1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
#include "GeneratorInterface/CosmicMuonGenerator/interface/SingleParticleEvent.h"
void SingleParticleEvent::create(
int id, double px, double py, double pz, double e, double m, double vx, double vy, double vz, double t0) {
ID = ID_in = id;
Px = Px_in = px;
Py = Py_in = py;
Pz = Pz_in = pz;
E = E_in = e;
M = M_in = m;
Vx = Vx_in = vx;
Vy = Vy_in = vy;
Vz = Vz_in = vz;
T0 = T0_in = t0;
HitTarget = false;
}
void SingleParticleEvent::propagate(double ElossScaleFac,
double RadiusTarget,
double Z_DistTarget,
double Z_CentrTarget,
bool TrackerOnly,
bool MTCCHalf) {
MTCC = MTCCHalf; //need to know this boolean in absVzTmp()
// calculated propagation direction
dX = Px / absmom();
dY = Py / absmom();
dZ = Pz / absmom();
// propagate with decreasing step size
tmpVx = Vx;
tmpVy = Vy;
tmpVz = Vz;
double RadiusTargetEff = RadiusTarget;
double Z_DistTargetEff = Z_DistTarget;
double Z_CentrTargetEff = Z_CentrTarget;
if (TrackerOnly == true) {
RadiusTargetEff = RadiusTracker;
Z_DistTargetEff = Z_DistTracker;
}
HitTarget = true;
if (HitTarget == true) {
HitTarget = false;
double stepSize = MinStepSize * 100000.;
double acceptR = RadiusTargetEff + stepSize;
double acceptZ = Z_DistTargetEff + stepSize;
bool continuePropagation = true;
while (continuePropagation) {
//if (tmpVy < -acceptR) continuePropagation = false;
if (dY < 0. && tmpVy < -acceptR)
continuePropagation = false;
if (dY >= 0. && tmpVy > acceptR)
continuePropagation = false;
//if (absVzTmp() < acceptZ && rVxyTmp() < acceptR){
if (std::fabs(tmpVz - Z_CentrTargetEff) < acceptZ && rVxyTmp() < acceptR) {
HitTarget = true;
continuePropagation = false;
}
if (continuePropagation)
updateTmp(stepSize);
}
}
if (HitTarget == true) {
HitTarget = false;
double stepSize = MinStepSize * 10000.;
double acceptR = RadiusTargetEff + stepSize;
double acceptZ = Z_DistTargetEff + stepSize;
bool continuePropagation = true;
while (continuePropagation) {
//if (tmpVy < -acceptR) continuePropagation = false;
if (dY < 0. && tmpVy < -acceptR)
continuePropagation = false;
if (dY >= 0. && tmpVy > acceptR)
continuePropagation = false;
//if (absVzTmp() < acceptZ && rVxyTmp() < acceptR){
if (std::fabs(tmpVz - Z_CentrTargetEff) < acceptZ && rVxyTmp() < acceptR) {
HitTarget = true;
continuePropagation = false;
}
if (continuePropagation)
updateTmp(stepSize);
}
}
if (HitTarget == true) {
HitTarget = false;
double stepSize = MinStepSize * 1000.;
double acceptR = RadiusTargetEff + stepSize;
double acceptZ = Z_DistTargetEff + stepSize;
bool continuePropagation = true;
while (continuePropagation) {
//if (tmpVy < -acceptR) continuePropagation = false;
if (dY < 0. && tmpVy < -acceptR)
continuePropagation = false;
if (dY >= 0. && tmpVy > acceptR)
continuePropagation = false;
//if (absVzTmp() < acceptZ && rVxyTmp() < acceptR){
if (std::fabs(tmpVz - Z_CentrTargetEff) < acceptZ && rVxyTmp() < acceptR) {
HitTarget = true;
continuePropagation = false;
}
if (continuePropagation)
updateTmp(stepSize);
}
}
if (HitTarget == true) {
HitTarget = false;
double stepSize = MinStepSize * 100.;
double acceptR = RadiusTargetEff + stepSize;
double acceptZ = Z_DistTargetEff + stepSize;
bool continuePropagation = true;
while (continuePropagation) {
//if (tmpVy < -acceptR) continuePropagation = false;
if (dY < 0. && tmpVy < -acceptR)
continuePropagation = false;
if (dY >= 0. && tmpVy > acceptR)
continuePropagation = false;
//if (absVzTmp() < acceptZ && rVxyTmp() < acceptR){
