MCMultiParticleMassFilter

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#include "GeneratorInterface/GenFilters/plugins/MCFilterZboostHelper.h"
#include "DataFormats/Common/interface/Handle.h"
#include "FWCore/Framework/interface/global/EDFilter.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/Frameworkfwd.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "FWCore/Utilities/interface/EDGetToken.h"
#include "FWCore/Utilities/interface/InputTag.h"
#include "SimDataFormats/GeneratorProducts/interface/HepMCProduct.h"

#include <vector>
#include <iostream>
#include <unordered_map>
#include <tuple>

class MCMultiParticleMassFilter : public edm::global::EDFilter<> {
public:
  explicit MCMultiParticleMassFilter(const edm::ParameterSet&);
  ~MCMultiParticleMassFilter() override;

private:
  bool filter(edm::StreamID, edm::Event& iEvent, const edm::EventSetup&) const override;
  bool recurseLoop(std::vector<HepMC::GenParticle*>& particlesThatPassCuts, std::vector<int> indices, int depth) const;

  /* Member data */
  const edm::EDGetTokenT<edm::HepMCProduct> token_;
  const std::vector<int> particleID;
  std::vector<double> ptMin;
  std::vector<double> etaMax;
  std::vector<int> status;

  //Maps each particle ID provided to its required pt, max eta, and status
  std::unordered_map<int, std::tuple<double, double, int>> cutPerParticle;

  const double minTotalMass;
  const double maxTotalMass;

  double minTotalMassSq;
  double maxTotalMassSq;
  int nParticles;

  int particleSumTo;
  int particleProdTo;
};

using namespace edm;
using namespace std;

MCMultiParticleMassFilter::MCMultiParticleMassFilter(const edm::ParameterSet& iConfig)
    : token_(consumes<edm::HepMCProduct>(
          iConfig.getUntrackedParameter<edm::InputTag>("src", edm::InputTag("generator", "unsmeared")))),
      particleID(iConfig.getParameter<std::vector<int>>("ParticleID")),
      ptMin(iConfig.getParameter<std::vector<double>>("PtMin")),
      etaMax(iConfig.getParameter<std::vector<double>>("EtaMax")),
      status(iConfig.getParameter<std::vector<int>>("Status")),
      minTotalMass(iConfig.getParameter<double>("minTotalMass")),
      maxTotalMass(iConfig.getParameter<double>("maxTotalMass")) {
  nParticles = particleID.size();
  minTotalMassSq = minTotalMass * minTotalMass;
  maxTotalMassSq = maxTotalMass * maxTotalMass;

  //These two values dictate what particles it accepts as combinations
  particleSumTo = 0;
  particleProdTo = 1;
  for (const int i : particleID) {
    particleSumTo += i;
    particleProdTo *= i;
  }

  // if any of the vectors are of size 1, take that to mean it is a new default
  double defaultPtMin = 1.8;
  if ((int)ptMin.size() == 1) {
    defaultPtMin = ptMin[0];
  }

  if ((int)ptMin.size() < nParticles) {
    edm::LogWarning("MCMultiParticleMassFilter") << "Warning: Given pT value size"
                                                    "< size of the number of particle IDs."
                                                    " Filling remaining values with "
                                                 << defaultPtMin << endl;
    while ((int)ptMin.size() < nParticles) {
      ptMin.push_back(defaultPtMin);
    }
  } else if ((int)ptMin.size() > nParticles) {
    edm::LogWarning("MCMultiParticleMassFilter") << "Warning: Given pT value size"
                                                    "> size of the number of particle IDs."
                                                    " Ignoring extraneous values "
                                                 << endl;
    ptMin.resize(nParticles);
  }

  double defaultEtaMax = 2.7;
  if ((int)etaMax.size() == 1) {
    defaultEtaMax = etaMax[0];
  }
  if ((int)etaMax.size() < nParticles) {
    edm::LogWarning("MCMultiParticleMassFilter") << "Warning: Given eta value size"
                                                    "< size of the number of particle IDs."
                                                    " Filling remaining values with "
                                                 << defaultEtaMax << endl;
    while ((int)etaMax.size() < nParticles) {
      etaMax.push_back(defaultEtaMax);
    }
  } else if ((int)etaMax.size() > nParticles) {
    edm::LogWarning("MCMultiParticleMassFilter") << "Warning: Given eta value size"
                                                    "> size of the number of particle IDs."
                                                    " Ignoring extraneous values "
                                                 << endl;
    etaMax.resize(nParticles);
  }

