1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
C-----------------------------------------------------------------------
C----Calorimeter simulation obtained from Frank Paige 23 March 1988-----
C
C USE
C
C CALL CALINI
C CALL CALSIM
C
C THEN TO FIND JETS WITH A SIMPLIFIED VERSION OF THE UA1 JET
C ALGORITHM WITH JET RADIUS RJET AND MINIMUM SCALAR TRANSVERSE
C ENERGY EJCUT
C (RJET=1., EJCUT=5. FOR UA1)
C USE
C
C CALL GETJET(RJET,EJCUT)
C
C
C-----------------------------------------------------------------------
C
C ADDED BY MIKE SEYMOUR: PARTON-LEVEL CALORIMETER. ALL PARTONS
C ARE CONSIDERED TO BE HADRONS, SO IN FACT RESEM IS IGNORED
C
C CALL CALPAR
C
C HARD PARTICLE CALORIMETER. ONLY USES THOSE PARTICLES WHICH
C CAME FROM THE HARD PROCESS, AND NOT THE UNDERLYING EVENT
C
C CALL CALHAR
C
C-----------------------------------------------------------------------
SUBROUTINE CALINI
C
C INITIALIZE CALORIMETER FOR CALSIM AND GETJET. NOTE THAT
C BECAUSE THE INITIALIZATION IS SEPARATE, CALSIM CAN BE
C CALLED MORE THAN ONCE TO SIMULATE PILEUP OF SEVERAL EVENTS.
C
IMPLICIT NONE
C...GETJET commonblocks
INTEGER MNCY,MNCPHI,NCY,NCPHI,NJMAX,JETNO,NCJET
DOUBLE PRECISION YCMIN,YCMAX,DELY,DELPHI,ET,STHCAL,CTHCAL,CPHCAL,
& SPHCAL,PCJET,ETJET
PARAMETER (MNCY=200)
PARAMETER (MNCPHI=200)
COMMON/CALOR/DELY,DELPHI,ET(MNCY,MNCPHI),
$CTHCAL(MNCY),STHCAL(MNCY),CPHCAL(MNCPHI),SPHCAL(MNCPHI),
$YCMIN,YCMAX,NCY,NCPHI
PARAMETER (NJMAX=500)
COMMON/GETCOM/PCJET(4,NJMAX),ETJET(NJMAX),JETNO(MNCY,MNCPHI),NCJET
INTEGER IPHI,IY
DOUBLE PRECISION PI,PHIX,YX,THX
PARAMETER (PI=3.141593D0)
LOGICAL FSTCAL
DATA FSTCAL/.TRUE./
C
C INITIALIZE ET ARRAY.
DO 100 IPHI=1,NCPHI
DO 100 IY=1,NCY
100 ET(IY,IPHI)=0.
C
IF (FSTCAL) THEN
C CALCULATE TRIG. FUNCTIONS.
DELPHI=2.*PI/FLOAT(NCPHI)
DO 200 IPHI=1,NCPHI
PHIX=DELPHI*(IPHI-.5)
CPHCAL(IPHI)=COS(PHIX)
SPHCAL(IPHI)=SIN(PHIX)
200 CONTINUE
DELY=(YCMAX-YCMIN)/FLOAT(NCY)
DO 300 IY=1,NCY
YX=DELY*(IY-.5)+YCMIN
THX=2.*ATAN(EXP(-YX))
CTHCAL(IY)=COS(THX)
STHCAL(IY)=SIN(THX)
300 CONTINUE
FSTCAL=.FALSE.
ENDIF
END
C
SUBROUTINE CALSIM
C
C SIMPLE CALORIMETER SIMULATION. ASSUME UNIFORM Y AND PHI
C BINS
C...HEPEVT commonblock.
