Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605

C======================================================================C
C                                                                      C
C      QQQ         GGG       SSSS     JJJJJJJ    EEEEEEE    TTTTTTT    C
C     Q   Q       G   G     S    S          J    E             T       C
C    Q     Q     G          S               J    E             T       C
C    Q     Q     G   GGG     SSSS           J    EEEEE         T       C
C    Q   Q Q     G     G         S          J    E             T       C
C     Q   Q       G   G     S    S     J   J     E             T       C
C      QQQ QQ      GGG       SSSS       JJJ      EEEEEEE       T       C
C                                                                      C
C                                                                      C
C----------------------------------------------------------------------C
C                                                                      C
C                    QUARK - GLUON - STRING - MODEL                    C
C                                                                      C
C                HIGH ENERGY HADRON INTERACTION PROGRAM                C
C                                                                      C
C                                  BY                                  C
C                                                                      C
C                 N. N. KALMYKOV AND S. S. OSTAPCHENKO                 C
C                                                                      C
C               MOSCOW STATE UNIVERSITY,  MOSCOW, RUSSIA               C
C                      e-mail: serg@eas.npi.msu.su                     C
C----------------------------------------------------------------------C
C                 SUBROUTINE VERSION TO BE LINKED WITH                 C
C                       C O N E X  or N E X U S                        C
C                                  BY                                  C
C                               T. PIEROG                              C
C                                 FROM                                 C
C                 SUBROUTINE VERSION TO BE LINKED WITH                 C
C                             C O R S I K A                            C
C               KARLSRUHE  AIR SHOWER SIMULATION PROGRAM               C
C                          WITH MODIFICATIONS                          C
C                                  BY                                  C
C                      D. HECK  IK3 FZK KARLSRUHE                      C
C----------------------------------------------------------------------C
C                 last modification:  Sep. 27, 2003                    C
C               Version qgsjet03cx.f from qgsjet03.f                   C
C----------------------------------------------------------------------C
C  modifications for Corsika are marked by cdh and for Conex by ctp    C
c  (common subroutine name with nexus : add QGS in front of the name   C
C=======================================================================

ctp      SUBROUTINE PSAINI
      SUBROUTINE QGSPSAINI
c Common initialization procedure
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
      CHARACTER *7 TY
      LOGICAL LCALC!,LSECT
********************************************
      DIMENSION EQ(17),MIJ(17,17,4),NIJ(17,17,4),CSJET(17,17,68),
     *CS1(17,17,68),GZ0(2),GZ1(3)
      COMMON /Q_XSECT/  GSECT(10,5,4)
      COMMON /Q_AREA1/  IA(2),ICZ,ICP
      COMMON /Q_AREA5/  RD(2),CR1(2),CR2(2),CR3(2)
********************************************
      COMMON /Q_AREA6/  PI,BM,AM
      COMMON /Q_AREA7/  RP1
      COMMON /Q_AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
      COMMON /Q_AREA15/ FP(5),RQ(5),CD(5)
      COMMON /Q_AREA16/ CC(5)
      COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
      COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
      COMMON /Q_AREA19/ AHL(5)
********************************************
      COMMON /Q_AREA22/ SJV0,FJS0(5,3)
********************************************
      COMMON /Q_AREA23/ RJV(50)
      COMMON /Q_AREA24/ RJS(50,5,10)
      COMMON /Q_AREA27/ FP0(5)
      COMMON /Q_AREA28/ ARR(4)
      COMMON /Q_AREA29/ CSTOT(17,17,68)
      COMMON /Q_AREA30/ CS0(17,17,68)
      COMMON /Q_AREA31/ CSBORN(17,68)
      COMMON /Q_AREA32/ CSQ(17,2,2),CSBQ(17,2,2)
      COMMON /Q_AREA33/ FSUD(10,2)
      COMMON /Q_AREA34/ QRT(10,101,2)
      COMMON /Q_AREA35/ SJV(10,5),FJS(10,5,15)
      COMMON /Q_AREA39/ JCALC
      COMMON /Q_AREA40/ JDIFR
      COMMON /Q_AREA41/ TY(5)
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
********************************************
      COMMON /Q_AREA44/ GZ(10,5,4),GZP(10,5,4)
c Auxiliary common blocks to calculate hadron-nucleus cross-sections
      COMMON /Q_AR1/    ANORM
      COMMON /Q_AR2/    RRR,RRRM
********************************************
cdh 8/10/98
      COMMON /Q_AREA48/ QGSASECT(10,6,4)
cdh 8/12/98
      COMMON /Q_VERSION/VERSION
      SAVE
********************************************
ctp 11/03/03
      character*500 fndat,fnncs
      common/qgsfname/  fndat, fnncs, ifdat, ifncs
      common/qgsnfname/ nfndat, nfnncs
c-------------------------------------------------
        WRITE(MONIOU,100)
 100    FORMAT(' ',
     *           '====================================================',
     *     /,' ','|                                                  |',
     *     /,' ','|           QUARK GLUON STRING JET MODEL           |',
     *     /,' ','|                                                  |',
     *     /,' ','|         HADRONIC INTERACTION MONTE CARLO         |',
     *     /,' ','|                        BY                        |',
     *     /,' ','|        N.N. KALMYKOV AND S.S. OSTAPCHENKO        |',
     *     /,' ','|                                                  |',
     *     /,' ','|            e-mail: serg@eas.npi.msu.su           |',
     *     /,' ','|                                                  |',
     *     /,' ','| Publication to be cited when using this program: |',
     *     /,' ','| N.N. Kalmykov & S.S. Ostapchenko, A.I. Pavlov    |',
     *     /,' ','| Nucl. Phys. B (Proc. Suppl.) 52B (1997) 17       |',
     *     /,' ','|                                                  |',
     *     /,' ','====================================================',
     *     /)
        IF(DEBUG.GE.1)WRITE (MONIOU,210)
210     FORMAT(2X,'QGSPSAINI - MAIN INITIALIZATION PROCEDURE')
cdh
        VERSION = 2003.

c AHL(i) - parameter for the energy sharing procedure (govern leading hadronic state
c inelasticity for primary pion, nucleon, kaon, D-meson, Lambda_C correspondingly)
      AHL(1)=1.D0-2.D0*ARR(1)
      AHL(2)=1.D0-ARR(1)-ARR(2)
      AHL(3)=1.D0-ARR(1)-ARR(3)
      AHL(4)=1.D0-ARR(1)-ARR(4)
      AHL(5)=AHL(2)+ARR(1)-ARR(4)

c-------------------------------------------------
c 1/CC(i) = C_i - shower enhancement coefficients for one vertex
c (C_ab=C_a*C_b) (i - ICZ)
      CC(2)=1.D0/DSQRT(CD(2))
      CC(1)=1.D0/CC(2)/CD(1)
      CC(3)=1.D0/CC(2)/CD(3)
      CC(4)=1.D0/CC(2)/CD(4)
      CC(5)=1.D0/CC(2)/CD(5)

c FP0(i) - vertex constant (FP_ij=FP0_i*FP0_j) for pomeron-hadron interaction (i - ICZ)
      FP0(2)=DSQRT(FP(2))
      FP0(1)=FP(1)/FP0(2)
      FP0(3)=FP(3)/FP0(2)
      FP0(4)=FP(4)/FP0(2)
      FP0(5)=FP(5)/FP0(2)

c SH - hard interaction effective squared (SH=pi*R_h^2, R_h^2=4/Q0^2)
      SH=4.D0/QT0*PI
c Auxiliary constants for the hard interaction
      AQT0=DLOG(4.D0*QT0)
      QLOG=DLOG(QT0/ALM)
      QLL=DLOG(QLOG)

********************************************
      IF(IFDAT.NE.1)THEN
        INQUIRE(FILE='QGSDAT01',EXIST=LCALC)
      ELSE                                                  !ctp
        INQUIRE(FILE=FNDAT(1:NFNDAT),EXIST=LCALC)
      ENDIF
      IF(LCALC)then
        IF(DEBUG.GE.1)WRITE (MONIOU,211)
211     FORMAT(2X,'PSAINI: HARD CROSS SECTION RATIOS READOUT FROM THE'
     *    ,' FILE QGSDAT01')
        IF(IFDAT.NE.1)THEN
          OPEN(1,FILE='QGSDAT01',STATUS='OLD')
        ELSE                                                  !ctp
          OPEN(IFDAT,FILE=FNDAT(1:NFNDAT),STATUS='OLD')
        ENDIF
        READ (1,*)CSBORN,CS0,CSTOT,CSQ,CSBQ,
     *  FSUD,QRT,SJV,FJS,RJV,RJS,GZ,GZP,GSECT
        CLOSE(1)
      ELSE
********************************************

ctp        IF(DEBUG.GE.1)WRITE (MONIOU,201)
        WRITE (MONIOU,201)
201     FORMAT(2X,'QGSPSAINI: HARD CROSS SECTIONS CALCULATION')
c--------------------------------------------------
c Hard pomeron inclusive cross sections calculation
c--------------------------------------------------
c EQ(I) - energy squared tabulation (Q0^2, 4*Q0^2, ...)
      DO 1 I=1,17
1     EQ(I)=QT0*4.D0**FLOAT(I-1)

