1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#include <memory>
#include <algorithm>
#include "GeneratorInterface/Core/interface/GeneratorFilter.h"
#include "GeneratorInterface/ExternalDecays/interface/ExternalDecayDriver.h"
#include "GeneratorInterface/Pythia8Interface/interface/Py8GunBase.h"
namespace gen {
class Py8PtAndLxyGun : public Py8GunBase {
public:
Py8PtAndLxyGun(edm::ParameterSet const&);
~Py8PtAndLxyGun() override {}
bool generatePartonsAndHadronize() override;
const char* classname() const override;
private:
// PtAndLxyGun particle(s) characteristics
double fMinEta;
double fMaxEta;
double fMinPt;
double fMaxPt;
bool fAddAntiParticle;
double fDxyMax;
double fDzMax;
double fLxyMin;
double fLxyMax;
double fLzMax;
double fConeRadius;
double fConeH;
double fDistanceToAPEX;
double fLxyBackFraction;
double fLzOppositeFraction;
};
// implementation
//
Py8PtAndLxyGun::Py8PtAndLxyGun(edm::ParameterSet const& ps) : Py8GunBase(ps) {
edm::ParameterSet pgun_params = ps.getParameter<edm::ParameterSet>("PGunParameters");
fMinEta = pgun_params.getParameter<double>("MinEta");
fMaxEta = pgun_params.getParameter<double>("MaxEta");
fMinPt = pgun_params.getParameter<double>("MinPt");
fMaxPt = pgun_params.getParameter<double>("MaxPt");
fAddAntiParticle = pgun_params.getParameter<bool>("AddAntiParticle");
fDxyMax = pgun_params.getParameter<double>("dxyMax");
fDzMax = pgun_params.getParameter<double>("dzMax");
fLxyMin = pgun_params.getParameter<double>("LxyMin");
fLxyMax = pgun_params.getParameter<double>("LxyMax");
fLzMax = pgun_params.getParameter<double>("LzMax");
fConeRadius = pgun_params.getParameter<double>("ConeRadius");
fConeH = pgun_params.getParameter<double>("ConeH");
fDistanceToAPEX = pgun_params.getParameter<double>("DistanceToAPEX");
fLxyBackFraction = std::clamp(pgun_params.getParameter<double>("LxyBackFraction"), 0., 1.);
fLzOppositeFraction = std::clamp(pgun_params.getParameter<double>("LzOppositeFraction"), 0., 1.);
}
bool Py8PtAndLxyGun::generatePartonsAndHadronize() {
fMasterGen->event.reset();
for (size_t i = 0; i < fPartIDs.size(); i++) {
int particleID = fPartIDs[i]; // this is PDG - need to convert to Py8 ???
double phi = 0;
double dxy = 0;
double pt = 0;
double eta = 0;
double px = 0;
double py = 0;
double pz = 0;
double mass = 0;
double ee = 0;
double vx = 0;
double vy = 0;
double vz = 0;
double lxy = 0;
bool passLoop = false;
while (!passLoop) {
bool passDxy = false;
bool passLz = false;
bool passDz = false;
phi = (fMaxPhi - fMinPhi) * randomEngine().flat() + fMinPhi;
pt = (fMaxPt - fMinPt) * randomEngine().flat() + fMinPt;
px = pt * cos(phi);
py = pt * sin(phi);
lxy = (fLxyMax - fLxyMin) * randomEngine().flat() + fLxyMin;
int sign = 1;
for (int i = 0; i < 10000; i++) {
double vphi = 2 * M_PI * randomEngine().flat();
vx = lxy * cos(vphi);
vy = lxy * sin(vphi);
dxy = -vx * sin(phi) + vy * cos(phi);
sign = 1;
if (fLxyBackFraction > 0 && randomEngine().flat() <= fLxyBackFraction) {
sign = -1;
}
if ((std::abs(dxy) < fDxyMax || fDxyMax < 0) && sign * (vx * px + vy * py) > 0) {
passDxy = true;
break;
}
}