INTEGER NMXHEP,NEVHEP,NHEP,ISTHEP,IDHEP,JMOHEP,JDAHEP
PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),
&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
DOUBLE PRECISION PHEP,VHEP
SAVE /HEPEVT/
C...GETJET commonblocks
INTEGER MNCY,MNCPHI,NCY,NCPHI,NJMAX,JETNO,NCJET
DOUBLE PRECISION YCMIN,YCMAX,DELY,DELPHI,ET,STHCAL,CTHCAL,CPHCAL,
& SPHCAL,PCJET,ETJET
PARAMETER (MNCY=200)
PARAMETER (MNCPHI=200)
COMMON/CALOR/DELY,DELPHI,ET(MNCY,MNCPHI),
$CTHCAL(MNCY),STHCAL(MNCY),CPHCAL(MNCPHI),SPHCAL(MNCPHI),
$YCMIN,YCMAX,NCY,NCPHI
PARAMETER (NJMAX=500)
COMMON/GETCOM/PCJET(4,NJMAX),ETJET(NJMAX),JETNO(MNCY,MNCPHI),NCJET
INTEGER IHEP,ID,IY,IPHI
DOUBLE PRECISION PI,YIP,PSERAP,PHIIP,EIP
PARAMETER (PI=3.141593D0)
C
C FILL CALORIMETER
C
DO 200 IHEP=1,NHEP
IF (ISTHEP(IHEP).EQ.1) THEN
YIP=PSERAP(PHEP(1,IHEP))
IF(YIP.LT.YCMIN.OR.YIP.GT.YCMAX) GOTO 200
ID=ABS(IDHEP(IHEP))
C---EXCLUDE TOP QUARK, LEPTONS, PROMPT PHOTONS
IF ((ID.GE.11.AND.ID.LE.16).OR.ID.EQ.6.OR.ID.EQ.22) GOTO 200
C
PHIIP=ATAN2(PHEP(2,IHEP),PHEP(1,IHEP))
IF(PHIIP.LT.0.) PHIIP=PHIIP+2.*PI
IY=INT((YIP-YCMIN)/DELY)+1
IPHI=INT(PHIIP/DELPHI)+1
EIP=PHEP(4,IHEP)
C WEIGHT BY SIN(THETA)
ET(IY,IPHI)=ET(IY,IPHI)+EIP*STHCAL(IY)
ENDIF
200 CONTINUE
END
SUBROUTINE GETJET(RJET,EJCUT,ETAJCUT)
C
C SIMPLE JET-FINDING ALGORITHM (SIMILAR TO UA1).
C
C FIND HIGHEST REMAINING CELL > ETSTOP AND SUM SURROUNDING
C CELLS WITH--
C DELTA(Y)**2+DELTA(PHI)**2<RJET**2
C ET>ECCUT.
C KEEP JETS WITH ET>EJCUT AND ABS(ETA)<ETAJCUT
C THE UA1 PARAMETERS ARE RJET=1.0 AND EJCUT=5.0
C
IMPLICIT NONE
C...GETJET commonblocks
INTEGER MNCY,MNCPHI,NCY,NCPHI,NJMAX,JETNO,NCJET
DOUBLE PRECISION YCMIN,YCMAX,DELY,DELPHI,ET,STHCAL,CTHCAL,CPHCAL,
& SPHCAL,PCJET,ETJET
PARAMETER (MNCY=200)
PARAMETER (MNCPHI=200)
COMMON/CALOR/DELY,DELPHI,ET(MNCY,MNCPHI),
$CTHCAL(MNCY),STHCAL(MNCY),CPHCAL(MNCPHI),SPHCAL(MNCPHI),
$YCMIN,YCMAX,NCY,NCPHI
PARAMETER (NJMAX=500)
COMMON/GETCOM/PCJET(4,NJMAX),ETJET(NJMAX),JETNO(MNCY,MNCPHI),NCJET
INTEGER IPHI,IY,J,K,NPHI1,NPHI2,NY1,
& NY2,IPASS,IYMX,IPHIMX,ITLIS,IPHI1,IPHIX,IY1,IYX
DOUBLE PRECISION PI,RJET,
& ETMAX,ETSTOP,RR,ECCUT,PX,EJCUT
PARAMETER (PI=3.141593D0)
DOUBLE PRECISION ETAJCUT,PSERAP
C
C PARAMETERS
DATA ECCUT/0.1D0/
DATA ETSTOP/1.5D0/
DATA ITLIS/6/
C
C INITIALIZE
C
c init uninit variables
iymx = 0
iphimx = 0
c
DO 100 IPHI=1,NCPHI
DO 100 IY=1,NCY
100 JETNO(IY,IPHI)=0
DO 110 J=1,NJMAX
ETJET(J)=0.
