1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
|
// Implementation of the new JetMatching plugin
// author: Carlos Vico (U. Oviedo)
// taken from: https://amcatnlo.web.cern.ch/amcatnlo/JetMatching.h
#include "JetMatchingEWKFxFx.h"
using namespace Pythia8;
JetMatchingEWKFxFx::JetMatchingEWKFxFx(const edm::ParameterSet& iConfig) {}
bool JetMatchingEWKFxFx::initAfterBeams() {
// This method is automatically called by Pythia8::init
// and it can be used to change any of the parameter given
// in the fragment.
// Initialise values for stored jet matching veto inputs.
pTfirstSave = -1.;
processSubsetSave.init("(eventProcess)", particleDataPtr);
workEventJetSave.init("(workEventJet)", particleDataPtr);
// Read Madgraph specific configuration variables
bool setMad = settingsPtr->flag("JetMatching:setMad");
// Parse in MadgraphPar object
MadgraphPar par;
string parStr = infoPtr->header("MGRunCard");
if (!parStr.empty()) {
par.parse(parStr);
par.printParams();
}
// Set Madgraph merging parameters from the file if requested
if (setMad) {
if (par.haveParam("xqcut") && par.haveParam("maxjetflavor") && par.haveParam("alpsfact") &&
par.haveParam("ickkw")) {
settingsPtr->flag("JetMatching:merge", par.getParam("ickkw"));
settingsPtr->parm("JetMatching:qCut", par.getParam("xqcut"));
settingsPtr->mode("JetMatching:nQmatch", par.getParamAsInt("maxjetflavor"));
settingsPtr->parm("JetMatching:clFact", clFact = par.getParam("alpsfact"));
if (par.getParamAsInt("ickkw") == 0)
errorMsg(
"Error in JetMatchingMadgraph:init: "
"Madgraph file parameters are not set for merging");
// Warn if setMad requested, but one or more parameters not present
} else {
errorMsg(
"Warning in JetMatchingMadgraph:init: "
"Madgraph merging parameters not found");
if (!par.haveParam("xqcut"))
errorMsg(
"Warning in "
"JetMatchingMadgraph:init: No xqcut");
if (!par.haveParam("ickkw"))
errorMsg(
"Warning in "
"JetMatchingMadgraph:init: No ickkw");
if (!par.haveParam("maxjetflavor"))
errorMsg(
"Warning in "
"JetMatchingMadgraph:init: No maxjetflavor");
if (!par.haveParam("alpsfact"))
errorMsg(
"Warning in "
"JetMatchingMadgraph:init: No alpsfact");
}
}
// Read in FxFx matching parameters
doFxFx = settingsPtr->flag("JetMatching:doFxFx");
nPartonsNow = settingsPtr->mode("JetMatching:nPartonsNow");
qCutME = settingsPtr->parm("JetMatching:qCutME");
qCutMESq = pow(qCutME, 2);
// Read in Madgraph merging parameters
doMerge = settingsPtr->flag("JetMatching:merge");
doShowerKt = settingsPtr->flag("JetMatching:doShowerKt");
qCut = settingsPtr->parm("JetMatching:qCut");
nQmatch = settingsPtr->mode("JetMatching:nQmatch");
clFact = settingsPtr->parm("JetMatching:clFact");
// Read in jet algorithm parameters
jetAlgorithm = settingsPtr->mode("JetMatching:jetAlgorithm");
nJetMax = settingsPtr->mode("JetMatching:nJetMax");
eTjetMin = settingsPtr->parm("JetMatching:eTjetMin");
coneRadius = settingsPtr->parm("JetMatching:coneRadius");
etaJetMax = settingsPtr->parm("JetMatching:etaJetMax");
slowJetPower = settingsPtr->mode("JetMatching:slowJetPower");
// Matching procedure
jetAllow = settingsPtr->mode("JetMatching:jetAllow");
exclusiveMode = settingsPtr->mode("JetMatching:exclusive");
qCutSq = pow(qCut, 2);
etaJetMaxAlgo = etaJetMax;
//performVeto = true;
// If not merging is applied, then we are done
if (!doMerge)
return true;
// Exclusive mode; if set to 2, then set based on nJet/nJetMax
if (exclusiveMode == 2) {
// No nJet or nJetMax, so default to exclusive mode
if (nJetMax < 0) {
errorMsg(
"Warning in JetMatchingMadgraph:init: "
"missing jet multiplicity information; running in exclusive mode");
exclusiveMode = 1;
}
}
// Initialise chosen jet algorithm.
// Currently, this only supports the kT-algorithm in SlowJet.