      DO 2 I=1,17
c QI - effective momentum (Qt**2/(1-z)**2) cutoff for the Born process
      QI=EQ(I)
c M, L define parton types (1-g, 2-q)
      DO 2 M=1,2
      DO 2 L=1,2
c K defines c.m. energy squared for the process (for current energy tabulation)
      DO 2 K=1,17
      K1=K+17*(M-1)+34*(L-1)
      IF(K.LE.I.OR.K.EQ.2)THEN
        CSBORN(I,K1)=0.D0
      ELSE
c SK - c.m. energy squared for the hard interaction
        SK=EQ(K)
c CSBORN(I,K1) - Born cross-section (2->2 process) - procedure QGSPSBORN
        CSBORN(I,K1)=QGSPSBORN(QI,SK,M-1,L-1)
      ENDIF
2     CONTINUE

c Cross-sections initialization
      DO 3 I=1,17
      DO 3 J=1,17
      N=MAX(I,J)
      DO 3 M=1,2
      DO 3 L=1,2
      ML=M+2*L-2
      DO 3 K=1,17
      K1=K+17*(M-1)+34*(L-1)
      CSJET(I,J,K1)=0.D0
      IF(K.LE.N.OR.K.EQ.2)THEN
        CSTOT(I,J,K1)=-80.D0
        CS0(I,J,K1)=-80.D0
        MIJ(I,J,ML)=K+1
        NIJ(I,J,ML)=K+1
      ELSE
        CSTOT(I,J,K1)=DLOG(CSBORN(N,K1))
        CS0(I,J,K1)=CSTOT(I,J,K1)
      ENDIF
3     CONTINUE

c N-maximal number of ladder runs taken into account
      N=2
4     CONTINUE
        IF(DEBUG.GE.2)WRITE (MONIOU,202)N,EQ(MIJ(1,1,1)),EQ(NIJ(1,1,1))
202     FORMAT(2X,'PSAINI: NUMBER OF LADDER RUNS TO BE CONSIDERED:',I2/
     *  4X,'MINIMAL MASSES SQUARED FOR THE UNORDERED AND STRICTLY',
     *  ' ORDERED LADDERS:'/4X,E10.3,3X,E10.3)
      DO 6 I=1,17
c QI - effective momentum cutoff for upper end of the ladder
      QI=EQ(I)
      DO 6 J=1,17
c QJ - effective momentum cutoff for lower end of the ladder
      QJ=EQ(J)
c QQ - maximal effective momentum cutoff
      QQ=MAX(QI,QJ)
c S2MIN - minimal energy squared for 2->2 subprocess
      S2MIN=MAX(QQ,4.D0*QT0)
      SM=DSQRT(QT0/S2MIN)
c SMIN - minimal energy squared for 2->3 subprocess
      SMIN=S2MIN*(1.D0+SM)/(1.D0-SM)

c M, L define parton types (1-g, 2-q)
      DO 6 M=1,2
      DO 6 L=1,2
      ML=M+2*L-2
c KMIN corresponds to minimal energy at which more runs are to be considered -
c stored in array NIJ(I,J,ML) - for strictly ordered ladder
      KMIN=NIJ(I,J,ML)
      IF(KMIN.LE.17)THEN
        DO 5 K=KMIN,17
        SK=EQ(K)
        IF(SK.LE.SMIN)THEN
          NIJ(I,J,ML)=NIJ(I,J,ML)+1
        ELSE
          K1=K+17*(M-1)+34*(L-1)
c CS1(I,J,K1) - cross-section for strictly ordered ladder (highest virtuality run
c is the lowest one) - procedure QGSPSJET1
          CS1(I,J,K1)=QGSPSJET1(QI,QJ,SK,S2MIN,M-1,L)
        ENDIF
5       CONTINUE
      ENDIF
6     CONTINUE

      DO 8 I=1,17
      DO 8 J=1,17
      DO 8 M=1,2
      DO 8 L=1,2
      ML=M+2*L-2
      KMIN=NIJ(I,J,ML)
      IF(KMIN.LE.17)THEN
        DO 7 K=KMIN,17
        K1=K+17*(M-1)+34*(L-1)
c CSJ - cross-section for strictly ordered ladder (highest virtuality run is the
c lowest one) - Born contribution is added
        CSJ=CS1(I,J,K1)+CSBORN(MAX(I,J),K1)
        IF(DEBUG.GE.2)WRITE (MONIOU,204)CSJ,EXP(CS0(I,J,K1))
204     FORMAT(2X,'PSAINI: NEW AND OLD VALUES OF THE CONTRIBUTION',
     *  ' OF THE STRICTLY ORDERED LADDER:'/4X,E10.3,3X,E10.3)
        IF(CSJ.EQ.0.D0.OR.ABS(1.D0-EXP(CS0(I,J,K1))/CSJ).LT.1.D-2)THEN
               NIJ(I,J,ML)=NIJ(I,J,ML)+1
        ELSE
c CS0(I,J,K1) - cross-section logarithm for strictly ordered ladder
          CS0(I,J,K1)=DLOG(CSJ)
        ENDIF
7       CONTINUE
      ENDIF
8     CONTINUE

      DO 10 I=1,17
      QI=EQ(I)
      DO 10 J=1,17
      QJ=EQ(J)
      QQ=MAX(QI,QJ)
      S2MIN=MAX(QQ,4.D0*QT0)
      SM=DSQRT(QT0/S2MIN)
c SMIN - minimal energy squared for 2->3 subprocess
      SMIN=S2MIN*(1.D0+SM)/(1.D0-SM)

      DO 10 M=1,2
      DO 10 L=1,2
      ML=M+2*L-2
c KMIN corresponds to minimal energy at which more runs are to be considered
c stored in array MIJ(I,J,ML) - for any ordering in the ladder
      KMIN=MIJ(I,J,ML)
      IF(KMIN.LE.17)THEN
        DO 9 K=KMIN,17
        SK=EQ(K)
        IF(SK.LE.SMIN)THEN
          MIJ(I,J,ML)=MIJ(I,J,ML)+1
        ELSE
          K1=K+17*(M-1)+34*(L-1)
c CS1(I,J,K1) - cross-section for any ordering in the ladder (highest virtuality
c run is somewhere in the middle; runs above and below it are strictly ordered
c towards highest effective momentum run) - procedure QGSPSJET
          CS1(I,J,K1)=QGSPSJET(QI,QJ,SK,S2MIN,M-1,L)
        ENDIF
9       CONTINUE
      ENDIF
10    CONTINUE

      DO 12 I=1,17
      DO 12 J=1,17
      DO 12 M=1,2
      DO 12 L=1,2
      ML=M+2*L-2
c KMIN corresponds to minimal energy at which more runs are to be considered
      KMIN=MIJ(I,J,ML)
      IF(KMIN.LE.17)THEN
        DO 11 K=KMIN,17
        K1=K+17*(M-1)+34*(L-1)
        K2=K+17*(L-1)+34*(M-1)
        CSJ=CS1(I,J,K1)+EXP(CS0(J,I,K2))
        IF(CSJ.EQ.0.D0.OR.ABS(1.D0-EXP(CSTOT(I,J,K1))/CSJ).LT.1.D-2)
     *  MIJ(I,J,ML)=MIJ(I,J,ML)+1
        IF(DEBUG.GE.2)WRITE (MONIOU,203)CSJ,EXP(CSTOT(I,J,K1))
203     FORMAT(2X,'PSAINI: NEW AND OLD VALUES OF THE UNORDERED LADDER',
     *  ' CROSS SECTION:'/4X,E10.3,3X,E10.3)
11      CSTOT(I,J,K1)=DLOG(CSJ)
      ENDIF
12    CONTINUE

c One more run
      N=N+1
      DO 13 L=1,4
13    IF(MIJ(1,1,L).LE.17.OR.NIJ(1,1,L).LE.17)GOTO 4

c Logarithms of the Born cross-section are calculated - to be interpolated in the
c QGSPSBINT procedure
      DO 14 I=1,17
      DO 14 K=1,17
      DO 14 M=1,2
      DO 14 L=1,2
      K1=K+17*(M-1)+34*(L-1)
      IF(K.LE.I.OR.K.EQ.2)THEN
        CSBORN(I,K1)=-80.D0
      ELSE
        CSBORN(I,K1)=DLOG(CSBORN(I,K1))
      ENDIF
14    CONTINUE

c Total and Born hard cross-sections logarithms for minimal cutoff (QT0) - to be
c interpolated in the PSJINT0 procedure
      DO 15 M=1,2
      DO 15 L=1,2
      DO 15 K=1,17
      IF(K.LE.2)THEN
        CSQ(K,M,L)=-80.D0
        CSBQ(K,M,L)=-80.D0
      ELSE
        K1=K+17*(M-1)+34*(L-1)
        CSBQ(K,M,L)=CSBORN(1,K1)
        CSQ(K,M,L)=CSTOT(1,1,K1)
      ENDIF
15    CONTINUE

c-------------------------------------------------
c FSUD(K,M)=-ln(SUD) - timelike Sudakov formfactor logarithm - procedure
c PSUDT(QMAX,M-1), M=1 - g, M=2 - q
      DO 17 M=1,2
      FSUD(1,M)=0.D0
      DO 17 K=2,10
c QMAX is the maximal effective momentum ( Qt**2/z**2/(1-z)**2 in case of the timelike
c evolution )
      QMAX=QTF*4.D0**(1.D0+K)
17    FSUD(K,M)=PSUDT(QMAX,M-1)

c QRT(K,L,M) - effective momentum logarithm for timelike branching ( ln QQ/16/QTF )
c for given QMAX (defined by K, QLMAX = ln QMAX/16/QTF ) and a number
c of random number values (defined by L) - to be interpolated by the PSQINT
c procedure; M=1 - g, M=2 - q
      DO 18 M=1,2
      DO 18 K=1,10
      QLMAX=1.38629D0*(K-1)
      QRT(K,1,M)=0.D0
      QRT(K,101,M)=QLMAX
      DO 18 I=1,99
      IF(K.EQ.1)THEN
        QRT(K,I+1,M)=0.D0
      ELSE
        QRT(K,I+1,M)=PSROOT(QLMAX,.01D0*I,M)
      ENDIF
18    CONTINUE
c-------------------------------------------------

        IF(DEBUG.GE.2)WRITE (MONIOU,205)
205    FORMAT(2X,'QGSPSAINI: PRETABULATION OF THE INTERACTION EIKONALS')
c-------------------------------------------------
************************************************************************
c-------------------------------------------------
c Interaction cross sections
c Factors for interaction eikonals calculation
c (convolution of the hard cross-sections with partons structure functions)
c - to be used in the PSPSFAZ procedure
c-------------------------------------------------
      IA(1)=1
c-------------------------------------------------
      DO 21 IE=1,10
c Energy of the interaction (per nucleon)
      E0N=10.D0**IE
c-------------------------------------------------
c Energy dependent factors:
c WP0, WM0 - initial light cone momenta for the interaction (E+-p)
      S=2.D0*E0N*AMN
c Y0 - total rapidity range for the interaction
      Y0=DLOG(S)

c Type of the incident hadron (icz = 1: pion, 2: nucleon, 3: kaon, etc
      DO 21 ICZ=1,5
c RS - soft pomeron elastic scattering slope (lambda_ab)
      RS=RQ(ICZ)+ALFP*Y0
c RS0 - initial slope (sum of the pomeron-hadron vertices slopes squared - R_ab)
      RS0=RQ(ICZ)
c FS - factor for pomeron eikonal calculation
c                            (gamma_ab * s**del /lambda_ab * C_ab
      FS=FP(ICZ)*EXP(Y0*DEL)/RS*CD(ICZ)
c RP1 - factor for the impact parameter dependence of the eikonal ( in fm^2 )
      RP1=RS*4.D0*.0391D0/AM**2
c Factor for cross-sections calculation ( in mb )
      G0=PI*RP1/CD(ICZ)*AM**2*10.D0
c SJV - valence-valence cross-section (divided by 8*pi*lambda_ab)
      SJV(IE,ICZ)=QGSPSHARD(S,ICZ)
      SJV0=SJV(IE,ICZ)

