTAS*X1**2+GMS*X1**3)
        F(1,3)=CND*X1**AT3*(1.D0-X1)**AT4*(1.D0+GMD*X1)+FS1/6.D0
        F(1,1)=FUD1-F(1,3)+FS1/3.D0
        F(1,2)=FS1/6.D0
        F(1,4)=FS1/6.D0
        F(1,5)=FS1/6.D0
        F(1,6)=FS1/6.D0
        F(1,7)=CAG*X1**AG*(1.D0-X1)**BG*(1.D0+APHG*X1
     &         +BTAG*X1**2+GMG*X1**3)
C
        FUD2=CNUD*X2**AT1*(1.D0-X2)**AT2*(1.D0+GMUD*X2)
        FS2=CAS*X2**AS*(1.D0-X2)**BS*(1.D0+APHS*X2
     &      +BTAS*X2**2+GMS*X2**3)
        F(2,3)=CND*X2**AT3*(1.D0-X2)**AT4*(1.D0+GMD*X2)+FS2/6.D0
        F(2,1)=FUD2-F(2,3)+FS2/3.D0
        F(2,2)=FS2/6.D0
        F(2,4)=FS2/6.D0
        F(2,5)=FS2/6.D0
        F(2,6)=FS2/6.D0
        F(2,7)=CAG*X2**AG*(1.D0-X2)**BG*(1.D0+APHG*X2
     &         +BTAG*X2**2+GMG*X2**3)
C***********Nuclear effect on the structure function****************
C
        IF(IHPR2(6).EQ.1 .AND. IHNT2(1).GT.1) THEN
           AAX=1.193d0*dble(ALOG(FLOAT(IHNT2(1)))**0.16666666)
           RRX=AAX*(X1**3-1.2d0*X1**2+0.21d0*X1)+1.d0
     &               +dble(1.079*(FLOAT(IHNT2(1))**0.33333333-1.0))
     &          /dble(ALOG(float(IHNT2(1))+1.0))*DSQRT(X1)
     &          *DEXP(-X1**2/0.01d0)
c     &          /DLOG(IHNT2(1)+1.0D0)*(DSQRT(X1)*DEXP(-X1**2/0.01)
clin-7/2009 enable users to modify nuclear shadowing:
           if(ishadow.eq.1) RRX=1.d0+dshadow*(RRX-1.d0)
           IF(ipcrs.EQ.1 .OR.ipcrs.EQ.3) RRX=DEXP(-X1**2/0.01d0)
clin-7/2009:
           if((ipcrs.EQ.1.OR.ipcrs.EQ.3).and.ishadow.eq.1) 
     1          RRX=DEXP(-X1**2/0.01d0)*dshadow
           DO 400 I=1,7
              F(1,I)=RRX*F(1,I)
 400           CONTINUE
        ENDIF
        IF(IHPR2(6).EQ.1 .AND. IHNT2(3).GT.1) THEN
           AAX=1.193d0*dble(ALOG(FLOAT(IHNT2(3)))**0.16666666)
           RRX=AAX*(X2**3-1.2d0*X2**2+0.21d0*X2)+1.d0
     &               +dble(1.079*(FLOAT(IHNT2(3))**0.33333-1.0))
     &          /dble(ALOG(float(IHNT2(3))+1.0))*DSQRT(X2)
     &          *DEXP(-X2**2/0.01d0)
c     &         /DLOG(IHNT2(3)+1.0D0)*DSQRT(X2)*DEXP(-X2**2/0.01)
clin-7/2009:
           if(ishadow.eq.1) RRX=1.d0+dshadow*(RRX-1.d0)
           IF(ipcrs.EQ.2 .OR. ipcrs.EQ.3) RRX=DEXP(-X2**2/0.01d0)
clin-7/2009:
           if((ipcrs.EQ.2.OR.ipcrs.EQ.3).and.ishadow.eq.1) 
     1          RRX=DEXP(-X2**2/0.01d0)*dshadow
           DO 500 I=1,7
              F(2,I)=RRX*F(2,I)
 500           CONTINUE
        ENDIF
c
        RETURN
        END
C
C
C
        FUNCTION GMRE(X)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        SAVE   
        Z=X
        IF(X.GT.3.0D0) GO TO 10
        Z=X+3.D0
10      GMRE=0.5D0*DLOG(2.D0*3.14159265D0/Z)+Z*DLOG(Z)-Z+DLOG(1.D0
     1        +1.D0/12.D0/Z+1.D0/288.D0/Z**2-139.D0/51840.D0/Z**3
     1        -571.D0/2488320.D0/Z**4)
        IF(Z.EQ.X) GO TO 20
        GMRE=GMRE-DLOG(Z-1.D0)-DLOG(Z-2.D0)-DLOG(Z-3.D0)
20      CONTINUE
        RETURN
        END
c
C
C
C***************************************************************