// Use the QCD distance measure by default.
jetAlgorithm = 2;
slowJet = new SlowJet(slowJetPower, coneRadius, eTjetMin, etaJetMaxAlgo, 2, 2, nullptr, false);
// For FxFx, also initialise jet algorithm to define matrix element jets.
slowJetHard = new SlowJet(slowJetPower, coneRadius, qCutME, etaJetMaxAlgo, 2, 2, nullptr, false);
// To access the DJR's
slowJetDJR = new SlowJet(slowJetPower, coneRadius, qCutME, etaJetMaxAlgo, 2, 2, nullptr, false);
// A special version of SlowJet to handle heavy and other partons
hjSlowJet = new HJSlowJet(slowJetPower, coneRadius, 0.0, 100.0, 1, 2, nullptr, false, true);
// Setup local event records
eventProcessOrig.init("(eventProcessOrig)", particleDataPtr);
eventProcess.init("(eventProcess)", particleDataPtr);
workEventJet.init("(workEventJet)", particleDataPtr);
// Print information
if (MATCHINGDEBUG) {
string jetStr = (jetAlgorithm == 1) ? "CellJet"
: (slowJetPower == -1) ? "anti-kT"
: (slowJetPower == 0) ? "C/A"
: (slowJetPower == 1) ? "kT"
: "unknown";
string modeStr = (exclusiveMode) ? "exclusive" : "inclusive";
cout << endl
<< " *----- Madgraph matching parameters -----*" << endl
<< " | qCut | " << setw(14) << qCut << " |" << endl
<< " | nQmatch | " << setw(14) << nQmatch << " |" << endl
<< " | clFact | " << setw(14) << clFact << " |" << endl
<< " | Jet algorithm | " << setw(14) << jetStr << " |" << endl
<< " | eTjetMin | " << setw(14) << eTjetMin << " |" << endl
<< " | etaJetMax | " << setw(14) << etaJetMax << " |" << endl
<< " | jetAllow | " << setw(14) << jetAllow << " |" << endl
<< " | Mode | " << setw(14) << modeStr << " |" << endl
<< " *-----------------------------------------*" << endl;
}
return true;
}
bool JetMatchingEWKFxFx::doVetoPartonLevelEarly(const Event& event) {
// Sort event using the procedure required at parton level
sortIncomingProcess(event);
// For the shower-kT scheme, do not perform any veto here, as any vetoing
// will already have taken place in doVetoStep.
if (doShowerKt)
return false;
// Debug printout.
if (MATCHINGDEBUG) {
// Begin
cout << endl << "-------- Begin Madgraph Debug --------" << endl;
// Original incoming process
cout << endl << "Original incoming process:";
eventProcessOrig.list();
// Final-state of original incoming process
cout << endl << "Final-state incoming process:";
eventProcess.list();
// List categories of sorted particles
for (size_t i = 0; i < typeIdx[0].size(); i++)
cout << ((i == 0) ? "Light jets: " : ", ") << setw(3) << typeIdx[0][i];
if (typeIdx[0].empty())
cout << "Light jets: None";
for (size_t i = 0; i < typeIdx[1].size(); i++)
cout << ((i == 0) ? "\nHeavy jets: " : ", ") << setw(3) << typeIdx[1][i];
for (size_t i = 0; i < typeIdx[2].size(); i++)
cout << ((i == 0) ? "\nOther: " : ", ") << setw(3) << typeIdx[2][i];
// Full event at this stage
cout << endl << endl << "Event:";
event.list();
// Work event (partons from hardest subsystem + ISR + FSR)
cout << endl << "Work event:";
workEvent.list();
}
// 2) Light/heavy jets: iType = 0 (light jets), 1 (heavy jets)
int iTypeEnd = (typeIdx[2].empty()) ? 2 : 3;
for (int iType = 0; iType < iTypeEnd; iType++) {
// 2a) Find particles which will be passed from the jet algorithm.
// Input from 'workEvent' and output in 'workEventJet'.
jetAlgorithmInput(event, iType);
// Debug printout.
if (MATCHINGDEBUG) {
// Jet algorithm event
cout << endl << "Jet algorithm event (iType = " << iType << "):";
workEventJet.list();
}
// 2b) Run jet algorithm on 'workEventJet'.