      DO 19 I=1,5
      DO 19 M=1,3
      Z=.2D0*I
c Eikonals for gluon-gluon and valence-gluon semihard interactions
c (m=1 - gg, 2 - qg, 3 - gq);
c Z - impact parameter factor ( exp(-b**2/R_p) )
      M1=M+3*(ICZ-1)
      FJS(IE,I,M1)=DLOG(QGSPSFSH(S,Z,ICZ,M-1)/Z)
      FJS0(I,M)=FJS(IE,I,M1)
19    CONTINUE

      DO 20 IIA=1,4
c Target mass number IA(2)
      IA(2)=4**(IIA-1)
      IF(DEBUG.GE.1)WRITE (MONIOU,206)E0N,TY(ICZ),IA(2)
206   FORMAT(2X,'QGSPSAINI: INITIAL PARTICLE ENERGY:',E10.3,2X,
     *'ITS TYPE:',A7,2X,'TARGET MASS NUMBER:',I2)
c-------------------------------------------------
c Nuclear radii
      IF(IA(2).GT.10)THEN
c RD - Wood-Saxon density radius (fit to the data of Murthy et al.)
        RD(2)=0.7D0*FLOAT(IA(2))**.446/AM
      ELSE
c RD - gaussian density radius (for light nucleus)
        RD(2)=.9D0*FLOAT(IA(2))**.3333/AM
      ENDIF

      IF(IA(2).EQ.1)THEN
c Hadron-proton interaction
c BM - impact parameter cutoff value
        BM=2.D0*DSQRT(RP1)
c XXFZ - impact parameter integration for the hadron-nucleon interaction eikonal;
c GZ0 - total and absorptive cross-sections (up to a factor); first parameter is
c used only in case of hadron-nucleus interaction (to make convolution with target
c nucleus profile function)
        CALL XXFZ(0.D0,GZ0)
        if (debug .ge.1) write (moniou,*)gz0
c GTOT - total cross-section
        GTOT=G0*GZ0(1)
c GABS - cut pomerons cross-section
        GABS=G0*GZ0(2)*.5D0
c GD0 - cross-section for the cut between pomerons
        GD0=GTOT-GABS
c GDP - projectile diffraction cross section
        GDP=(1.D0-CC(ICZ))*CC(2)*GD0
c GDT - target diffraction cross section
        GDT=(1.D0-CC(2))*CC(ICZ)*GD0
c  GDD - double diffractive cross section
        GDD=(1.D0-CC(ICZ))*(1.D0-CC(2))*GD0
c GIN - inelastic cross section
        GIN=GABS+GDP+GDT+GDD
        GEL=GD0*CC(ICZ)*CC(2)
c
        IF(DEBUG.GE.1)WRITE (MONIOU,225)GTOT,GIN,GEL,GDP,GDT,GDD
c
225     FORMAT(2X,'QGSPSAINI: HADRON-PROTON CROSS SECTIONS:'/
     *  4X,'GTOT=',E10.3,2X,'GIN=',E10.3,2X,'GEL=',E10.3/4X,
     *  'GDIFR_PROJ=',E10.3,2X,'GDIFR_TARG=',E10.3,2X,
     *  'G_DOUBLE_DIFR',E10.3)
c GZ - probability to have target diffraction
        GZ(IE,ICZ,IIA)=GDT/GIN
        GZP(IE,ICZ,IIA)=(GDP+GDD)/GIN   ! so00
C??????
        GSECT(IE,ICZ,IIA)=LOG(GIN)
C??????
      ELSE

c Hadron-nucleus interaction
c BM - impact parameter cutoff value
        BM=RD(2)+DLOG(29.D0)
c RRR - Wood-Saxon radius for the target nucleus
        RRR=RD(2)
c RRRM - auxiliary parameter for numerical integration
        RRRM=RRR+DLOG(9.D0)
c ANORM - nuclear density normalization factor multiplied by RP1
        ANORM=1.5D0/PI/RRR**3/(1.D0+(PI/RRR)**2)*RP1

c GAU(GZ) - cross sections calculation ( integration over impact parameters less than
c BM )
        CALL XXGAU(GZ1)
c GAU1(GZ) - cross sections calculation ( integration over impact
c parameters greater than BM )
        CALL XXGAU1(GZ1)
c GIN - total inelastic cross section
        GIN=GZ1(1)+GZ1(2)+GZ1(3)
c
        IF(DEBUG.GE.1)WRITE (MONIOU,224)
     *  GIN*10.D0,GZ1(1)*10.D0,GZ1(2)*10.D0
c
224     FORMAT(2X,'QGSPSAINI: HADRON-NUCLEUS CROSS SECTIONS:'/
     *  4X,'GIN=',E10.3,2X,'GDIFR_TARG=',E10.3,2X,
     *  'GDIFR_PROJ=',E10.3)
c GZ - probability to have target diffraction
        GZ(IE,ICZ,IIA)=GZ1(1)/GIN
        GZP(IE,ICZ,IIA)=GZ1(2)/GIN   ! so00
C??????
        GIN=GIN*10.
        GSECT(IE,ICZ,IIA)=LOG(GIN)
C??????
      ENDIF
20    CONTINUE
21    CONTINUE

c Rejection functions calculation - to be interpolated in the RJINT procedure
      DO 23 I=1,50
c Rapidity range tabulation for the hard interaction
      YJ=AQT0+.5D0*I
c Rejection function for valence quark energy distribution
      RJV(I)=PSREJV(EXP(YJ))

      DO 22 J=1,5
      DO 22 M=1,2
      Z=.2D0*J
      DO 22 ICZ=1,5
c RS0 - initial slope (sum of the pomeron-hadron vertices slopes squared - R_ab)
      RS0=RQ(ICZ)
      M1=M+2*(ICZ-1)
c Rejection function for semihard block energy distribution  (m=1 - gg,
c 2 - qg)
      RJS(I,J,M1)=PSREJS(EXP(YJ),Z,M-1)
22    CONTINUE
23    CONTINUE

ctp        IF(DEBUG.GE.1)WRITE (MONIOU,212)
        WRITE (MONIOU,212)
212     FORMAT(2X,'PSAINI: HARD CROSS SECTIONS ARE WRITTEN TO THE FILE'
     *  ,' QGSDAT01')
        IF(IFDAT.NE.1)THEN
          OPEN(1,FILE='QGSDAT01',STATUS='unknown')
        ELSE                                                  !ctp
          OPEN(IFDAT,FILE=FNDAT(1:NFNDAT),STATUS='unknown')
        ENDIF
        WRITE (1,*)CSBORN,CS0,CSTOT,CSQ,CSBQ,
     *  FSUD,QRT,SJV,FJS,RJV,RJS,GZ,GZP,GSECT
        CLOSE(1)
      ENDIF
************************************************************************

cdh 8/10/98
c Nuclear cross sections
      IF(IFNCS.NE.2)THEN
        INQUIRE(FILE='SECTNU',EXIST=LCALC)
      ELSE                                                  !ctp
        INQUIRE(FILE=FNNCS(1:NFNNCS),EXIST=LCALC)
      ENDIF
      IF(LCALC)then
        IF(DEBUG.GE.1)WRITE (MONIOU,208)
208     FORMAT(2X,'PSAINI: NUCLEAR CROSS SECTIONS READOUT FROM THE FILE'
     *  ,' SECTNU')
        IF(IFNCS.NE.2)THEN
          OPEN(2,FILE='SECTNU',STATUS='OLD')
        ELSE                                                  !ctp
          OPEN(IFNCS,FILE=FNNCS(1:NFNNCS),STATUS='OLD')
        ENDIF
        READ (2,*)QGSASECT
        CLOSE(2)
      ELSE
cdh     NITER=1000          !NUMBER OF ITERATIONS
        NITER=5000          !NUMBER OF ITERATIONS
        DO IE=1,10
          E0N=10.D0**IE
        DO IIA1=1,6
          IAP=2**IIA1
        DO IIA2=1,4
          IAT=4**(IIA2-1)
ctp          IF(DEBUG.GE.1)WRITE (MONIOU,207)E0N,IAP,IAT
          WRITE (MONIOU,207)E0N,IAP,IAT
207       FORMAT(2X,'QGSPSAINI: INITIAL NUCLEUS ENERGY:',E10.3,2X,
     *    'PROJECTILE MASS:',I2,2X,'TARGET MASS:',I2)
          CALL XXAINI(E0N,2,IAP,IAT)
          CALL CROSSC(NITER,GTOT,GPROD,GABS,GDD,GQEL,GCOH)
          IF(DEBUG.GE.1)WRITE (MONIOU,209)
     *    GTOT,GPROD,GABS,GDD,GQEL,GCOH
c         WRITE (*,*)GTOT,GPROD
209       FORMAT(2X,'GTOT',D10.3,'  GPROD',D10.3,' GABS',D10.3/2X,
     *    'GDD',D10.3,'  GQEL',D10.3,' GCOH',D10.3)
          QGSASECT(IE,IIA1,IIA2)=LOG(GPROD)
        ENDDO
        ENDDO
        ENDDO
        IF(IFNCS.NE.2)THEN
          OPEN(2,FILE='SECTNU',STATUS='UNKNOWN')
        ELSE                                                  !ctp
          OPEN(IFNCS,FILE=FNNCS(1:NFNNCS),STATUS='UNKNOWN')
        ENDIF
        WRITE (2,*)QGSASECT
        CLOSE(2)
      ENDIF
cdh  end
      IF(DEBUG.GE.3)WRITE (MONIOU,218)
218   FORMAT(2X,'QGSPSAINI - END')
      RETURN
      END
C=======================================================================

        FUNCTION PSAPINT(X,J,L)
c PSAPINT - integrated Altarelli-Parisi function
c X - light cone momentum share value,
c J - type of initial parton (0 - g, 1 - q)
c L - type of final parton (0 - g, 1 - q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)X,J,L
201     FORMAT(2X,'PSAPINT: X=',E10.3,2X,'J= ',I1,2X,'L= ',I1)
        IF(J.EQ.0)THEN
          IF(L.EQ.0)THEN
            PSAPINT=6.D0*(DLOG(X/(1.D0-X))-X**3/3.D0+X**2/2.D0-2.D0*X)
          ELSE
            PSAPINT=3.D0*(X+X**3/1.5D0-X*X)
          ENDIF
        ELSE
          IF(L.EQ.0)THEN
            PSAPINT=(DLOG(X)-X+.25D0*X*X)/.375D0
          ELSE
            Z=1.D0-X
            PSAPINT=-(DLOG(Z)-Z+.25D0*Z*Z)/.375D0
          ENDIF
        ENDIF
        IF(DEBUG.GE.2)WRITE (MONIOU,202)PSAPINT
202     FORMAT(2X,'PSAPINT=',E10.3)
        RETURN
        END
C=======================================================================