        BLOCK DATA HIDATA
        PARAMETER (MAXSTR=150001)
        DOUBLE PRECISION  XL(10),XU(10),ACC
        COMMON/BVEG1/XL,XU,ACC,NDIM,NCALL,ITMX,NPRN
cc      SAVE /BVEG1/
        COMMON/SEDVAX/NUM1
cc      SAVE /SEDVAX/
        COMMON/HPARNT/HIPR1(100),IHPR2(50),HINT1(100),IHNT2(50)
cc      SAVE /HPARNT/
        COMMON/HMAIN1/EATT,JATT,NATT,NT,NP,N0,N01,N10,N11
cc      SAVE /HMAIN1/
        COMMON/HMAIN2/KATT(MAXSTR,4),PATT(MAXSTR,4)
cc      SAVE /HMAIN2/
        COMMON/HSTRNG/NFP(300,15),PP(300,15),NFT(300,15),PT(300,15)
cc      SAVE /HSTRNG/
        COMMON/hjcrdn/YP(3,300),YT(3,300)
cc      SAVE /hjcrdn/
        COMMON/HJJET1/NPJ(300),KFPJ(300,500),PJPX(300,500),
     &               PJPY(300,500),PJPZ(300,500),PJPE(300,500),
     &               PJPM(300,500),NTJ(300),KFTJ(300,500),
     &               PJTX(300,500),PJTY(300,500),PJTZ(300,500),
     &               PJTE(300,500),PJTM(300,500)
cc      SAVE /HJJET1/
        COMMON/HJJET2/NSG,NJSG(MAXSTR),IASG(MAXSTR,3),K1SG(MAXSTR,100),
     &       K2SG(MAXSTR,100),PXSG(MAXSTR,100),PYSG(MAXSTR,100),
     &       PZSG(MAXSTR,100),PESG(MAXSTR,100),PMSG(MAXSTR,100)
cc      SAVE /HJJET2/
        COMMON/HIJDAT/HIDAT0(10,10),HIDAT(10)
cc      SAVE /HIJDAT/
        COMMON/HPINT/MINT4,MINT5,ATCO(200,20),ATXS(0:200)
cc      SAVE /HPINT/
        SAVE   
        DATA NUM1/30123984/,XL/10*0.D0/,XU/10*1.D0/
        DATA NCALL/1000/,ITMX/100/,ACC/0.01/,NPRN/0/
C...give all the switchs and parameters the default values
clin-4/2008 input.ampt provides NSEED for AMPT:
c        DATA NSEED/74769375/
        DATA HIPR1/
     &       1.5,  0.35, 0.5,  0.9,  2.0,  0.1,  1.5,  2.0, -1.0, -2.25,
     &       2.0,  0.5,  1.0,  2.0,  0.2,  2.0,  2.5,  0.3,  0.1,  1.4,
     &       1.6,  1.0,  2.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.4,  57.0,
     &       28.5, 3.9,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  
     &       3.14159,
     &       0.0,  0.4,  0.1,  1.5,  0.1, 0.25, 0.0,  0.5,  0.0,  0.0,
     &       50*0.0/

        DATA IHPR2/
     &       1,    3,    0,    1,    1,    1,    1,    10,    0,    0,
     &       1,    1,    1,    1,    0,    0,    1,     0,    0,    1,
     &        30*0/

        DATA HINT1/100*0/
        DATA IHNT2/50*0/

C...initialize all the data common blocks
        DATA NATT/0/,EATT/0.0/,JATT/0/,NT/0/,NP/0/,
     1 N0/0/,N01/0/,N10/0/,N11/0/
clin-4/26/01
c        DATA KATT/520000*0/PATT/520000*0.0/
        DATA KATT/600004*0/,PATT/600004*0.0/