// Output is stored in jetMomenta.
runJetAlgorithm();
// 2c) Match partons to jets and decide if veto is necessary
if (matchPartonsToJets(iType) == true) {
// Debug printout.
if (MATCHINGDEBUG) {
cout << endl
<< "Event vetoed"
<< "---------- End MLM Debug ----------" << endl;
}
return true;
}
}
// Debug printout.
if (MATCHINGDEBUG) {
cout << endl
<< "Event accepted"
<< "---------- End MLM Debug ----------" << endl;
}
// If we reached here, then no veto
return false;
}
void JetMatchingEWKFxFx::sortIncomingProcess(const Event& event) {
omitResonanceDecays(eventProcessOrig, true);
clearDJR();
clear_nMEpartons();
// Step-FxFx-1: remove preclustering from FxFx
eventProcess = workEvent;
for (int i = 0; i < 3; i++) {
typeIdx[i].clear();
typeSet[i].clear();
origTypeIdx[i].clear();
}
for (int i = 0; i < eventProcess.size(); i++) {
// Ignore non-final state and default to 'other'
if (!eventProcess[i].isFinal())
continue;
int idx = -1;
int orig_idx = -1;
// Light jets: all gluons and quarks with id less than or equal to nQmatch
if (eventProcess[i].isGluon() || (eventProcess[i].idAbs() <= nQmatch)) {
orig_idx = 0;
if (doFxFx) {
// Crucial point FxFx: MG5 puts the scale of a not-to-be-matched quark 1 MeV lower than scalup. For
// such particles, we should keep the default "2"
idx = (trunc(1000. * eventProcess[i].scale()) == trunc(1000. * infoPtr->scalup())) ? 0 : 2;
} else {
// Crucial point: MG puts the scale of a non-QCD particle to eCM. For
// such particles, we should keep the default "2"
idx = (eventProcess[i].scale() < 1.999 * sqrt(infoPtr->eA() * infoPtr->eB())) ? 0 : 2;
}
}
// Heavy jets: all quarks with id greater than nQmatch
else if (eventProcess[i].idAbs() > nQmatch && eventProcess[i].idAbs() <= ID_TOP) {
idx = 1;
orig_idx = 1;
// Update to include non-SM colored particles
} else if (eventProcess[i].colType() != 0 && eventProcess[i].idAbs() > ID_TOP) {
idx = 1;
orig_idx = 1;
}
if (idx < 0)
continue;
// Store
typeIdx[idx].push_back(i);
typeSet[idx].insert(eventProcess[i].daughter1());
origTypeIdx[orig_idx].push_back(i);
}
// Exclusive mode; if set to 2, then set based on nJet/nJetMax
if (exclusiveMode == 2) {
// Inclusive if nJet == nJetMax, exclusive otherwise
int nParton = origTypeIdx[0].size();
exclusive = (nParton == nJetMax) ? false : true;
// Otherwise, just set as given
} else {
exclusive = (exclusiveMode == 0) ? false : true;
}
// Extract partons from hardest subsystem + ISR + FSR only into
// workEvent. Note no resonance showers or MPIs.
subEvent(event);
// Store things that are necessary to perform the kT-MLM veto externally.
int nParton = typeIdx[0].size();
processSubsetSave.clear();
for (int i = 0; i < nParton; ++i)
processSubsetSave.append(eventProcess[typeIdx[0][i]]);
}
bool JetMatchingEWKFxFx::doVetoProcessLevel(Event& process) {
eventProcessOrig = process;
// Setup for veto if hard ME has too many partons.
// This is done to achieve consistency with the Pythia6 implementation.
// Clear the event of MPI systems and resonace decay products. Store trimmed
// event in workEvent.
sortIncomingProcess(process);
// Veto in case the hard input matrix element already has too many partons.