      SUBROUTINE PSASET
c Common model parameters setting
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
      CHARACTER*7 TY
      COMMON /Q_AREA15/ FP(5),RQ(5),CD(5)
      COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
      COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
      COMMON /Q_AREA25/ AHV(5)
      COMMON /Q_AREA26/ FACTORK
      COMMON /Q_AREA41/ TY(5)
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      COMMON /Q_QGSNEX1/ XA,XB,BQGS,BMAXQGS,BMAXNEX,BMINNEX     !ctp
      DIMENSION XA(210,3),XB(210,3)
      SAVE

        IF(DEBUG.GE.1)WRITE (MONIOU,210)
210     FORMAT(2X,'PSASET - COMMON MODEL PARAMETERS SETTING')

      BQGS=0.d0            !ctp used to link with nexus
      BMAXQGS=0.d0         !ctp used to link with nexus
      BMAXNEX=-1.d0         !ctp used to link with nexus
      BMINNEX=0.d0         !ctp used to link with nexus

c Soft pomeron parameters:
c DEL - overcriticity,
c ALFP - trajectory slope;
c FP(i) - vertices for pomeron-hadrons interaction (gamma(i)*gamma(proton)),
c RQ(i) - vertices slopes (R(i)**2+R(proton)**2),
c CD(i) - shower enhancement coefficients
c (i=1,...5 - pion,proton,kaon,D-meson,Lambda_C ),
c (Kaidalov et al., Sov.J.Nucl.Phys.,1984 - proton and pion parameters)
      DEL=.07D0
      ALFP=.21D0

      FP(1)=2.43D0
      RQ(1)=2.4D0
      CD(1)=1.6D0

      FP(2)=3.64D0
      RQ(2)=3.56D0
      CD(2)=1.5D0

      FP(3)=1.75D0
      RQ(3)=2.D0
      CD(3)=1.7D0

      FP(4)=1.21D0
      RQ(4)=1.78D0
      CD(4)=2.0D0

      FP(5)=2.43D0
      RQ(5)=2.4D0
      CD(5)=2.0D0

c-------------------------------------------------
c Hard interaction parameters:
c ALM  - Lambda_QCD squared,
c QT0  - Q**2 cutoff,
c RR   - vertex constant square for soft pomeron interaction with the hard block (r**2),;
c BET  - gluon structure function parameter for the soft pomeron ((1-x)**BET),
c AMJ0 - jet mass,
c QTF  - Q**2 cutoff for the timelike evolution,
c FACTORK - K-factor value;
c DELH is not a parameter of the model; it is used only for energy sharing
c procedure - initially energy is shared according to s**DELH dependence
c for the hard interaction cross-section and then rejection is used according
c to real Sigma_hard(s) dependence.
      ALM=.04D0
      RR=.35D0     !  produces 76 mbarn for p-pbar at Tevatron energies
cdh   RR=.53D0     !  produces 80 mbarn for p-pbar at Tevatron energies
      QT0=4.D0
      BET=1.D0
      DELH=0.25D0
      AMJ0=0.D0
      QTF=.5D0
      FACTORK=2.D0

c-------------------------------------------------
c Valence quark structure functions for the hard scattering
c (~1/sqrt(x)*(1-x)**AHV(i), i=1,...5 corresponds to pion, nucleon etc.)
      AHV(1)=1.5D0
      AHV(2)=2.5D0
      AHV(3)=2.D0
      AHV(4)=4.D0
      AHV(5)=5.D0
c Initial particle types
      TY(1)='pion   '
      TY(2)='nucleon'
      TY(3)='kaon   '
      TY(4)='D-meson'
      TY(5)='LambdaC'
      RETURN
      END
C=======================================================================

        FUNCTION QGSPSBINT(QQ,S,M,L)
C QGSPSBINT - Born cross-section interpolation
c QQ - effective momentum cutoff for the scattering,
c S - total c.m. energy squared for the scattering,
c M - parton type at current end of the ladder (1 - g, 2 - q)
c L - parton type at opposite end of the ladder (1 - g, 2 - q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION WI(3),WK(3)
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA31/ CSJ(17,68)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,S,M,L
201     FORMAT(2X,'QGSPSBINT: QQ=',E10.3,2X,'S= ',E10.3,2X,'M= ',I1,2X,
     *  'L= ',I1)
        QGSPSBINT=0.D0
        IF(S.LE.MAX(4.D0*QT0,QQ))THEN
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSBINT
202     FORMAT(2X,'QGSPSBINT=',E10.3)
          RETURN
        ENDIF

        ML=17*(M-1)+34*(L-1)
        QLI=DLOG(QQ/QT0)/1.38629d0
        SL=DLOG(S/QT0)/1.38629d0
        SQL=SL-QLI
        I=INT(QLI)
        K=INT(SL)
        IF(I.GT.13)I=13

        IF(SQL.GT.10.D0)THEN
          IF(K.GT.14)K=14
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WK(2)=SL-K
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          DO 1 I1=1,3
          DO 1 K1=1,3
1         QGSPSBINT=QGSPSBINT+CSJ(I+I1,K+K1+ML)*WI(I1)*WK(K1)
          QGSPSBINT=EXP(QGSPSBINT)
        ELSEIF(SQL.LT.1.D0.AND.I.NE.0)THEN
          SQ=(S/QQ-1.D0)/3.D0
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)

          DO 2 I1=1,3
          I2=I+I1
          K2=I2+1+ML
2         QGSPSBINT=QGSPSBINT+CSJ(I2,K2)*WI(I1)
          QGSPSBINT=EXP(QGSPSBINT)*SQ
        ELSEIF(K.EQ.1)THEN
          SQ=(S/QT0/4.D0-1.D0)/3.D0
          WI(2)=QLI
          WI(1)=1.D0-QLI

          DO 3 I1=1,2
3         QGSPSBINT=QGSPSBINT+CSJ(I1,3+ML)*WI(I1)
          QGSPSBINT=EXP(QGSPSBINT)*SQ
        ELSEIF(K.LT.15)THEN
          KL=INT(SQL)
          IF(I+KL.GT.12)I=12-KL
          IF(I+KL.EQ.1)KL=2
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WK(2)=SQL-KL
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          DO 4 I1=1,3
          I2=I+I1
          DO 4 K1=1,3
          K2=I2+KL+K1-1+ML
4         QGSPSBINT=QGSPSBINT+CSJ(I2,K2)*WI(I1)*WK(K1)
          QGSPSBINT=EXP(QGSPSBINT)

        ELSE
          K=15
          IF(I.GT.K-3)I=K-3
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WK(2)=SL-K
          WK(1)=1.D0-WK(2)

          DO 5 I1=1,3
          DO 5 K1=1,2
5         QGSPSBINT=QGSPSBINT+CSJ(I+I1,K+K1+ML)*WI(I1)*WK(K1)
          QGSPSBINT=EXP(QGSPSBINT)
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSBINT
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSBORN(QQ,S,IQ1,IQ2)
c PSFBORN -hard 2->2 parton scattering Born cross-section
c S is the c.m. energy square for the scattering process,
c IQ1 - parton type at current end of the ladder (0 - g, 1,2 - q)
c IQ2 - parton type at opposite end of the ladder (0 - g, 1,2 - q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA6/  PI,BM,AM
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA26/ FACTORK
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        COMMON /Q_AR13/  X1(7),A1(7)
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,S,IQ1,IQ2
201     FORMAT(2X,'QGSPSBORN: QQ=',E10.3,2X,'S= ',E10.3,2X,'IQ1= ',I1
     *  ,2X,'IQ2= ',I1)
        TMIN=S*(.5D0-DSQRT(.25D0-QT0/S))
        TMIN=MAX(TMIN,S*QQ/(S+QQ))

        IF(IQ1*IQ2.EQ.0)THEN
          IQ=IQ2
        ELSE
          IQ=2
        ENDIF

        QGSPSBORN=0.D0
        DO 1 I=1,7
        DO 1 M=1,2
        T=2.D0*TMIN/(1.D0+2.D0*TMIN/S-X1(I)*(2*M-3)*(1.D0-2.D0*TMIN/S))
        QT=T*(1.D0-T/S)
        FB=PSFBORN(S,T,IQ1,IQ)+PSFBORN(S,S-T,IQ1,IQ)
1       QGSPSBORN=QGSPSBORN+A1(I)*FB/DLOG(QT/ALM)**2*T**2
        QGSPSBORN=QGSPSBORN*(.5D0/TMIN-1.D0/S)*FACTORK*PI**3/2.25D0**2
     &            /S**2
        IF(IQ1.EQ.0.AND.IQ2.EQ.0)QGSPSBORN=QGSPSBORN*.5D0
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSBORN
202     FORMAT(2X,'QGSPSBORN=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE PSCAJET(QQ,IQ1,QV,ZV,QM,IQV,LDAU,LPAR,JQ)
c Final state emission process (all branchings as well as parton masses
c are determined)
C-----------------------------------------------------------------------
c QQ - maximal effective momentum transfer for the first branching
c IQ1, IQ2 - initial jet flavours in forward and backward direction
c (0 - for gluon)
c QV(i,j) - effective momentum for the branching of the parton in i-th row
c on j-th level (0 - in case of no branching)  - to be determined
c ZV(i,j) - Z-value for the branching of the parton in i-th row
c on j-th level - to be determined
c QM(i,j) - mass squared for the parton in i-th row
c on j-th level - to be determined
c IQV(i,j) - flavour for the parton in i-th row on j-th level
c - to be determined
c LDAU(i,j) - first daughter row for the branching of the parton in i-th row
c on j-th level - to be determined
c LPAR(i,j) - the parent row for the parton in i-th row
c on j-th level - to be determined
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION QMAX(30,50),IQM(2),LNV(50),
     *  QV(30,50),ZV(30,50),QM(30,50),IQV(30,50),
     *  LDAU(30,49),LPAR(30,50)

        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG

        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,IQ1,JQ
201     FORMAT(2X,'PSCAJET: QQ=',E10.3,2X,'IQ1= ',I1,2X,'JQ=',I1)

        DO 1 I=2,20
1        LNV(I)=0
        LNV(1)=1
        QMAX(1,1)=QQ
        IQV(1,1)=IQ1
        NLEV=1
        NROW=1

2        QLMAX=DLOG(QMAX(NROW,NLEV)/QTF/16.D0)
         IQ=MIN(1,IABS(IQV(NROW,NLEV)))+1

        IF(PSRAN(B10).GT.PSUDINT(QLMAX,IQ))THEN
          Q=PSQINT(QLMAX,PSRAN(B10),IQ)
          Z=PSZSIM(Q,IQ)