        DATA NFP/4500*0/,PP/4500*0.0/,NFT/4500*0/,PT/4500*0.0/

        DATA YP/900*0.0/,YT/900*0.0/

        DATA NPJ/300*0/,KFPJ/150000*0/,PJPX/150000*0.0/,PJPY/150000*0.0/
     &        ,PJPZ/150000*0.0/,PJPE/150000*0.0/,PJPM/150000*0.0/
        DATA NTJ/300*0/,KFTJ/150000*0/,PJTX/150000*0.0/,PJTY/150000*0.0/
     &        ,PJTZ/150000*0.0/,PJTE/150000*0.0/,PJTM/150000*0.0/

clin-4/2008
c        DATA NSG/0/,NJSG/900*0/,IASG/2700*0/,K1SG/90000*0/,K2SG/90000*0/
c     &       ,PXSG/90000*0.0/,PYSG/90000*0.0/,PZSG/90000*0.0/
c     &       ,PESG/90000*0.0/,PMSG/90000*0.0/
        DATA NSG/0/,NJSG/150001*0/,IASG/450003*0/,
     &       K1SG/15000100*0/,K2SG/15000100*0/,
     &       PXSG/15000100*0.0/,PYSG/15000100*0.0/,PZSG/15000100*0.0/,
     &       PESG/15000100*0.0/,PMSG/15000100*0.0/
        DATA MINT4/0/,MINT5/0/,ATCO/4000*0.0/,ATXS/201*0.0/
        DATA (HIDAT0(1,I),I=1,10)/0.0,0.0,0.0,0.0,0.0,0.0,2.25,
     &          2.5,4.0,4.1/
        DATA (HIDAT0(2,I),I=1,10)/2.0,3.0,5.0,6.0,7.0,8.0,8.0,10.0,
     &                10.0,10.0/
        DATA (HIDAT0(3,I),I=1,10)/1.0,0.8,0.8,0.7,0.45,0.215,
     &          0.21,0.19,0.19,0.19/
        DATA (HIDAT0(4,I),I=1,10)/0.35,0.35,0.3,0.3,0.3,0.3,
     &          0.5,0.6,0.6,0.6/
        DATA (HIDAT0(5,I),I=1,10)/23.8,24.0,26.0,26.2,27.0,28.5,28.5,
     &                28.5,28.5,28.5/
        DATA ((HIDAT0(J,I),I=1,10),J=6,9)/40*0.0/
        DATA (HIDAT0(10,I),I=1,10)/5.0,20.0,53.0,62.0,100.0,200.0,
     &          546.0,900.0,1800.0,4000.0/
        DATA HIDAT/10*0.0/
        END
C*******************************************************************
C
C
C
C
C*******************************************************************
C   SUBROUTINE PERFORMS N-DIMENSIONAL MONTE CARLO INTEG'N
C      - BY G.P. LEPAGE   SEPT 1976/(REV)APR 1978
C*******************************************************************
C
      SUBROUTINE VEGAS(FXN,AVGI,SD,CHI2A)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      COMMON/BVEG1/XL(10),XU(10),ACC,NDIM,NCALL,ITMX,NPRN
cc      SAVE /BVEG1/
      COMMON/BVEG2/XI(50,10),SI,SI2,SWGT,SCHI,NDO,IT
cc      SAVE /BVEG2/
      COMMON/BVEG3/F,TI,TSI   
cc      SAVE /BVEG3/
      EXTERNAL FXN
      DIMENSION D(50,10),DI(50,10),XIN(50),R(50),DX(10),DT(10),X(10)
     1   ,KG(10),IA(10)
c      REAL*4 QRAN(10)
      REAL QRAN(10)
      SAVE   
      DATA NDMX/50/,ALPH/1.5D0/,ONE/1.D0/,MDS/-1/
C
      NDO=1
      DO 1 J=1,NDIM
1     XI(1,J)=ONE
C
      ENTRY VEGAS1(FXN,AVGI,SD,CHI2A)
C         - INITIALIZES CUMMULATIVE VARIABLES, BUT NOT GRID