if (!doFxFx && int(typeIdx[0].size()) > nJetMax)
return true;
if (doFxFx && npNLO() < nJetMax && int(typeIdx[0].size()) > nJetMax)
return true;
// Done
return false;
}
void JetMatchingEWKFxFx::jetAlgorithmInput(const Event& event, int iType) {
// Take input from 'workEvent' and put output in 'workEventJet'
workEventJet = workEvent;
// Loop over particles and decide what to pass to the jet algorithm
for (int i = 0; i < workEventJet.size(); ++i) {
if (!workEventJet[i].isFinal())
continue;
// jetAllow option to disallow certain particle types
if (jetAllow == 1) {
// Remove all non-QCD partons from veto list
if (workEventJet[i].colType() == 0) {
workEventJet[i].statusNeg();
continue;
}
}
// Get the index of this particle in original event
int idx = workEventJet[i].daughter1();
// Start with particle idx, and afterwards track mothers
while (true) {
// Light jets
if (iType == 0) {
// Do not include if originates from heavy jet or 'other'
if (typeSet[1].find(idx) != typeSet[1].end() || typeSet[2].find(idx) != typeSet[2].end()) {
workEventJet[i].statusNeg();
break;
}
// Made it to start of event record so done
if (idx == 0)
break;
// Otherwise next mother and continue
idx = event[idx].mother1();
// Heavy jets
} else if (iType == 1) {
// Only include if originates from heavy jet
if (typeSet[1].find(idx) != typeSet[1].end())
break;
// Made it to start of event record with no heavy jet mother,
// so DO NOT include particle
if (idx == 0) {
workEventJet[i].statusNeg();
break;
}
// Otherwise next mother and continue
idx = event[idx].mother1();
// Other jets
} else if (iType == 2) {
// Only include if originates from other jet
if (typeSet[2].find(idx) != typeSet[2].end())
break;
// Made it to start of event record with no heavy jet mother,
// so DO NOT include particle
if (idx == 0) {
workEventJet[i].statusNeg();
break;
}
// Otherwise next mother and continue
idx = event[idx].mother1();
}
}
}
}
void JetMatchingEWKFxFx::runJetAlgorithm() { ; }
bool JetMatchingEWKFxFx::doVetoStep(int iPos, int nISR, int nFSR, const Event& event) {
// Do not perform any veto if not in the Shower-kT scheme.
if (!doShowerKt)
return false;
// Do nothing for emissions after the first one.
if (nISR + nFSR > 1)
return false;
// Do nothing in resonance decay showers.
if (iPos == 5)
return false;
// Clear the event of MPI systems and resonace decay products. Store trimmed
// event in workEvent.
sortIncomingProcess(event);
// Get (kinematical) pT of first emission
double pTfirst = 0.;
// Get weak bosons, for later checks if the emission is a "QCD emission".
vector<int> weakBosons;
for (int i = 0; i < event.size(); i++) {
if (event[i].id() == 22 && event[i].id() == 23 && event[i].idAbs() == 24)
weakBosons.push_back(i);
}
for (int i = workEvent.size() - 1; i > 0; --i) {
if (workEvent[i].isFinal() && workEvent[i].colType() != 0 &&
(workEvent[i].statusAbs() == 43 || workEvent[i].statusAbs() == 51)) {
// Check if any of the EW bosons are ancestors of this parton. This
// should never happen for the first non-resonance shower emission.
// Check just to be sure.
bool QCDemission = true;
// Get position of this parton in the actual event (workEvent does
// not contain right mother-daughter relations). Stored in daughters.
int iPosOld = workEvent[i].daughter1();
for (int j = 0; i < int(weakBosons.size()); ++i)
if (event[iPosOld].isAncestor(j)) {
QCDemission = false;
break;
}
// Done for a QCD emission.
if (QCDemission) {
pTfirst = workEvent[i].pT();
break;
}
}
}
// Store things that are necessary to perform the shower-kT veto externally.
pTfirstSave = pTfirst;
// Done if only inputs for an external vetoing procedure should be stored.
//if (!performVeto) return false;
// Check veto.
if (doShowerKtVeto(pTfirst))
return true;
// No veto if come this far.
return false;
}
void JetMatchingEWKFxFx::setDJR(const Event& event) {
// Clear members.
clearDJR();
vector<double> result;
// Initialize SlowJetDJR jet algorithm with event
if (!slowJetDJR->setup(event)) {
errorMsg(
"Warning in JetMatchingMadgraph:setDJR"
": the SlowJet algorithm failed on setup");
return;
}
// Cluster in steps to find all hadronic jets
while (slowJetDJR->sizeAll() - slowJetDJR->sizeJet() > 0) {
// Save the next clustering scale.
result.push_back(sqrt(slowJetDJR->dNext()));
// Perform step.
slowJetDJR->doStep();
}
// Save clustering scales in reserve order.
for (int i = int(result.size()) - 1; i >= 0; --i)
DJR.push_back(result[i]);
}
bool JetMatchingEWKFxFx::matchPartonsToJets(int iType) {
// Use different routines for light/heavy/other jets as
// different veto conditions and for clarity
if (iType == 0) {
// Record the jet separations here, also if matchPartonsToJetsLight
// returns preemptively.
setDJR(workEventJet);
set_nMEpartons(origTypeIdx[0].size(), typeIdx[0].size());
// Perform jet matching.
return (matchPartonsToJetsLight() > 0);
} else if (iType == 1) {
return (matchPartonsToJetsHeavy() > 0);
} else {
return (matchPartonsToJetsOther() > 0);
}
}
int JetMatchingEWKFxFx::matchPartonsToJetsLight() {
// Store things that are necessary to perform the kT-MLM veto externally.
workEventJetSave = workEventJet;
// Done if only inputs for an external vetoing procedure should be stored.