          LL=LNV(NLEV+1)+1
          LDAU(NROW,NLEV)=LL
          LPAR(LL,NLEV+1)=NROW
          LPAR(LL+1,NLEV+1)=NROW
          LNV(NLEV+1)=LL+1

          IF(IQ.NE.1)THEN
            IF((3-2*JQ)*IQV(NROW,NLEV).GT.0)THEN
              IQM(1)=0
              IQM(2)=IQV(NROW,NLEV)
            ELSE
              IQM(2)=0
              IQM(1)=IQV(NROW,NLEV)
              Z=1.D0-Z
            ENDIF
          ELSE
*********************************************************
            WG=QGSPSFAP(Z,0,0)
*********************************************************
            WG=WG/(WG+QGSPSFAP(Z,0,1))
            IF(PSRAN(B10).LT.WG)THEN
              IQM(1)=0
              IQM(2)=0
            ELSE
              IQM(1)=INT(3.D0*PSRAN(B10)+1.D0)*(3-2*JQ)
              IQM(2)=-IQM(1)
            ENDIF
            IF(PSRAN(B10).LT..5D0)Z=1.D0-Z
          ENDIF

          QV(NROW,NLEV)=Q
          ZV(NROW,NLEV)=Z

          NROW=LL
          NLEV=NLEV+1
          QMAX(NROW,NLEV)=Q*Z**2
          QMAX(NROW+1,NLEV)=Q*(1.D0-Z)**2
          IQV(NROW,NLEV)=IQM(1)
          IQV(NROW+1,NLEV)=IQM(2)
        IF(DEBUG.GE.3)WRITE (MONIOU,203)NLEV,NROW,Q,Z
203     FORMAT(2X,'PSCAJET: NEW BRANCHING AT LEVEL NLEV=',I2,
     *  ' NROW=',I2/4X,' EFFECTIVE MOMENTUM Q=',E10.3,2X,' Z=',E10.3)
          GOTO 2
        ELSE

          QV(NROW,NLEV)=0.D0
          ZV(NROW,NLEV)=0.D0
          QM(NROW,NLEV)=AMJ0
        IF(DEBUG.GE.3)WRITE (MONIOU,204)NLEV,NROW
204     FORMAT(2X,'PSCAJET: NEW FINAL JET AT LEVEL NLEV=',I2,
     *  ' NROW=',I2)
        ENDIF

4       CONTINUE
      IF(NLEV.EQ.1)THEN
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'PSCAJET - END')
        RETURN
      ENDIF
        LPROW=LPAR(NROW,NLEV)

        IF(LDAU(LPROW,NLEV-1).EQ.NROW)THEN
          NROW=NROW+1
          GOTO 2
        ELSE
          Z=ZV(LPROW,NLEV-1)
          QM(LPROW,NLEV-1)=Z*(1.D0-Z)*QV(LPROW,NLEV-1)
     *          +QM(NROW-1,NLEV)/Z+QM(NROW,NLEV)/(1.D0-Z)
          NROW=LPROW
          NLEV=NLEV-1
        IF(DEBUG.GE.3)WRITE (MONIOU,205)NLEV,NROW,QM(LPROW,NLEV)
205     FORMAT(2X,'PSCAJET: JET MASS AT LEVEL NLEV=',I2,
     *  ' NROW=',I2,' - QM=',E10.3)
          GOTO 4
        ENDIF
        END
C=======================================================================

      SUBROUTINE PSCONF
c Simulation of the interaction configuration: impact parameter, nucleons positions,
c numbers of cut soft pomerons and semihard blocks, their connections.
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
c XA(56,3),XB(56,3) - arrays for projectile and target nucleons positions recording,
c FHARD(i) give the factors to the scattering amplitude due to
c valence quark-gluon (i=1),  gluon-valence quark (i=2) and
c valence quark-valence quark (i=3) interactions
cdh   DIMENSION XA(56,3),XB(56,3),FHARD(3)
      DIMENSION XA(210,3),XB(210,3),FHARD(3)
      COMMON /Q_QGSNEX1/ XA,XB,BQGS,BMAXQGS,BMAXNEX,BMINNEX      !ctp
      COMMON /Q_AREA1/  IA(2),ICZ,ICP
      COMMON /Q_AREA2/  S,Y0,WP0,WM0
      COMMON /Q_AREA6/  PI,BM,AM
c Arrays for interaction configuration recording:
c LQA(i) (LQB(j)) - numbers of cut soft pomerons, connected to i-th projectile
c (j-th target) nucleon (hadron);
c LHA(i) (LHB(j)) - the same for hard pomerons numbers;
c IAS(k) (IBS(k)) - number (position in array) of the projectile (target) nucleon,
c connected to k-th block of soft pomerons;
c NQS(k) - number of soft pomerons in k-th block;
c IAH(k) (IBH(k)) - number (position in array) of the projectile (target) nucleon,
c connected to k-th hard pomeron;
c ZH(k) - impact parameter between the two nucleons connected to k-th hard pomeron
c (more exactly exp(-b**2/RP1));
c LVA(i)=1 if valence quark from i-th nucleon (i=1 for hadron) is involved into
c the hard interaction and LVA(i)=0 otherwise, LVB(j) - similar.
      COMMON /Q_AREA9/  LQA(56),LQB(56),NQS(1000),IAS(1000),IBS(1000),
     *                LHA(56),LHB(56),ZH(4000),IAH(4000),IBH(4000),
     *                IQH(4000),LVA(56),LVB(56)
      COMMON /Q_AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
      COMMON /Q_AREA11/ B10
c NSP - number of secondary particles
      COMMON /Q_AREA12/ NSP
      COMMON /Q_AREA16/ CC(5)
      COMMON /Q_AREA40/ JDIFR
      COMMON /Q_AREA43/ MONIOU
**************************************************
      COMMON /Q_AREA45/ GDT,GDP    !so00
**************************************************
      COMMON /Q_AREA99/ NWT
      COMMON /Q_DEBUG/  DEBUG

ctp from epos
      integer ng1evt,ng2evt,ikoevt
      real    rglevt,sglevt,eglevt,fglevt,typevt
      common/c2evt/ng1evt,ng2evt,rglevt,sglevt,eglevt,fglevt,ikoevt
     *,typevt            !in epos.inc


      DIMENSION IWT(56)
      SAVE
      EXTERNAL PSRAN

        IF(DEBUG.GE.1)WRITE (MONIOU,201)
201     FORMAT(2X,'PSCONF - CONFIGURATION OF THE INTERACTION')

100     NSP=0
        typevt=1
        IF(IA(1).EQ.1)THEN
**************************************************
          IF(JDIFR.EQ.1.AND.PSRAN(B10).LT.GDT)THEN
c Target diffraction
            IF(IA(2).NE.1)THEN
c ICT - partner target nucleon type (proton - 2 or neutron - 3)
              ICT=INT(2.5+PSRAN(B10))
            ELSE
c Target proton
              ICT=2
            ENDIF
            WPI=WP0
            WMI=WM0
c              write (*,*)'difr'
            CALL XXDTG(WPI,WMI,ICP,ICT,0)
            typevt=-4
            goto 21   !so00
          ELSEIF(ABS(JDIFR).EQ.1.AND.PSRAN(B10).LT.GDP)THEN  !so00
            IF(IA(2).NE.1)THEN  !so00
c ICT - partner target nucleon type (proton - 2 or neutron - 3)
              ICT=INT(2.5+PSRAN(B10))  !so00
            ELSE  !so00
c Target proton
              ICT=2  !so00
            ENDIF  !so00
            IF(DEBUG.GE.2)WRITE (MONIOU,206)  !so00
206         FORMAT(2X,'PROJECTILE HADRON DIFFRACTION')  !so00
            ICP0=ICP  !so00
            WPI=WP0  !so00
            WMI=WM0  !so00
            LQ=0  !so00
            CALL XXDPR(WPI,WMI,ICP0,ICT,LQ)  !so00
            typevt=4
            goto 21   !so00
          ENDIF
**************************************************
c For hadron projectile we have given position in transverse plane;
c initially primary hadron is positioned at (X,Y)=(0,0)
          DO 1 I=1,3
1          XA(1,I)=0.D0
      ENDIF

c-------------------------------------------------
c Inelastic interaction at B<BM (usual case)
c-------------------------------------------------
c NW - number of wounded nucleons in the primary (NW=1 for hadron);
c NT - number of target nucleons being in their active diffractive state;
c LS - number of cut soft pomeron blocks (froissarons);
c NHP - number of cut pomerons having hard block (referred below as hard blocks);
c NQS(k) - number of cut soft pomerons in k-th block;
c IAS(k) (IBS(k)) - number (position in array) of the projectile (target) nucleon,
c connected to k-th block of soft pomerons;
c IAH(k) (IBH(k)) - number 3(position in array) of the projectile (target) nucleon,
c connected to k-th hard pomeron;
c ZH(k) - impact parameter between the two nucleons connected to k-th hard pomeron
c (more exactly exp(-b**2/RP1));
c LQA(i) (LQB(j)) - total number of cut soft pomerons, connected to i-th projectile
c (j-th target) nucleon (hadron);
c LHA(i) (LHB(j)) - total number of cut hard blocks, connected to i-th projectile
c (j-th target) nucleon (hadron);
c LVA(i)=1 if valence quark from i-th nucleon (i=1 for hadron) is involved into
c the hard interaction and LVA(i)=0 otherwise, LVB(j) - similar.
c-------------------------------------------------
c Initialization
      DO 3 I=1,IA(1)
        LHA(I)=0
        LVA(I)=0
3       LQA(I)=0
        DO 4 I=1,IA(2)
        LHB(I)=0
        LVB(I)=0
4       LQB(I)=0