      IT=0
      SI=0.d0
      SI2=SI
      SWGT=SI
      SCHI=SI
C
      ENTRY VEGAS2(FXN,AVGI,SD,CHI2A)
C         - NO INITIALIZATION
      ND=NDMX
      NG=1
      IF(MDS.EQ.0) GO TO 2
      NG=int((real(NCALL)/2.)**(1./real(NDIM)))
      MDS=1
      IF((2*NG-NDMX).LT.0) GO TO 2
      MDS=-1
      NPG=NG/NDMX+1
      ND=NG/NPG
      NG=NPG*ND
2     K=NG**NDIM
      NPG=NCALL/K
      IF(NPG.LT.2) NPG=2
      CALLS=NPG*K
      DXG=ONE/NG
      DV2G=(CALLS*DXG**NDIM)**2/NPG/NPG/(NPG-ONE)
      XND=ND
      NDM=ND-1
      DXG=DXG*XND
      XJAC=ONE/CALLS
      DO 3 J=1,NDIM
c***this is the line 50
      DX(J)=XU(J)-XL(J)
3     XJAC=XJAC*DX(J)
C
C   REBIN PRESERVING BIN DENSITY
C
      IF(ND.EQ.NDO) GO TO 8
      RC=NDO/XND
      DO 7 J=1,NDIM
      K=0
      XN=0.d0
      DR=XN
      I=K
4     K=K+1
      DR=DR+ONE
      XO=XN
      XN=XI(K,J)
5     IF(RC.GT.DR) GO TO 4
      I=I+1
      DR=DR-RC
      XIN(I)=XN-(XN-XO)*DR
      IF(I.LT.NDM) GO TO 5
      DO 6 I=1,NDM
6     XI(I,J)=XIN(I)
7     XI(ND,J)=ONE
      NDO=ND
C
8     CONTINUE
c      IF(NPRN.NE.0) WRITE(16,200) NDIM,CALLS,IT,ITMX,ACC,MDS,ND
c     1                           ,(XL(J),XU(J),J=1,NDIM)
C
      ENTRY VEGAS3(FXN,AVGI,SD,CHI2A)
C         - MAIN INTEGRATION LOOP
9     IT=IT+1
      TI=0.d0
      TSI=TI
      DO 10 J=1,NDIM
      KG(J)=1
      DO 10 I=1,ND
      D(I,J)=TI
10    DI(I,J)=TI
C
11    FB=0.d0
      F2B=FB
      K=0
12    K=K+1
      CALL ARAN9(QRAN,NDIM)
      WGT=XJAC
      DO 15 J=1,NDIM
      XN=dble(float(KG(J))-QRAN(J))*DXG+ONE
c*****this is the line 100
      IA(J)=int(XN)
      IF(IA(J).GT.1) GO TO 13
      XO=XI(IA(J),J)
      RC=(XN-IA(J))*XO
      GO TO 14
13    XO=XI(IA(J),J)-XI(IA(J)-1,J)
      RC=XI(IA(J)-1,J)+(XN-IA(J))*XO
14    X(J)=XL(J)+RC*DX(J)
      WGT=WGT*XO*XND
15    CONTINUE
C
      F=WGT
      F=F*FXN(X,WGT)
      F2=F*F
      FB=FB+F
      F2B=F2B+F2
      DO 16 J=1,NDIM
      DI(IA(J),J)=DI(IA(J),J)+F
16    IF(MDS.GE.0) D(IA(J),J)=D(IA(J),J)+F2
      IF(K.LT.NPG) GO TO 12
C
      F2B=DSQRT(F2B*NPG)
      F2B=(F2B-FB)*(F2B+FB)
      TI=TI+FB
      TSI=TSI+F2B
      IF(MDS.GE.0) GO TO 18
      DO 17 J=1,NDIM
17    D(IA(J),J)=D(IA(J),J)+F2B
18    K=NDIM
19    KG(K)=MOD(KG(K),NG)+1
      IF(KG(K).NE.1) GO TO 11
      K=K-1
      IF(K.GT.0) GO TO 19
C
C   FINAL RESULTS FOR THIS ITERATION
C
      TSI=TSI*DV2G
      TI2=TI*TI
      WGT=TI2/(TSI+1.0d-37)
      SI=SI+TI*WGT
      SI2=SI2+TI2
      SWGT=SWGT+WGT
      SWGT=SWGT+1.0D-37
      SI2=SI2+1.0D-37
      SCHI=SCHI+TI2*WGT
      AVGI=SI/SWGT