//if (!performVeto) return false;
// Count the number of hard partons
int nParton = typeIdx[0].size();
// Initialize SlowJet with current working event
if (!slowJet->setup(workEventJet)) {
errorMsg(
"Warning in JetMatchingMadgraph:matchPartonsToJets"
"Light: the SlowJet algorithm failed on setup");
return NONE;
}
double localQcutSq = qCutSq;
double dOld = 0.0;
// Cluster in steps to find all hadronic jets at the scale qCut
while (slowJet->sizeAll() - slowJet->sizeJet() > 0) {
if (slowJet->dNext() > localQcutSq)
break;
dOld = slowJet->dNext();
slowJet->doStep();
}
int nJets = slowJet->sizeJet();
int nClus = slowJet->sizeAll();
// Debug printout.
if (MATCHINGDEBUG)
slowJet->list(true);
// Count of the number of hadronic jets in SlowJet accounting
int nCLjets = nClus - nJets;
// Get number of partons. Different for MLM and FxFx schemes.
//int nRequested = (doFxFx) ? npNLO() : nParton;
//Step-FxFx-3: Change nRequested subtracting the typeIdx[2] partons
//Exclude the highest multiplicity sample in the case of real emissions and all typeIdx[2]
//npNLO=multiplicity,nJetMax=njmax(shower_card),typeIdx[2]="Weak" jets
int nRequested = (doFxFx && !(npNLO() == nJetMax && npNLO() == (int)(typeIdx[2].size() - 1)))
? npNLO() - typeIdx[2].size()
: nParton;
//Step-FxFx-4:For FxFx veto the real emissions that have only typeIdx=2 partons
//From Step-FxFx-3 they already have negative nRequested, so this step may not be necessary
//Exclude the highest multiplicity sample
if (doFxFx && npNLO() < nJetMax && !typeIdx[2].empty() && npNLO() == (int)(typeIdx[2].size() - 1)) {
return MORE_JETS;
}
//----------------
//Exclude all Weak Jets for matching
//if (doFxFx && typeIdx[2].size()>0) {
// return MORE_JETS;
//} // 2A
//keep only Weak Jets for matching
//if (doFxFx && typeIdx[2].size()==0) {
// return MORE_JETS;
//} // 2B
//keep only lowest multiplicity sample @0
//if (doFxFx && npNLO()==1) {
// return MORE_JETS;
//} // 2C
//keep only highest multiplicity sample @1
//if (doFxFx && npNLO()==0) {
// return MORE_JETS;
//} // 2D
//--------------
// Veto event if too few hadronic jets
if (nCLjets < nRequested)
return LESS_JETS;
// In exclusive mode, do not allow more hadronic jets than partons
if (exclusive && !doFxFx) {
if (nCLjets > nRequested)
return MORE_JETS;
} else {
// For FxFx, in the non-highest multipicity, all jets need to matched to
// partons. For nCLjets > nRequested, this is not possible. Hence, we can
// veto here already.
// if ( doFxFx && nRequested < nJetMax && nCLjets > nRequested )
//Step-FxFx-5:Change the nRequested to npNLO() in the first condition
//Before in Step-FxFx-3 it was nRequested=npNLO() for FxFx
//This way we correctly select the non-highest multipicity regardless the nRequested
if (doFxFx && npNLO() < nJetMax && nCLjets > nRequested)
return MORE_JETS;
// Now continue in inclusive mode.
// In inclusive mode, there can be more hadronic jets than partons,
// provided that all partons are properly matched to hadronic jets.
// Start by setting up the jet algorithm.
if (!slowJet->setup(workEventJet)) {
errorMsg(
"Warning in JetMatchingMadgraph:matchPartonsToJets"
"Light: the SlowJet algorithm failed on setup");
return NONE;
}
// For FxFx, continue clustering as long as the jet separation is above
// qCut.
if (doFxFx) {
while (slowJet->sizeAll() - slowJet->sizeJet() > 0) {
if (slowJet->dNext() > localQcutSq)
break;
slowJet->doStep();
}
// For MLM, cluster into hadronic jets until there are the same number as
// partons.
} else {
while (slowJet->sizeAll() - slowJet->sizeJet() > nParton)
slowJet->doStep();
}
// Sort partons in pT. Update local qCut value.