c-------------------------------------------------
c The beginning
5       CONTINUE
**************************************************
        IF(IA(2).NE.1)THEN  !changed!!!!!!!!! dh 8/10/98
c For target nucleus number of target nucleons being in their active
c diffractive state is simulated (for each nucleon probability equals
c 1./C_n,  - shower enhancenment coefficient)
          NT=0
          DO 6 I=1,IA(2)
6         NT=NT+INT(CC(2)+PSRAN(B10))
c In case of no active target nucleon the event is rejected
          IF(NT.EQ.0)GOTO 5
        IF(DEBUG.GE.3)WRITE (MONIOU,203)NT
203     FORMAT(2X,'PSCONF: NUMBER OF ACTIVE TARGET NUCLEONS NT=',
     *  I2)
c PSGEA(NT,XB,2) - target nucleons positions simulation:
cdh       CALL PSGEA(NT,XB,2)  !changed!!!!!!!!!
          CALL PSGEA(IA(2),XB,2)  !changed!!!!!!!!! 25.03.99
c NT - number of target nucleons being in their active diffractive state;
c XB(i,n) - n-th nucleon coordinates (i=1,2,3 corresponds to x,y,z);
c parameter 2 means target
        ELSE                   !changed!!!!!!!!! dh 8/10/98
          NT=1                 !changed!!!!!!!!! dh 8/10/98
          XB(1,1)=0.D0         !changed!!!!!!!!! dh 8/10/98
          XB(1,2)=0.D0         !changed!!!!!!!!! dh 8/10/98
        ENDIF                  !changed!!!!!!!!! dh 8/10/98
**************************************************

c-------------------------------------------------
c Impact parameter  square is simulated uniformly (B**2<BM**2)
        B=BM*DSQRT(PSRAN(B10))
        IF(BMAXNEX.GE.0.D0)THEN
         B1=BMINNEX/AM
         B2=MIN(BM*AM,BMAXNEX)/AM
         if(B1.gt.B2)stop'bmin > bmax in QGSJet'
          B=DSQRT(B1*B1+(B2*B2-B1*B1)*PSRAN(B10))
          BQGS=B*AM                      !ctp
        ENDIF
        IF(DEBUG.GE.2)WRITE (MONIOU,204)B*AM
204     FORMAT(2X,'PSCONF: IMPACT PARAMETER FOR THE INTERACTION:',
     *  E10.3,' FM')
c PSGEA(IA(1),XA,1) - projectile nucleons positions simulation:
c IA(1) - projectile nucleus mass number;
c XA(i,n) - n-th nucleon coordinates (i=1,2,3 corresponds to x,y,z);
c parameter 1 means projectile
        IF(IA(1).GT.1)CALL PSGEA(IA(1),XA,1)

        NW=0
        LS=0
        NS=0
        NHP=0
        DO 101 IT = 1,NT
          IWT(IT) = 0
 101    CONTINUE

c-------------------------------------------------
c Cycle over all projectile nucleons ( for projectile hadron we have only IN=1 )
        DO 14 IN=1,IA(1)
        IF(DEBUG.GE.2.AND.ICZ.EQ.2)WRITE (MONIOU,205)IN
205     FORMAT(2X,'PSCONF: ',I2,'-TH PROJECTILE NUCLEON')
c Only nucleons in their active diffractive state are considered (for each nucleon
c probability equals 1./C_n, C_n = 1./CC(2) - shower enhancenment coefficient)
        IF(IA(1).NE.1.AND.PSRAN(B10).GT.CC(2))GOTO 12
c Projectile nucleons positions are shifted according the to impact parameter B
        X=XA(IN,1)+B
        Y=XA(IN,2)

        IQS=0
        NW=NW+1
c-------------------------------------------------
c Cycle over all target nucleons in active state
        DO 11 M=1,NT
c Z - b-factor for pomeron eikonal calculation (exp(-R_ij/R_p))
        Z=PSDR(X-XB(M,1),Y-XB(M,2))
c VV - eikonal for nucleon-nucleon (hadron-nucleon) interaction
c (sum of the soft and semihard eikonals)
        VV=2.D0*PSFAZ(Z,FSOFT,FHARD,FSHARD)
        EV=EXP(-VV)
c EH - eikonal contribution of valence quarks hard interactions
        EH=FHARD(1)+FHARD(2)+FHARD(3)
c        eh=0.d0
        AKS=PSRAN(B10)
c 1.-EXP(-VV)*(1.D0-2.D0*EH) is the probability for inelastic nucleon-nucleon
c (hadron-nucleon) interaction (for given nucleons positions)
        IF(AKS.GT.1.D0-EV*(1.D0-2.D0*EH))GOTO 11
        IF(DEBUG.GE.2)WRITE (MONIOU,208)M
208     FORMAT(2X,'PSCONF: INTERACTION WITH',I2,'-TH TARGET NUCLEON')
C  INCREMENT THE NUMBER IWT OF WOUNDED TARGET NUCLEONS
        IWT(M) = 1

c-------------------------------------------------
c IQV - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
        IQV=0

c 2*EH*EV = 2*EH*EXP(-VV) - probability for only valence quarks hard interactions
c (with no one soft or semihard)
        SUM=2.D0*EH*EV

c-------------------------------------------------
        IF(AKS.LT.SUM)THEN
          AKS1=EH*PSRAN(B10)
          IF(AKS1.LT.FHARD(1))THEN
c Rejection in case of valence quark already involved into the interaction
            IF(LVA(NW).NE.0)GOTO 11
c LVA(NW)=1 - valence quark-gluon interaction
            LVA(NW)=1
            IQV=1
          ELSEIF(AKS1.LT.FHARD(1)+FHARD(2))THEN
c Rejection in case of valence quark already involved into the interaction
            IF(LVB(M).NE.0)GOTO 11
c LVB(M)=1 - gluon-valence quark interaction
            LVB(M)=1
            IQV=2
          ELSE
c Rejection in case of valence quarks already involved into the interaction
            IF(LVA(NW)+LVB(M).NE.0)GOTO 11
c LVA(NW)=LVB(M)=1 - valence quark-valence quark interaction
            LVA(NW)=1
            LVB(M)=1
            IQV=3
          ENDIF
          N=1
c LNH - number of new hard blocks (resulted from current nucleon-nucleon interaction)
          LNH=1
          GOTO 22
        ENDIF
c-------------------------------------------------

c LNH - number of new hard blocks - initialization
        LNH=0
c WH - probability to have semihard interaction
        WH=2.D0*FSHARD/VV
c N - number of cut pomerons (both soft ones and having hard blocks) for the
c nucleon-nucleon (hadron-nucleon) interaction - is determined according to Poisson
c with average value VV (twice the eikonal)
        DO 7 N=1,45
        EV=EV*VV/N
        SUM=SUM+EV
7       IF(AKS.LT.SUM)GOTO 8

c LNH - number of hard blocks for nucleon-nucleon (hadron-nucleon)
c interaction (according to WH probability)
8       DO 9 I=1,N
9       LNH=LNH+INT(WH+PSRAN(B10))

c-------------------------------------------------
        AKS1=.5D0*PSRAN(B10)
c EH is the probability to have valence quarks interactions in addition to the
c soft and semihard
        IF(AKS1.LT.EH)THEN
          IF(AKS1.LT.FHARD(1))THEN
            IF(LVA(NW).NE.0)GOTO 22
c Valence quark-gluon interaction
            LVA(NW)=1
            IQV=1
          ELSEIF(AKS1.LT.FHARD(1)+FHARD(2))THEN
            IF(LVB(M).NE.0)GOTO 22
c Gluon-valence quark interaction
            LVB(M)=1
            IQV=2
          ELSE
            IF(LVA(NW)+LVB(M).NE.0)GOTO 22
c Valence quark-valence quark interaction
            LVA(NW)=1
            LVB(M)=1
            IQV=3
          ENDIF
          N=N+1
          LNH=LNH+1
        ENDIF

22      IQS=1
        IF(LNH.NE.0)THEN
c-------------------------------------------------
c New hard blocks recording:
c LNH - number of new hard blocks,
c LHA(i) (LHB(j)) - total number of cut hard blocks, connected to i-th projectile
c (j-th target) nucleon (hadron);
c IAH(k) (IBH(k)) - number (position in array) of the projectile (target) nucleon,
c connected to k-th hard block;
c ZH(k) - factor exp(-R_ij/R_p) for k-th hard block;
c IQH(k) - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
c-------------------------------------------------
c N - number of cut soft pomerons
          N=N-LNH
          LHA(NW)=LHA(NW)+LNH
          LHB(M)=LHB(M)+LNH
          DO 10 I=1,LNH
          I1=NHP+I
          If (I1 .ge. 4000) then
            write(moniou,*)'psconf: I1 > 4000, index out of bounds'
            stop
          endif
          IF(I.EQ.1.AND.IQV.NE.0)THEN
            IQH(I1)=IQV
          ELSE
            IQH(I1)=0
          ENDIF
        IF(DEBUG.GE.2)WRITE (MONIOU,209)I1,NW,M,IQH(I1)
209     FORMAT(2X,'PSCONF: ',I4,'-TH HARD BLOCK IS CONNECTED TO',1X,
     *  I2,'-TH PROJECTILE NUCLEON (HADRON) AND'/4X,I2,
     *  '-TH TARGET NUCLEON; TYPE OF THE SEMIHARD INTERACTION:',I1)
          ZH(I1)=Z
          IAH(I1)=NW
10        IBH(I1)=M
c-------------------------------------------------
c NHP - total number of hard blocks
          NHP=NHP+LNH
        ENDIF

c-------------------------------------------------
        IF(N.GT.0)THEN
c One more block of soft pomerons; soft block characteristics recording
          LS=LS+1
          IAS(LS)=NW
          IBS(LS)=M
          LQA(NW)=LQA(NW)+N
          LQB(M)=LQB(M)+N
          NQS(LS)=N
        IF(DEBUG.GE.2)WRITE (MONIOU,210)LS,NW,M,N
210     FORMAT(2X,'PSCONF: ',I4,'-TH SOFT BLOCK IS CONNECTED TO',1X,
     *  I2,'-TH PROJECTILE NUCLEON (HADRON) AND'/4X,I2,
     *  '-TH TARGET NUCLEON; NUMBER OF POMERONS IN THE BLOCK NP=',
     *  I2)
        ENDIF
11      CONTINUE
c-------------------------------------------------