eta = (fMaxEta - fMinEta) * randomEngine().flat() + fMinEta;
double theta = 2. * atan(exp(-eta));
mass = (fMasterGen->particleData).m0(particleID);
double pp = pt / sin(theta); // sqrt( ee*ee - mass*mass );
ee = sqrt(pp * pp + mass * mass);
pz = pp * cos(theta);
float coneTheta = fConeRadius / fConeH;
for (int j = 0; j < 100; j++) {
vz = fLzMax * randomEngine().flat(); // this is abs(vz)
float v0 = vz - fDistanceToAPEX;
if (v0 <= 0 || lxy * lxy / (coneTheta * coneTheta) > v0 * v0) {
passLz = true;
break;
}
}
if (fLzOppositeFraction > 0 && randomEngine().flat() <= fLzOppositeFraction)
sign *= -1;
if (sign * pz < 0)
vz = -vz;
double dz = vz - (vx * cos(phi) + vy * sin(phi)) / tan(theta);
if (std::abs(dz) < fDzMax || fDzMax < 0) {
passDz = true;
}
passLoop = (passDxy && passLz && passDz);
if (passLoop)
break;
}
float time = sqrt(vx * vx + vy * vy + vz * vz);
if (!((fMasterGen->particleData).isParticle(particleID))) {
particleID = std::abs(particleID);
}
if (1 <= std::abs(particleID) && std::abs(particleID) <= 6) // quarks
(fMasterGen->event).append(particleID, 23, 101, 0, px, py, pz, ee, mass);
else if (std::abs(particleID) == 21) // gluons
(fMasterGen->event).append(21, 23, 101, 102, px, py, pz, ee, mass);
// other
else {
(fMasterGen->event).append(particleID, 1, 0, 0, px, py, pz, ee, mass);
int eventSize = (fMasterGen->event).size() - 1;
// -log(flat) = exponential distribution
double tauTmp = -(fMasterGen->event)[eventSize].tau0() * log(randomEngine().flat());
(fMasterGen->event)[eventSize].tau(tauTmp);
}
(fMasterGen->event).back().vProd(vx, vy, vz, time);
// Here also need to add anti-particle (if any)
// otherwise just add a 2nd particle of the same type
// (for example, gamma).
// Added anti-particle has momentum opposite to corresponding
// particle, (px,py,pz)=>(-px,-py,-pz), and production vertex
// symmetric wrt (0,0,0), (vx, vy, vz)=>(-vx, -vy, -vz).
//
if (fAddAntiParticle) {
if (1 <= std::abs(particleID) && std::abs(particleID) <= 6) { // quarks
(fMasterGen->event).append(-particleID, 23, 0, 101, -px, -py, -pz, ee, mass);
} else if (std::abs(particleID) == 21) { // gluons
(fMasterGen->event).append(21, 23, 102, 101, -px, -py, -pz, ee, mass);
} else {
if ((fMasterGen->particleData).isParticle(-particleID)) {
(fMasterGen->event).append(-particleID, 1, 0, 0, -px, -py, -pz, ee, mass);
} else {
(fMasterGen->event).append(particleID, 1, 0, 0, -px, -py, -pz, ee, mass);
}
int eventSize = (fMasterGen->event).size() - 1;
// -log(flat) = exponential distribution
double tauTmp = -(fMasterGen->event)[eventSize].tau0() * log(randomEngine().flat());
(fMasterGen->event)[eventSize].tau(tauTmp);
}
(fMasterGen->event).back().vProd(-vx, -vy, -vz, time);
}
}
if (!fMasterGen->next())
return false;
evtGenDecay();
event() = std::make_unique<HepMC::GenEvent>();
return toHepMC.fill_next_event(fMasterGen->event, event().get());
}
const char* Py8PtAndLxyGun::classname() const { return "Py8PtAndLxyGun"; }
typedef edm::GeneratorFilter<gen::Py8PtAndLxyGun, gen::ExternalDecayDriver> Pythia8PtAndLxyGun;
} // namespace gen
using gen::Pythia8PtAndLxyGun;
DEFINE_FWK_MODULE(Pythia8PtAndLxyGun);
|