// Hadronic jets are already sorted in pT.
localQcutSq = dOld;
if (clFact >= 0. && nParton > 0) {
vector<double> partonPt;
partonPt.reserve(nParton);
for (int i = 0; i < nParton; ++i)
partonPt.push_back(eventProcess[typeIdx[0][i]].pT2());
sort(partonPt.begin(), partonPt.end());
localQcutSq = max(qCutSq, partonPt[0]);
}
nJets = slowJet->sizeJet();
nClus = slowJet->sizeAll();
}
// Update scale if clustering factor is non-zero
if (clFact != 0.)
localQcutSq *= pow2(clFact);
Event tempEvent;
tempEvent.init("(tempEvent)", particleDataPtr);
int nPass = 0;
double pTminEstimate = -1.;
// Construct a master copy of the event containing only the
// hardest nParton hadronic clusters. While constructing the event,
// the parton type (ID_GLUON) and status (98,99) are arbitrary.
for (int i = nJets; i < nClus; ++i) {
tempEvent.append(
ID_GLUON, 98, 0, 0, 0, 0, 0, 0, slowJet->p(i).px(), slowJet->p(i).py(), slowJet->p(i).pz(), slowJet->p(i).e());
++nPass;
pTminEstimate = max(pTminEstimate, slowJet->pT(i));
if (nPass == nRequested)
break;
}
int tempSize = tempEvent.size();
// This keeps track of which hadronic jets are matched to parton
vector<bool> jetAssigned;
jetAssigned.assign(tempSize, false);
// This keeps track of which partons are matched to which hadronic
// jets.
vector<vector<bool> > partonMatchesJet;
partonMatchesJet.reserve(nParton);
for (int i = 0; i < nParton; ++i)
partonMatchesJet.push_back(vector<bool>(tempEvent.size(), false));
// Begin matching.
// Do jet matching for FxFx.
// Make sure that the nPartonsNow hardest hadronic jets are matched to any
// of the nPartonsNow (+1) partons. This matching is done by attaching a jet
// from the list of unmatched hadronic jets, and appending a jet from the
// list of partonic jets, one at a time. The partonic jet will be clustered
// with the hadronic jet or the beam if the distance measure is below the
// cut. The hadronic jet is matched once this happens. Otherwise, another
// partonic jet is tried. When a hadronic jet is matched to a partonic jet,
// it is removed from the list of unmatched hadronic jets. This process
// continues until the nPartonsNow hardest hadronic jets are matched to
// partonic jets, or it is not possible to make a match for a hadronic jet.
int iNow = 0;
int nMatched = 0;
while (doFxFx && iNow < tempSize) {
// Check if this shower jet matches any partonic jet.
Event tempEventJet;
tempEventJet.init("(tempEventJet)", particleDataPtr);
for (int i = 0; i < nParton; ++i) {
//// Only assign a parton once.
//for (int j=0; j < tempSize; ++j )
// if ( partonMatchesJet[i][j]) continue;
// Attach a single hadronic jet.
tempEventJet.clear();
tempEventJet.append(ID_GLUON,
98,
0,
0,
0,
0,
0,
0,
tempEvent[iNow].px(),
tempEvent[iNow].py(),
tempEvent[iNow].pz(),
tempEvent[iNow].e());
// Attach the current parton.
Vec4 pIn = eventProcess[typeIdx[0][i]].p();
tempEventJet.append(ID_GLUON, 99, 0, 0, 0, 0, 0, 0, pIn.px(), pIn.py(), pIn.pz(), pIn.e());
// Setup jet algorithm.
if (!slowJet->setup(tempEventJet)) {
errorMsg(
"Warning in JetMatchingMadgraph:matchPartonsToJets"
"Light: the SlowJet algorithm failed on setup");
return NONE;
}
// These are the conditions for the hadronic jet to match the parton
// at the local qCut scale
if (slowJet->iNext() == tempEventJet.size() - 1 && slowJet->jNext() > -1 && slowJet->dNext() < localQcutSq) {
jetAssigned[iNow] = true;
partonMatchesJet[i][iNow] = true;
}
} // End loop over hard partons.
// Veto if the jet could not be assigned to any parton.
if (jetAssigned[iNow])
nMatched++;
// Continue;
++iNow;
}
// Jet matching veto for FxFx
if (doFxFx) {
// if ( nRequested < nJetMax && nMatched != nRequested )
// return UNMATCHED_PARTON;
// if ( nRequested == nJetMax && nMatched < nRequested )
// return UNMATCHED_PARTON;
//Step-FxFx-6:Change the nRequested to npNLO() in the first condition (like in Step-FxFx-5)
//Before in Step-FxFx-3 it was nRequested=npNLO() for FxFx
//This way we correctly select the non-highest multipicity regardless the nRequested
if (npNLO() < nJetMax && nMatched != nRequested)
return UNMATCHED_PARTON;
if (npNLO() == nJetMax && nMatched < nRequested)
return UNMATCHED_PARTON;
}
// Do jet matching for MLM.