if (std::fabs(tmpVz - Z_CentrTargetEff) < acceptZ && rVxyTmp() < acceptR) {
HitTarget = true;
continuePropagation = false;
}
if (continuePropagation)
updateTmp(stepSize);
}
}
if (HitTarget == true) {
HitTarget = false;
double stepSize = MinStepSize * 10.;
double acceptR = RadiusTargetEff + stepSize;
double acceptZ = Z_DistTargetEff + stepSize;
bool continuePropagation = true;
while (continuePropagation) {
//if (tmpVy < -acceptR) continuePropagation = false;
if (dY < 0. && tmpVy < -acceptR)
continuePropagation = false;
if (dY >= 0. && tmpVy > acceptR)
continuePropagation = false;
//if (absVzTmp() < acceptZ && rVxyTmp() < acceptR){
if (std::fabs(tmpVz - Z_CentrTargetEff) < acceptZ && rVxyTmp() < acceptR) {
HitTarget = true;
continuePropagation = false;
}
if (continuePropagation)
updateTmp(stepSize);
}
}
if (HitTarget == true) {
HitTarget = false;
double stepSize = MinStepSize * 1.;
double acceptR = RadiusTargetEff + stepSize;
double acceptZ = Z_DistTargetEff + stepSize;
bool continuePropagation = true;
while (continuePropagation) {
//if (tmpVy < -acceptR) continuePropagation = false;
if (dY < 0. && tmpVy < -acceptR)
continuePropagation = false;
if (dY >= 0. && tmpVy > acceptR)
continuePropagation = false;
//if (0 < absVzTmp()){ //only check for MTCC setup in last step of propagation, need fine stepSize
if (absVzTmp() < acceptZ && rVxyTmp() < acceptR) {
if (std::fabs(tmpVz - Z_CentrTargetEff) < acceptZ && rVxyTmp() < acceptR) {
HitTarget = true;
continuePropagation = false;
}
}
if (continuePropagation)
updateTmp(stepSize);
}
}
// actual propagation + energy loss
if (HitTarget == true) {
HitTarget = false;
//int nAir = 0; int nWall = 0; int nRock = 0; int nClay = 0; int nPlug = 0;
int nMat[6] = {0, 0, 0, 0, 0, 0};
double stepSize = MinStepSize * 1.; // actual step size
double acceptR = RadiusCMS + stepSize;
double acceptZ = Z_DistCMS + stepSize;
if (TrackerOnly == true) {
acceptR = RadiusTracker + stepSize;
acceptZ = Z_DistTracker + stepSize;
}
bool continuePropagation = true;
while (continuePropagation) {
//if (Vy < -acceptR) continuePropagation = false;
if (dY < 0. && tmpVy < -acceptR)
continuePropagation = false;
if (dY >= 0. && tmpVy > acceptR)
continuePropagation = false;
//if (absVz() < acceptZ && rVxy() < acceptR){
if (std::fabs(Vz - Z_CentrTargetEff) < acceptZ && rVxy() < acceptR) {
HitTarget = true;
continuePropagation = false;
}
if (continuePropagation)
update(stepSize);
int Mat = inMat(Vx, Vy, Vz, PlugVx, PlugVz, ClayWidth);
nMat[Mat]++;
}
if (HitTarget) {
double lPlug = double(nMat[Plug]) * stepSize;
double lWall = double(nMat[Wall]) * stepSize;
double lAir = double(nMat[Air]) * stepSize;
double lClay = double(nMat[Clay]) * stepSize;
double lRock = double(nMat[Rock]) * stepSize;
//double lUnknown = double(nMat[Unknown])*stepSize;
double waterEquivalents =
(lAir * RhoAir + lWall * RhoWall + lRock * RhoRock + lClay * RhoClay + lPlug * RhoPlug) * ElossScaleFac /
10.; // [g cm^-2]
subtractEloss(waterEquivalents);
if (E < MuonMass)
HitTarget = false; // muon stopped in the material around the target
}
}
// end of propagation part
}
void SingleParticleEvent::update(double stepSize) {
Vx += stepSize * dX;
Vy += stepSize * dY;
Vz += stepSize * dZ;
}
void SingleParticleEvent::updateTmp(double stepSize) {
tmpVx += stepSize * dX;
tmpVy += stepSize * dY;
tmpVz += stepSize * dZ;
}
void SingleParticleEvent::subtractEloss(double waterEquivalents) {
double L10E = log10(E);
// parameters for standard rock (PDG 2004, page 230)