      SD=SWGT*IT/SI2
      CHI2A=SD*(SCHI/SWGT-AVGI*AVGI)/dble(float(IT)-.999)
      SD=DSQRT(ONE/SD)
C****this is the line 150
      IF(NPRN.EQ.0) GO TO 21
      TSI=DSQRT(TSI)
c      WRITE(16,201) IT,TI,TSI,AVGI,SD,CHI2A
c      IF(NPRN.GE.0) GO TO 21
c      DO 20 J=1,NDIM
c20    WRITE(16,202) J,(XI(I,J),DI(I,J),D(I,J),I=1,ND)
C
C   REFINE GRID
C
21    DO 23 J=1,NDIM
      XO=D(1,J)
      XN=D(2,J)
      D(1,J)=(XO+XN)/2.d0
      DT(J)=D(1,J)
      DO 22 I=2,NDM
      D(I,J)=XO+XN
      XO=XN
      XN=D(I+1,J)
      D(I,J)=(D(I,J)+XN)/3.d0
22    DT(J)=DT(J)+D(I,J)
      D(ND,J)=(XN+XO)/2.d0
23    DT(J)=DT(J)+D(ND,J)
C
      DO 28 J=1,NDIM
      RC=0.d0
      DO 24 I=1,ND
      R(I)=0.d0
      IF (DT(J).GE.1.0D18) THEN
       WRITE(6,*) '************** A SINGULARITY >1.0D18'
C      WRITE(5,1111)
C1111  FORMAT(1X,'**************IMPORTANT NOTICE***************')
C      WRITE(5,1112)
C1112  FORMAT(1X,'THE INTEGRAND GIVES RISE A SINGULARITY >1.0D18')
C      WRITE(5,1113)
C1113  FORMAT(1X,'PLEASE CHECK THE INTEGRAND AND THE LIMITS')
C      WRITE(5,1114)
C1114  FORMAT(1X,'**************END NOTICE*************')
      END IF    
      IF(D(I,J).LE.1.0D-18) GO TO 24
      XO=DT(J)/D(I,J)
      R(I)=((XO-ONE)/XO/DLOG(XO))**ALPH
24    RC=RC+R(I)
      RC=RC/XND
      K=0
      XN=0.d0
      DR=XN
      I=K
25    K=K+1
      DR=DR+R(K)
      XO=XN
c****this is the line 200
      XN=XI(K,J)
26    IF(RC.GT.DR) GO TO 25
      I=I+1
      DR=DR-RC
      XIN(I)=XN-(XN-XO)*DR/(R(K)+1.0d-30)
      IF(I.LT.NDM) GO TO 26
      DO 27 I=1,NDM
27    XI(I,J)=XIN(I)
28    XI(ND,J)=ONE
C
      IF(IT.LT.ITMX.AND.ACC*DABS(AVGI).LT.SD) GO TO 9
c200   FORMAT('0INPUT PARAMETERS FOR VEGAS:  NDIM=',I3,'  NCALL=',F8.0
c     1    /28X,'  IT=',I5,'  ITMX=',I5/28X,'  ACC=',G9.3
c     2    /28X,'  MDS=',I3,'   ND=',I4/28X,'  (XL,XU)=',
c     3    (T40,'( ',G12.6,' , ',G12.6,' )'))
c201   FORMAT(///' INTEGRATION BY VEGAS' / '0ITERATION NO.',I3,
c     1    ':   INTEGRAL =',G14.8/21X,'STD DEV  =',G10.4 /
c     2    ' ACCUMULATED RESULTS:   INTEGRAL =',G14.8 /
c     3    24X,'STD DEV  =',G10.4 / 24X,'CHI**2 PER IT''N =',G10.4)
c202   FORMAT('0DATA FOR AXIS',I2 / ' ',6X,'X',7X,'  DELT I  ',
c     1    2X,' CONV''CE  ',11X,'X',7X,'  DELT I  ',2X,' CONV''CE  '
c     2   ,11X,'X',7X,'  DELT I  ',2X,' CONV''CE  ' /
c     2    (' ',3G12.4,5X,3G12.4,5X,3G12.4))
      RETURN
      END
C
C
      SUBROUTINE ARAN9(QRAN,NDIM)
      DIMENSION QRAN(10)
      COMMON/SEDVAX/NUM1
      SAVE   
      DO 1 I=1,NDIM
    1 QRAN(I)=RANART(NUM1)
      RETURN
      END