DO 110 K=1,4
110 PCJET(K,J)=0.
NCJET=0
NPHI1=RJET/DELPHI
NPHI2=2*NPHI1+1
NY1=RJET/DELY
NY2=2*NY1+1
IPASS=0
C
C FIND HIGHEST CELL REMAINING
C
1 ETMAX=0.
DO 200 IPHI=1,NCPHI
DO 210 IY=1,NCY
IF(ET(IY,IPHI).LT.ETMAX) GOTO 210
IF(JETNO(IY,IPHI).NE.0) GOTO 210
ETMAX=ET(IY,IPHI)
IYMX=IY
IPHIMX=IPHI
210 CONTINUE
200 CONTINUE
IF(ETMAX.LT.ETSTOP) RETURN
C
C SUM CELLS
C
IPASS=IPASS+1
IF(IPASS.GT.NCY*NCPHI) THEN
WRITE(ITLIS,8888) IPASS
8888 FORMAT(//' ERROR IN GETJET...IPASS > ',I6)
RETURN
ENDIF
NCJET=NCJET+1
IF(NCJET.GT.NJMAX) THEN
WRITE(ITLIS,9999) NCJET
9999 FORMAT(//' ERROR IN GETJET...NCJET > ',I5)
RETURN
ENDIF
DO 300 IPHI1=1,NPHI2
IPHIX=IPHIMX-NPHI1-1+IPHI1
IF(IPHIX.LE.0) IPHIX=IPHIX+NCPHI
IF(IPHIX.GT.NCPHI) IPHIX=IPHIX-NCPHI
DO 310 IY1=1,NY2
IYX=IYMX-NY1-1+IY1
IF(IYX.LE.0) GOTO 310
IF(IYX.GT.NCY) GOTO 310
IF(JETNO(IYX,IPHIX).NE.0) GOTO 310
RR=(DELY*(IY1-NY1-1))**2+(DELPHI*(IPHI1-NPHI1-1))**2
IF(RR.GT.RJET**2) GOTO 310
IF(ET(IYX,IPHIX).LT.ECCUT) GOTO 310
PX=ET(IYX,IPHIX)/STHCAL(IYX)
C ADD CELL TO JET
PCJET(1,NCJET)=PCJET(1,NCJET)+PX*STHCAL(IYX)*CPHCAL(IPHIX)
PCJET(2,NCJET)=PCJET(2,NCJET)+PX*STHCAL(IYX)*SPHCAL(IPHIX)
PCJET(3,NCJET)=PCJET(3,NCJET)+PX*CTHCAL(IYX)
PCJET(4,NCJET)=PCJET(4,NCJET)+PX
ETJET(NCJET)=ETJET(NCJET)+ET(IYX,IPHIX)
JETNO(IYX,IPHIX)=NCJET
310 CONTINUE
300 CONTINUE
C
C DISCARD JET IF ET < EJCUT.
C
IF(ETJET(NCJET).GT.EJCUT.AND.ABS(PSERAP(PCJET(1,NCJET))).LT
$ .ETAJCUT) GOTO 1
ETJET(NCJET)=0.
DO 400 K=1,4
400 PCJET(K,NCJET)=0.
NCJET=NCJET-1
GOTO 1
END
C-----------------------------------------------------------------------
SUBROUTINE CALDEL(ISTLO,ISTHI)
C LABEL ALL PARTICLES WITH STATUS BETWEEN ISTLO AND ISTHI (UNTIL A
C PARTICLE WITH STATUS ISTOP IS FOUND) AS FINAL-STATE, CALL CALSIM
C AND THEN PUT LABELS BACK TO NORMAL
C-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER MAXNUP
PARAMETER(MAXNUP=500)
C...HEPEVT commonblock.
INTEGER NMXHEP,NEVHEP,NHEP,ISTHEP,IDHEP,JMOHEP,JDAHEP
PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),
&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
DOUBLE PRECISION PHEP,VHEP
SAVE /HEPEVT/
INTEGER ISTLO,ISTHI
C...Inputs for the matching algorithm
double precision etcjet,rclmax,etaclmax,qcut,qfact
integer maxjets,minjets,iexcfile,ktsche
common/MEMAIN/etcjet,rclmax,etaclmax,qcut,qfact,
$ maxjets,minjets,iexcfile,ktsche
C...Silence gcc 4.3.4 warnings.
ISTLO=ISTLO
ISTHI=ISTHI
CALL CALSIM
END
C-----------------------------------------------------------------------
FUNCTION PSERAP(P)
C PSEUDO-RAPIDITY (-LOG TAN THETA/2)
C-----------------------------------------------------------------------
DOUBLE PRECISION PSERAP,P(3),PT,PL,TINY,THETA
PARAMETER (TINY=1D-3)
PT=SQRT(P(1)**2+P(2)**2)+TINY
PL=P(3)
THETA=ATAN2(PT,PL)
PSERAP=-LOG(TAN(0.5*THETA))
END
C-----------------------------------------------------------------------
|