        IF(IQS.NE.0)GOTO 14
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c Projectile diffraction
c For each projectile nucleon (hadron) diffractive dissociation probability is
c (1.D0-CC(ICZ))*PSV(X,Y,XB,NT);
c XXV(X,Y,XB,NT) - nucleon-nucleus scattering eikonal factor
c ( (1-eikonal)**2 ) for given nucleons positions
c (For projectile hadron only in case of JPERI=0, otherwise it was considered
c before at any impact parameter )
        IF(JDIFR.EQ.1 .AND. IA(1).NE. 1
     *  .AND.PSRAN(B10).LT.(1.D0-CC(ICZ))*PSV(X,Y,XB,NT))THEN
**************************************************
          IF(IA(2).NE.1)THEN
c ICT - partner target nucleon type (proton - 2 or neutron - 3)
            ICT=INT(2.5+PSRAN(B10))
          ELSE
c Target proton
            ICT=2
          ENDIF
c Projectile nucleon
          IF(DEBUG.GE.2)WRITE(MONIOU,207)IN
207       FORMAT(2X,I2,'-TH PROJECTILE NUCLEON DIFFRACTION')
          ICP0=INT(2.5+PSRAN(B10))
          WPI=WP0
          WMI=WM0
          IF(IA(2).EQ.1)THEN
            LQ=0
          ELSE
            LQ=1
          ENDIF
          CALL XXDPR(WPI,WMI,ICP0,ICT,LQ)
          GOTO 14
        ENDIF
**************************************************
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c No interaction for projectile nucleon considered
        NW=NW-1
12      CONTINUE

c One more projectile spectator (noninteracting) nucleon (spectator positions
c are recorded to simulate nuclear fragmentation)
        NS=NS+1
        IF(NS.NE.IN)THEN
          DO 13 L=1,3
13          XA(NS,L)=XA(IN,L)
        ENDIF
14      CONTINUE

c In case of no one interacting (or D-diffracted) nucleon the event is
c rejected, new impact parameter is generated and all the procedure is
c repeated
      IF(NS.EQ.IA(1))THEN
        IF(DEBUG.GE.3)WRITE (MONIOU,211)
211     FORMAT(2X,'PSCONF: NO ONE NUCLEON (HADRON) INTERACTS - ',
     *  'REJECTION')
         GOTO 5
      ENDIF
c-------------------------------------------------
cdh   if(nhp.gt.150)then            ! changed 18. Feb. 04
      if(nhp.gt.1500)then
        WRITE (MONIOU,213)NHP
213     FORMAT(2X,'PSCONF: TOO GREAT NUMBER OF HARD POMERONS: NHP=',
     *  I5,' - REJECTION')
         GOTO 100
      endif

      NWT = 0
C  number of interacting target nucleons
      DO 102 IT = 1,NT
        NWT = NWT + IWT(IT)
 102  CONTINUE

cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c Fragmentation of the spectator part of the nucleus
      CALL XXFRAGM(NS,XA)
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

c Inelastic interaction - energy sharing procedure
        IF(NW.NE.0)CALL PSSHAR(LS,NHP,NW,NT)
21      continue                     !so00
        IF(DEBUG.GE.3)WRITE (MONIOU,212)
212     FORMAT(2X,'PSCONF - END')
        RETURN
        END
C=======================================================================

       SUBROUTINE QGSPSCS(C,S)
c C,S - COS and SIN generation for uniformly distributed angle 0<fi<2*pi
c-----------------------------------------------------------------------
       IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
       COMMON /Q_AREA11/ B10
       COMMON /Q_AREA43/ MONIOU
       COMMON /Q_DEBUG/  DEBUG
       SAVE
       EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)
201     FORMAT(2X,'QGSPSCS - COS(FI) AND SIN(FI) ARE GENERATED',
     *  ' (0<FI<2*PI)')
1      S1=2.D0*PSRAN(B10)-1.D0
       S2=2.D0*PSRAN(B10)-1.D0
       S3=S1*S1+S2*S2
       IF(S3.GT.1.D0)GOTO 1
       S3=DSQRT(S3)
       C=S1/S3
       S=S2/S3
        IF(DEBUG.GE.3)WRITE (MONIOU,202)C,S
202     FORMAT(2X,'QGSPSCS: C=',E10.3,2X,'S=',E10.3)
       RETURN
       END
C=======================================================================

        SUBROUTINE QGSPSDEFTR(S,EP,EY)
c Determination of the parameters for the Lorentz transform to the rest frame
c system for 4-vector EP
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EY(3),EP(4)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,S
201     FORMAT(2X,'QGSPSDEFTR - LORENTZ BOOST PARAMETERS:'/
     *  4X,'4-VECTOR EP=',4E10.3/4X,'4-VECTOR SQUARED S=',E10.3)
        DO 2 I=1,3
        IF(EP(I+1).EQ.0.D0)THEN
          EY(I)=1.D0
        ELSE
            WP=EP(1)+EP(I+1)
          WM=EP(1)-EP(I+1)
          IF(WM/WP.LT.1.D-8)THEN
            WW=S
            DO 1 L=1,3
1            IF(L.NE.I)WW=WW+EP(L+1)**2
            WM=WW/WP
          ENDIF
          EY(I)=DSQRT(WM/WP)
          EP(1)=WP*EY(I)
          EP(I+1)=0.D0
        ENDIF
2       CONTINUE
        IF(DEBUG.GE.3)WRITE (MONIOU,202)EY
202     FORMAT(2X,'QGSPSDEFTR: LORENTZ BOOST PARAMETERS EY(I)=',2X
     *  ,3E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE QGSPSDEFROT(EP,S0X,C0X,S0,C0)
c Determination of the parameters the spacial rotation to the lab. system
c for 4-vector EP
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP(4)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)EP
201     FORMAT(2X,'QGSPSDEFROT - SPACIAL ROTATION PARAMETERS'/4X,
     *  '4-VECTOR EP=',2X,4(E10.3,1X))
c Transverse momentum square for the current parton (EP)
        PT2=EP(3)**2+EP(4)**2
        IF(PT2.NE.0.D0)THEN
          PT=DSQRT(PT2)
c System rotation to get Pt=0 - Euler angles are determined (C0X = cos theta,
c S0X = sin theta, C0 = cos phi, S0 = sin phi)
          C0X=EP(3)/PT
          S0X=EP(4)/PT
c Total momentum for the gluon
          PL=DSQRT(PT2+EP(2)**2)
          S0=PT/PL
          C0=EP(2)/PL
        ELSE
          C0X=1.D0
          S0X=0.D0
          PL=ABS(EP(2))
          S0=0.D0
          C0=EP(2)/PL
        ENDIF

        EP(2)=PL
        EP(3)=0.D0
        EP(4)=0.D0
        IF(DEBUG.GE.3)WRITE (MONIOU,202)S0X,C0X,S0,C0,EP
202     FORMAT(2X,'QGSPSDEFROT: SPACIAL ROTATION PARAMETERS'/
     *  4X,'S0X=',E10.3,2X,'C0X=',E10.3,2X,'S0=',E10.3,2X,'C0=',E10.3/
     *  4X,'ROTATED 4-VECTOR EP=',4(E10.3,1X))
        RETURN
        END
C=======================================================================

        FUNCTION PSDR(X,Y)
c PSDR - impact parameter factor for eikonals calculation (exp(-Rij/Rp)=Z)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA7/  RP
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)X,Y
201     FORMAT(2X,'PSDR: NUCLEON COORDINATES - X=',E10.3,2X,'Y=',E10.3)
        PSDR=EXP(-(X*X+Y*Y)/RP)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSDR
202     FORMAT(2X,'PSDR=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSFAP(X,J,L)
C QGSPSFAP - Altarelli-Parisi function (multiplied by X)
c X - light cone momentum share value,
c J - type of the parent parton (0-g,1-q)
c L - type of the daughter parton (0-g,1-q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)X,J,L
201     FORMAT(2X,'QGSPSFAP - ALTARELLI-PARISI FUNCTION:',2X,
     *  'X=',E10.3,2X,'J=',I1,2X,'L=',I1)
        IF(J.EQ.0)THEN
          IF(L.EQ.0)THEN
            QGSPSFAP=((1.D0-X)/X+X/(1.D0-X)+X*(1.D0-X))*6.d0
          ELSE
            QGSPSFAP=(X**2+(1.D0-X)**2)*3.d0
          ENDIF
        ELSE
          IF(l.EQ.0)THEN
            QGSPSFAP=(1.D0+(1.D0-X)**2)/X/.75D0
          ELSE
            QGSPSFAP=(X**2+1.D0)/(1.D0-X)/.75D0
          ENDIF
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSFAP
202     FORMAT(2X,'QGSPSFAP=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSFAZ(Z,FSOFT,FHARD,FSHARD)
c Interaction eikonal for hadron-nucleon (nucleon-nucleon) scattering
c Z - impact parameter factor, Z=exp(-b**2/Rp),
c FSOFT - soft pomeron eikonal - to be determined,
c FSHARD - semihard interaction eikonal (gg) - to be determined,
c FHARD(k) - hard interaction eikonal (k=1 - qg, 2 - gq, 3 - qq) -
c to be determined,
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION FHARD(3)
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA22/ SJV,FJS(5,3)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)Z
201     FORMAT(2X,'PSFAZ - HADRON-NUCLEON (NUCLEON-NUCLEON)',
     *  ' INTERACTION EIKONAL; Z=',E10.3)
        FSOFT=FS*Z
        FHARD(3)=SJV*Z**(RS/RS0)

        JZ=INT(5.D0*Z)
        IF(JZ.GT.3)JZ=3
        WZ=5.D0*Z-JZ

        DO 1 I=1,3
        IF(JZ.EQ.0)THEN
          FSR=(EXP(FJS(1,I))*WZ+(EXP(FJS(2,I))-2.D0*
     *    EXP(FJS(1,I)))*WZ*(WZ-1.D0)*.5D0)*Z
        ELSE
          FSR=EXP(FJS(JZ,I)+(FJS(JZ+1,I)-FJS(JZ,I))*WZ
     *    +(FJS(JZ+2,I)+FJS(JZ,I)-2.D0*FJS(JZ+1,I))
     *    *WZ*(WZ-1.D0)*.5D0)*Z
        ENDIF
        IF(I.NE.1)THEN
          FHARD(I-1)=FSR
        ELSE
          FSHARD=FSR
        ENDIF
1       CONTINUE