double A = (1.91514 + 0.254957 * L10E) / 1000.; // a [GeV g^-1 cm^2]
double B = (0.379763 + 1.69516 * L10E - 0.175026 * L10E * L10E) / 1000000.; // b [g^-1 cm^2]
double EPS = A / B; // epsilon [GeV]
E = (E + EPS) * exp(-B * waterEquivalents) - EPS; // updated energy
double oldAbsMom = absmom();
double newAbsMom = sqrt(E * E - MuonMass * MuonMass);
Px = Px * newAbsMom / oldAbsMom; // updated px
Py = Py * newAbsMom / oldAbsMom; // updated py
Pz = Pz * newAbsMom / oldAbsMom; // updated pz
}
double SingleParticleEvent::Eloss(double waterEquivalents, double Energy) {
double L10E = log10(Energy);
// parameters for standard rock (PDG 2004, page 230)
double A = (1.91514 + 0.254957 * L10E) / 1000.; // a [GeV g^-1 cm^2]
double B = (0.379763 + 1.69516 * L10E - 0.175026 * L10E * L10E) / 1000000.; // b [g^-1 cm^2]
double EPS = A / B; // epsilon [GeV]
double newEnergy = (Energy + EPS) * exp(-B * waterEquivalents) - EPS; // updated energy
double EnergyLoss = Energy - newEnergy;
return EnergyLoss;
}
void SingleParticleEvent::setEug(double Eug) { E_ug = Eug; }
double SingleParticleEvent::Eug() { return E_ug; }
double SingleParticleEvent::deltaEmin(double E_sf) {
double dE = Eloss(waterEquivalents, E_sf);
return E_ug - (E_sf - dE);
}
void SingleParticleEvent::SurfProj(double Vx_in,
double Vy_in,
double Vz_in,
double Px_in,
double Py_in,
double Pz_in,
double& Vx_up,
double& Vy_up,
double& Vz_up) {
//determine vertex of muon at Surface (+PlugWidth)
double dy = Vy_in - (SurfaceOfEarth + PlugWidth);
Vy_up = Vy_in - dy;
Vx_up = Vx_in - dy * Px_in / Py_in;
Vz_up = Vz_in - dy * Pz_in / Py_in;
if (Debug)
std::cout << "Vx_up=" << Vx_up << " Vy_up=" << Vy_up << " Vz_up=" << Vz_up << std::endl;
}
double SingleParticleEvent::absVzTmp() {
if (MTCC == true) {
return tmpVz; //need sign to be sure muon hits half of CMS with MTCC setup
} else {
return std::fabs(tmpVz);
}
}
double SingleParticleEvent::rVxyTmp() { return sqrt(tmpVx * tmpVx + tmpVy * tmpVy); }
bool SingleParticleEvent::hitTarget() { return HitTarget; }
int SingleParticleEvent::id_in() { return ID_in; }
double SingleParticleEvent::px_in() { return Px_in; }
double SingleParticleEvent::py_in() { return Py_in; }
double SingleParticleEvent::pz_in() { return Pz_in; }
double SingleParticleEvent::e_in() { return E_in; }
double SingleParticleEvent::m_in() { return M_in; }
double SingleParticleEvent::vx_in() { return Vx_in; }
double SingleParticleEvent::vy_in() { return Vy_in; }
double SingleParticleEvent::vz_in() { return Vz_in; }
double SingleParticleEvent::t0_in() { return T0_in; }
int SingleParticleEvent::id() { return ID; }
double SingleParticleEvent::px() { return Px; }
double SingleParticleEvent::py() { return Py; }
double SingleParticleEvent::pz() { return Pz; }
double SingleParticleEvent::e() { return E; }
double SingleParticleEvent::m() { return M; }
double SingleParticleEvent::vx() { return Vx; }
double SingleParticleEvent::vy() { return Vy; }
double SingleParticleEvent::vz() { return Vz; }
double SingleParticleEvent::t0() { return T0; }
double SingleParticleEvent::WaterEquivalents() { return waterEquivalents; }
double SingleParticleEvent::phi() {
double phiXZ = atan2(Px, Pz);
if (phiXZ < 0.)
phiXZ = phiXZ + TwoPi;
return phiXZ;
}
double SingleParticleEvent::theta() { return atan2(sqrt(Px * Px + Pz * Pz), -Py); }
double SingleParticleEvent::absmom() { return sqrt(Px * Px + Py * Py + Pz * Pz); }
double SingleParticleEvent::absVz() { return std::fabs(Vz); }
double SingleParticleEvent::rVxy() { return sqrt(Vx * Vx + Vy * Vy); }
|