  int defaultStatus = 1;
  if ((int)status.size() == 1) {
    defaultStatus = status[0];
  }
  if ((int)status.size() < nParticles) {
    edm::LogWarning("MCMultiParticleMassFilter") << "Warning: Given status value size"
                                                    "< size of the number of particle IDs."
                                                    " Filling remaining values with "
                                                 << defaultStatus << endl;
    while ((int)status.size() < nParticles) {
      status.push_back(defaultStatus);
    }
  } else if ((int)status.size() > nParticles) {
    edm::LogWarning("MCMultiParticleMassFilter") << "Warning: Given status value size"
                                                    "> size of the number of particle IDs."
                                                    " Ignoring extraneous values "
                                                 << endl;
    status.resize(nParticles);
  }

  for (int i = 0; i < nParticles; i++) {
    std::tuple<double, double, int> cutForParticle = std::make_tuple(ptMin[i], etaMax[i], status[i]);
    cutPerParticle[particleID[i]] = cutForParticle;
  }  //assign the set of cuts you decided upon matched to each ID value in order
}

MCMultiParticleMassFilter::~MCMultiParticleMassFilter() {}

bool MCMultiParticleMassFilter::filter(edm::StreamID, edm::Event& iEvent, const edm::EventSetup&) const {
  edm::Handle<edm::HepMCProduct> evt;
  iEvent.getByToken(token_, evt);
  const HepMC::GenEvent* myGenEvent = evt->GetEvent();

  std::vector<HepMC::GenParticle*> particlesThatPassCuts = std::vector<HepMC::GenParticle*>();
  for (HepMC::GenEvent::particle_const_iterator p = myGenEvent->particles_begin(); p != myGenEvent->particles_end();
       ++p) {
    for (const int i : particleID) {
      if (i == (*p)->pdg_id()) {
        //if the particle ID is one of the ones you specified, check for cuts per ID
        const auto cuts = cutPerParticle.at(i);
        if (((*p)->status() == get<2>(cuts)) && ((*p)->momentum().perp() >= get<0>(cuts)) &&
            (std::fabs((*p)->momentum().eta()) <= get<1>(cuts))) {
          particlesThatPassCuts.push_back(*p);
          break;
        }
      }
    }
  }
  int nIterables = particlesThatPassCuts.size();
  if (nIterables < nParticles) {
    return false;
  } else {
    int i = 0;
    //only iterate while there are enough particles that pass cuts
    while ((nIterables - i) >= nParticles) {
      vector<int> indices;
      //start recursing from index 0, 1, 2, ...
      indices.push_back(i);
      bool success = recurseLoop(particlesThatPassCuts, indices, 1);
      if (success) {
        return true;
      }
      i++;
    }
  }
  return false;
}

bool MCMultiParticleMassFilter::recurseLoop(std::vector<HepMC::GenParticle*>& particlesThatPassCuts,
                                            std::vector<int> indices,
                                            int depth) const {
  int lastIndex = indices.back();
  int nIterables = (int)(particlesThatPassCuts.size());
  if (lastIndex >= nIterables) {
    return false;
  } else if (depth == nParticles) {
    //you have the right number of particles!
    int tempSum = 0;
    int tempProd = 1;

    double px, py, pz, e;
    px = py = pz = e = 0;
    for (const int i : indices) {
      int id = particlesThatPassCuts[i]->pdg_id();
      tempSum += id;
      tempProd *= id;
      HepMC::FourVector tempVec = particlesThatPassCuts[i]->momentum();
      px += tempVec.px();
      py += tempVec.py();
      pz += tempVec.pz();
      e += tempVec.e();
    }
    if ((tempSum != particleSumTo) || (tempProd != particleProdTo)) {
      return false;  //check if the ids are what you want
    }
    double invMassSq = e * e - px * px - py * py - pz * pz;
    //taking the root is computationally expensive, so use the squared term
    if ((invMassSq >= minTotalMassSq) && (invMassSq <= maxTotalMassSq)) {
      return true;
    }
    return false;
  } else {
    vector<bool> recursionResult;
    //propagate recursion across all combinations of remaining indices
    for (int i = 1; i < nIterables - lastIndex; i++) {
      vector<int> newIndices = indices;
      newIndices.push_back(lastIndex + i);
      //always up the depth by 1 to make sure there is no infinite recursion
      recursionResult.push_back(recurseLoop(particlesThatPassCuts, newIndices, depth + 1));
    }
    //search the results to look for one successful combination
    for (bool r : recursionResult) {
      if (r) {
        return true;
      }
    }
    return false;
  }
}
DEFINE_FWK_MODULE(MCMultiParticleMassFilter);