// Take the list of unmatched hadronic jets and append a parton, one at
// a time. The parton will be clustered with the "closest" hadronic jet
// or the beam if the distance measure is below the cut. When a hadronic
// jet is matched to a parton, it is removed from the list of unmatched
// hadronic jets. This process continues until all hadronic jets are
// matched to partons or it is not possible to make a match.
iNow = 0;
while (!doFxFx && iNow < nParton) {
Event tempEventJet;
tempEventJet.init("(tempEventJet)", particleDataPtr);
for (int i = 0; i < tempSize; ++i) {
if (jetAssigned[i])
continue;
Vec4 pIn = tempEvent[i].p();
// Append unmatched hadronic jets
tempEventJet.append(ID_GLUON, 98, 0, 0, 0, 0, 0, 0, pIn.px(), pIn.py(), pIn.pz(), pIn.e());
}
Vec4 pIn = eventProcess[typeIdx[0][iNow]].p();
// Append the current parton
tempEventJet.append(ID_GLUON, 99, 0, 0, 0, 0, 0, 0, pIn.px(), pIn.py(), pIn.pz(), pIn.e());
if (!slowJet->setup(tempEventJet)) {
errorMsg(
"Warning in JetMatchingMadgraph:matchPartonsToJets"
"Light: the SlowJet algorithm failed on setup");
return NONE;
}
// These are the conditions for the hadronic jet to match the parton
// at the local qCut scale
if (slowJet->iNext() == tempEventJet.size() - 1 && slowJet->jNext() > -1 && slowJet->dNext() < localQcutSq) {
int iKnt = -1;
for (int i = 0; i != tempSize; ++i) {
if (jetAssigned[i])
continue;
++iKnt;
// Identify the hadronic jet that matches the parton
if (iKnt == slowJet->jNext())
jetAssigned[i] = true;
}
} else {
return UNMATCHED_PARTON;
}
++iNow;
}
// Minimal eT/pT (CellJet/SlowJet) of matched light jets.
// Needed later for heavy jet vetos in inclusive mode.
// This information is not used currently.
if (nParton > 0 && pTminEstimate > 0)
eTpTlightMin = pTminEstimate;
else
eTpTlightMin = -1.;
// Record the jet separations.
setDJR(workEventJet);
// No veto
return NONE;
}
int JetMatchingEWKFxFx::matchPartonsToJetsHeavy() {
// Currently, heavy jets are unmatched
// If there are no extra jets, then accept
// jetMomenta is NEVER used by MadGraph and is always empty.
// This check does nothing.
// Rather, if there is any heavy flavor that is harder than
// what is present at the LHE level, then the event should
// be vetoed.
// if (jetMomenta.empty()) return NONE;
// Count the number of hard partons
int nParton = typeIdx[1].size();
Event tempEventJet(workEventJet);
double scaleF(1.0);
// Rescale the heavy partons that are from the hard process to
// have pT=collider energy. Soft/collinear gluons will cluster
// onto them, leaving a remnant of hard emissions.
for (int i = 0; i < nParton; ++i) {
scaleF = eventProcessOrig[0].e() / workEventJet[typeIdx[1][i]].pT();
tempEventJet[typeIdx[1][i]].rescale5(scaleF);
}
if (!hjSlowJet->setup(tempEventJet)) {
errorMsg(
"Warning in JetMatchingMadgraph:matchPartonsToJets"
"Heavy: the SlowJet algorithm failed on setup");
return NONE;
}
while (hjSlowJet->sizeAll() - hjSlowJet->sizeJet() > 0) {
if (hjSlowJet->dNext() > qCutSq)
break;
hjSlowJet->doStep();
}
int nCLjets(0);
// Count the number of clusters with pT>qCut. This includes the
// original hard partons plus any hard emissions.
for (int idx = 0; idx < hjSlowJet->sizeAll(); ++idx) {
if (hjSlowJet->pT(idx) > qCut)
nCLjets++;
}
// Debug printout.
if (MATCHINGDEBUG)
hjSlowJet->list(true);
// Count of the number of hadronic jets in SlowJet accounting
// int nCLjets = nClus - nJets;
// Get number of partons. Different for MLM and FxFx schemes.