C
C
C*********GAUSSIAN ONE-DIMENSIONAL INTEGRATION PROGRAM*************
C
        FUNCTION GAUSS1(F,A,B,EPS)
        EXTERNAL F
        DIMENSION W(12),X(12)
        SAVE   
        DATA CONST/1.0E-12/
        DATA W/0.1012285,.2223810,.3137067,.3623838,.0271525,
     &         .0622535,0.0951585,.1246290,.1495960,.1691565,
     &         .1826034,.1894506/
        DATA X/0.9602899,.7966665,.5255324,.1834346,.9894009,
     &         .9445750,0.8656312,.7554044,.6178762,.4580168,
     &         .2816036,.0950125/

        DELTA=CONST*ABS(A-B)
        GAUSS1=0.0
        AA=A
5        Y=B-AA
        IF(ABS(Y).LE.DELTA) RETURN
2        BB=AA+Y
        C1=0.5*(AA+BB)
        C2=C1-AA
        S8=0.0
        S16=0.0
        DO 1 I=1,4
        U=X(I)*C2
1        S8=S8+W(I)*(F(C1+U)+F(C1-U))
        DO 3 I=5,12
        U=X(I)*C2
3        S16=S16+W(I)*(F(C1+U)+F(C1-U))
        S8=S8*C2
        S16=S16*C2
        IF(ABS(S16-S8).GT.EPS*(1.+ABS(S16))) GOTO 4
        GAUSS1=GAUSS1+S16
        AA=BB
        GOTO 5
4        Y=0.5*Y
        IF(ABS(Y).GT.DELTA) GOTO 2
        WRITE(6,7)
        GAUSS1=0.0
        RETURN
7        FORMAT(1X,'GAUSS1....TOO HIGH ACURACY REQUIRED')
        END
C
C
C
        FUNCTION GAUSS2(F,A,B,EPS)
        EXTERNAL F
        DIMENSION W(12),X(12)
        SAVE   
        DATA CONST/1.0E-12/
        DATA W/0.1012285,.2223810,.3137067,.3623838,.0271525,
     &         .0622535,0.0951585,.1246290,.1495960,.1691565,
     &         .1826034,.1894506/
        DATA X/0.9602899,.7966665,.5255324,.1834346,.9894009,
     &         .9445750,0.8656312,.7554044,.6178762,.4580168,
     &         .2816036,.0950125/

        DELTA=CONST*ABS(A-B)
        GAUSS2=0.0
        AA=A
5        Y=B-AA
        IF(ABS(Y).LE.DELTA) RETURN
2        BB=AA+Y
        C1=0.5*(AA+BB)
        C2=C1-AA
        S8=0.0
        S16=0.0
        DO 1 I=1,4
        U=X(I)*C2
1        S8=S8+W(I)*(F(C1+U)+F(C1-U))
        DO 3 I=5,12
        U=X(I)*C2
3        S16=S16+W(I)*(F(C1+U)+F(C1-U))
        S8=S8*C2
        S16=S16*C2
        IF(ABS(S16-S8).GT.EPS*(1.+ABS(S16))) GOTO 4
        GAUSS2=GAUSS2+S16
        AA=BB
        GOTO 5
4        Y=0.5*Y
        IF(ABS(Y).GT.DELTA) GOTO 2
        WRITE(6,7)
        GAUSS2=0.0
        RETURN
7        FORMAT(1X,'GAUSS2....TOO HIGH ACURACY REQUIRED')
        END
C
C
C
C
C
        SUBROUTINE TITLE

      COMMON/RNDF77/NSEED
cc      SAVE /RNDF77/
        SAVE   

        WRITE(6,200)
clin-8/15/02 f77:
c200        FORMAT(//10X,
c     &        '**************************************************'/10X,
c     &  '*     |      \       _______      /  ------/     *'/10X,
c     &        '*   ----- ------     |_____|     /_/     /       *'/10X,
c     &        '*    ||\    /        |_____|      /    / \       *'/10X,
c     &        '*    /| \  /_/       /_______    /_  /    \_     *'/10X,
c     &        '*   / |     / /     /  /  / |        -------     *'/10X,
c     &        '*     |    / /\       /  /  |     /     |        *'/10X,
c     &        '*     |   / /  \     /  / \_|    /   -------     *'/10X,
200        FORMAT(//10X,
     &        '**************************************************'/10X,
     &  '*     |      |       _______      /  ------/     *'/10X,
     &        '*   ----- ------     |_____|     /_/     /       *'/10X,
     &        '*    |||    /        |_____|      /    / |       *'/10X,
     &        '*    /| |  /_/       /_______    /_  /    |      *'/10X,
     &        '*   / |     / /     /  /  / |        -------     *'/10X,
     &        '*     |    / /|       /  /  |     /     |        *'/10X,
     &        '*     |   / /  |     /  /  _|    /   -------     *'/10X,
     &        '*                                                *'/10X,
     &        '**************************************************'/10X,
     &        '                      HIJING                      '/10X,
     &        '       Heavy Ion Jet INteraction Generator        '/10X,
     &        '                        by                        '/10X,
     &  '            X. N. Wang  and  M. Gyulassy           '/10X,
     &  '             Lawrence Berkeley Laboratory           '//)        
        RETURN
        END