int nRequested = nParton;
// Veto event if too few hadronic jets
if (nCLjets < nRequested) {
if (MATCHINGDEBUG)
cout << "veto : hvy LESS_JETS " << endl;
if (MATCHINGDEBUG)
cout << "nCLjets = " << nCLjets << "; nRequest = " << nRequested << endl;
return LESS_JETS;
}
// In exclusive mode, do not allow more hadronic jets than partons
if (exclusive) {
if (nCLjets > nRequested) {
if (MATCHINGDEBUG)
cout << "veto : excl hvy MORE_JETS " << endl;
return MORE_JETS;
}
}
// No extra jets were present so no veto
return NONE;
}
int JetMatchingEWKFxFx::matchPartonsToJetsOther() {
// Currently, heavy jets are unmatched
// If there are no extra jets, then accept
// jetMomenta is NEVER used by MadGraph and is always empty.
// This check does nothing.
// Rather, if there is any heavy flavor that is harder than
// what is present at the LHE level, then the event should
// be vetoed.
// if (jetMomenta.empty()) return NONE;
// Count the number of hard partons
int nParton = typeIdx[2].size();
Event tempEventJet(workEventJet);
double scaleF(1.0);
// Rescale the heavy partons that are from the hard process to
// have pT=collider energy. Soft/collinear gluons will cluster
// onto them, leaving a remnant of hard emissions.
for (int i = 0; i < nParton; ++i) {
scaleF = eventProcessOrig[0].e() / workEventJet[typeIdx[2][i]].pT();
tempEventJet[typeIdx[2][i]].rescale5(scaleF);
}
if (!hjSlowJet->setup(tempEventJet)) {
errorMsg(
"Warning in JetMatchingMadgraph:matchPartonsToJets"
"Heavy: the SlowJet algorithm failed on setup");
return NONE;
}
while (hjSlowJet->sizeAll() - hjSlowJet->sizeJet() > 0) {
if (hjSlowJet->dNext() > qCutSq)
break;
hjSlowJet->doStep();
}
int nCLjets(0);
// Count the number of clusters with pT>qCut. This includes the
// original hard partons plus any hard emissions.
for (int idx = 0; idx < hjSlowJet->sizeAll(); ++idx) {
if (hjSlowJet->pT(idx) > qCut)
nCLjets++;
}
// Debug printout.
if (MATCHINGDEBUG)
hjSlowJet->list(true);
// Count of the number of hadronic jets in SlowJet accounting
// int nCLjets = nClus - nJets;
// Get number of partons. Different for MLM and FxFx schemes.
int nRequested = nParton;
// Veto event if too few hadronic jets
if (nCLjets < nRequested) {
if (MATCHINGDEBUG)
cout << "veto : other LESS_JETS " << endl;
if (MATCHINGDEBUG)
cout << "nCLjets = " << nCLjets << "; nRequest = " << nRequested << endl;
return LESS_JETS;
}
// In exclusive mode, do not allow more hadronic jets than partons
if (exclusive) {
if (nCLjets > nRequested) {
if (MATCHINGDEBUG)
cout << "veto : excl other MORE_JETS" << endl;
return MORE_JETS;
}
}
// No extra jets were present so no veto
return NONE;
}
bool JetMatchingEWKFxFx::doShowerKtVeto(double pTfirst) {
// Only check veto in the shower-kT scheme.
if (!doShowerKt)
return false;
// Reset veto code
bool doVeto = false;
// Find the (kinematical) pT of the softest (light) parton in the hard
// process.
int nParton = typeIdx[0].size();
double pTminME = 1e10;
for (int i = 0; i < nParton; ++i)
pTminME = min(pTminME, eventProcess[typeIdx[0][i]].pT());
// Veto if the softest hard process parton is below Qcut.
if (nParton > 0 && pow(pTminME, 2) < qCutSq)
doVeto = true;
// For non-highest multiplicity, veto if the hardest emission is harder
// than Qcut.
if (exclusive && pow(pTfirst, 2) > qCutSq) {
doVeto = true;
// For highest multiplicity sample, veto if the hardest emission is harder
// than the hard process parton.
} else if (!exclusive && nParton > 0 && pTfirst > pTminME) {
doVeto = true;
}
// Return veto
return doVeto;
}
// Function to get the current number of partons in the Born state, as
// read from LHE.
int JetMatchingEWKFxFx::npNLO() {
string npIn = infoPtr->getEventAttribute("npNLO", true);
int np = !npIn.empty() ? std::atoi(npIn.c_str()) : -1;
if (np < 0) {
;
} else
return np;
return nPartonsNow;
}
|