        PSFAZ=FSOFT+FSHARD
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSFAZ,FSOFT,FSHARD,FHARD
202     FORMAT(2X,'PSFAZ=',E10.3,2X,'FSOFT=',E10.3,2X,'FSHARD=',E10.3/4X
     *    ,'FHARD=',3E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSFBORN(S,T,IQ1,IQ2)
c PSFBORN - integrand for the Born cross-section (matrix element squared)
c S - total c.m. energy squared for the scattering,
c T - invariant variable for the scattering abs[(p1-p3)**2],
c IQ1 - parton type at current end of the ladder (0 - g, 1,2 - q)
c IQ2 - parton type at opposite end of the ladder (0 - g, 1,2 - q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,T,IQ1,IQ2
201     FORMAT(2X,'PSFBORN - HARD SCATTERING MATRIX ELEMENT SQUARED:'/
     *  4X,'S=',E10.3,2X,'|T|=',E10.3,2X,'IQ1=',I2,2X,'IQ2=',I2)
        U=S-T
        IF(IQ1.EQ.0.AND.IQ2.EQ.0)THEN
c Gluon-gluon
          PSFBORN=(3.D0-T*U/S**2+S*U/T**2+S*T/U**2)*4.5D0
        ELSEIF(IQ1*IQ2.EQ.0)THEN
c Gluon-quark
          PSFBORN=(S**2+U**2)/T**2+(S/U+U/S)/2.25D0
        ELSEIF(IQ1.EQ.IQ2)THEN
c Quark-quark (of the same flavor)
          PSFBORN=((S**2+U**2)/T**2+(S**2+T**2)/U**2)/2.25D0
     *          -S**2/T/U/3.375D0
        ELSEIF(IQ1+IQ2.EQ.0)THEN
c Quark-antiquark (of the same flavor)
          PSFBORN=((S**2+U**2)/T**2+(U**2+T**2)/S**2)/2.25D0
     *          -U**2/T/S/3.375D0
        ELSE
c Quark-quark (different flavors)
          PSFBORN=(S**2+U**2)/T**2/2.25D0
        ENDIF
        IF(DEBUG.GE.2)WRITE (MONIOU,202)PSFBORN
202     FORMAT(2X,'PSFBORN=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSFSH(S,Z,ICZ,IQQ)
c QGSPSFSH - semihard interaction eikonal
c S - energy squared for the interaction (hadron-hadron),
c ICZ - type of the primaty hadron (nucleon)
c Z - impact parameter factor, Z=exp(-b**2/Rp),
c IQQ - type of the hard interaction (0 - gg, 1 - qg, 2 - gq)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA6/  PI,BM,AM
        COMMON /Q_AREA15/ FP(5),RQ(5),CD(5)
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA19/ AHL(5)
        COMMON /Q_AREA25/ AHV(5)
        COMMON /Q_AREA27/ FP0(5)
        COMMON /Q_AR13/    X1(7),A1(7)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Z,IQQ,ICZ
201     FORMAT(2X,'QGSPSFSH - SEMIHARD INTERACTION EIKONAL:'/
     *  4X,'S=',E10.3,2X,'Z=',E10.3,2X,'IQQ=',I1,2X,'ICZ=',I1)
        XMIN=4.D0*QT0/S
        XMIN=XMIN**(DELH-DEL)
        QGSPSFSH=0.D0
        IF(IQQ.EQ.1)THEN
          ICV=ICZ
          ICQ=2
        ELSEIF(IQQ.EQ.2)THEN
          ICV=2
          ICQ=ICZ
        ENDIF
        IQ=(IQQ+1)/2

c Numerical integration over Z1
        DO 3 I=1,7
        DO 3 M=1,2
        Z1=(.5D0*(1.D0+XMIN-(2*M-3)*X1(I)*(1.D0-XMIN)))**(1.D0/
     *  (DELH-DEL))
c SJ is the DLA inclusive hard partonic (gluon-gluon) interaction
c cross-section (inclusive cut ladder cross section) for minimal
c 4-momentum transfer squre QT0 and c.m. energy square s_hard = exp YJ;
c SJB - Born cross-section
        CALL PSJINT0(Z1*S,SJ,SJB,IQ,0)
c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic (gluon-gluon)
c interaction cross-section for minimal 4-momentum transfer square QT0 and
c c.m. energy square s_hard = exp YJ; SH=pi*R_hard**2 (R_hard**2=4/QT0)
        GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
        IF(DEBUG.GE.3)WRITE (MONIOU,203)Z1*S,GY
203     FORMAT(2X,'QGSPSFSH:',2X,'S_HARD=',E10.3,2X,'SIGMA_HARD=',E10.3)

        IF(IQQ.EQ.0)THEN
          ST2=0.D0
          DO 1 J=1,7
          DO 1 K=1,2
          XX=.5D0*(1.D0+X1(J)*(2*K-3))
1         ST2=ST2+A1(J)*QGSPSFTILD(Z1**XX,ICZ)*
     *    QGSPSFTILD(Z1**(1.D0-XX),2)

          RH=RS0-ALF*DLOG(Z1)
          QGSPSFSH=QGSPSFSH-A1(I)*DLOG(Z1)*GY/Z1**DELH*Z**(RS/RH)/RH*ST2
        ELSE

          ST2=0.D0
          DO 2 J=1,7
          DO 2 K=1,2
          XX=.5D0*(1.D0+X1(J)*(2*K-3))
          XAM=Z1**(DEL+.5D0)
          XA=(XAM+(1.D0-XAM)*XX)**(1.D0/(DEL+.5D0))
          RH=RS0+ALF*DLOG(XA/Z1)
2         ST2=ST2+A1(J)*(1.D0-XA)**AHV(ICV)*Z**(RS/RH)/RH*
     *    QGSPSFTILD(Z1/XA,ICQ)
          ST2=ST2*(1.D0-XAM)

          QGSPSFSH=QGSPSFSH+A1(I)*GY/Z1**DELH*ST2
        ENDIF
3       CONTINUE

        IF(IQQ.EQ.0)THEN
          QGSPSFSH=QGSPSFSH*.125D0*RR*(1.D0-XMIN)/(DELH-DEL)*FP0(ICZ)
     *                     *FP0(2)
     *    *CD(ICZ)
        ELSE
          QGSPSFSH=QGSPSFSH*DSQRT(RR)/16.D0*FP0(ICQ)*(1.D0-XMIN)
     *    /(DELH-DEL)/(DEL+.5D0)*GAMFUN(AHV(ICV)+1.5D0)
     *    /GAMFUN(AHV(ICV)+1.D0)/PI*CD(ICZ)
          IF(ICZ.EQ.2.OR.IQQ.EQ.2)THEN
            QGSPSFSH=QGSPSFSH*3.D0
          ELSEIF((ICZ-1)*(ICZ-3)*(ICZ-5).EQ.0)THEN
            QGSPSFSH=QGSPSFSH*2.D0
          ENDIF
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSFSH
202     FORMAT(2X,'QGSPSFSH=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSFTILD(Z,ICZ)
c QGSPSFTILD - auxilliary function for semihard eikonals calculation -
c integration over semihard block light cone momentum share x
c Z - x-cutoff from below,
c ICZ - type of the hadron to which the semihard block is connected
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA19/ AHL(5)
        COMMON /Q_AR13/  X1(7),A1(7)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)Z,ICZ
201     FORMAT(2X,'QGSPSFTILD:',2X,'Z=',E10.3,2X,'ICZ=',I1)
        QGSPSFTILD=0.
        DO 1 I=1,7
        DO 1 M=1,2
        XB=1.D0-(1.D0-Z)*(.5D0*(1.D0+(2*M-3)*X1(I)))**(1.D0/
     *  (AHL(ICZ)+1.D0))
1       QGSPSFTILD=QGSPSFTILD+A1(I)*XB**DEL*(1.D0-Z/XB)**BET
        QGSPSFTILD=QGSPSFTILD*.5D0*(1.D0-Z)**(AHL(ICZ)+1.D0)
     *             /(AHL(ICZ)+1.D0)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSFTILD
202     FORMAT(2X,'QGSPSFTILD=',E10.3)
        RETURN
        END
C=======================================================================

      SUBROUTINE PSGEA(IA,XA,JJ)
c PSGEA - nuclear configuration simulation (nucleons positions)
c IA - number of nucleons to be considered
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
cdh   DIMENSION XA(56,3)
      DIMENSION XA(210,3)
      COMMON /Q_AREA5/  RD(2),CA1(2),CA2(2),CA3(2)
      COMMON /Q_AREA11/ B10
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE
      EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)JJ,IA
201     FORMAT(2X,'PSGEA - CONFIGURATION OF THE NUCLEUS ',I1,';',2X,
     *  'COORDINATES FOR ',I2,' NUCLEONS')
cdh     IF(JJ.EQ.2.OR.IA.GE.10)THEN
        IF(IA.GE.10)THEN !this line had been changed!!!!!!! dh 8/10/98
cdh
          DO 7 I=1,IA
1         ZUK=PSRAN(B10)*CA1(JJ)-1.D0
          IF(ZUK)2,2,3
2         TT=RD(JJ)*(PSRAN(B10)**.3333D0-1.D0)
          GOTO 6
3         IF(ZUK.GT.CA2(JJ))GOTO 4
          TT=-DLOG(PSRAN(B10))
          GOTO 6
4         IF(ZUK.GT.CA3(JJ))GOTO 5
          TT=-DLOG(PSRAN(B10))-DLOG(PSRAN(B10))
          GOTO 6
5         TT=-DLOG(PSRAN(B10))-DLOG(PSRAN(B10))-DLOG(PSRAN(B10))
6         IF(PSRAN(B10).GT.1.D0/(1.D0+EXP(-ABS(TT))))GOTO 1
          RIM=TT+RD(JJ)
          Z=RIM*(2.D0*PSRAN(B10)-1.D0)
          RIM=DSQRT(RIM*RIM-Z*Z)
          XA(I,3)=Z
          CALL QGSPSCS(C,S)
          XA(I,1)=RIM*C
7         XA(I,2)=RIM*S
        ELSE

          DO 9 L=1,3
          SUMM=0.D0
          DO 8 I=1,IA-1
          J=IA-I
          AKS=RD(JJ)*(PSRAN(B10)+PSRAN(B10)+PSRAN(B10)-1.5D0)
          K=J+1
          XA(K,L)=SUMM-AKS*SQRT(FLOAT(J)/K)
8         SUMM=SUMM+AKS/SQRT(FLOAT(J*K))
9         XA(1,L)=SUMM
        ENDIF
        IF(DEBUG.GE.3)THEN
          WRITE (MONIOU,203)
          DO 206 I=1,IA
206       WRITE (MONIOU,204)I,(XA(I,L),L=1,3)
          WRITE (MONIOU,202)
        ENDIF
202     FORMAT(2X,'PSGEA - END')
203     FORMAT(2X,'PSGEA:  POSITIONS OF THE NUCLEONS')
204     FORMAT(2X,'PSGEA: ',I2,' - ',3(E10.3,1X))
        RETURN
        END
C=======================================================================

        FUNCTION PSGINT(Z)
c Auxiliary function for eikonal cross-sections calculation
c GINT = int(dt) [0<t<Z] (1-exp(-t))/t
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
      COMMON /Q_AR13/  X1(7),A1(7)
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE

        F(Z,X)=(1.-EXP(-.5*Z*(1.+X)))/(1.+X)

        IF(DEBUG.GE.2)WRITE (MONIOU,201)Z
201     FORMAT(2X,'PSGINT:',2X,'Z=',E10.3)
        PSGINT=0.
        DO 5 I=1,7
5       PSGINT=PSGINT+A1(I)*(F(Z,X1(I))+F(Z,-X1(I)))
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSGINT
202     FORMAT(2X,'PSGINT=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSHARD(S,ICZ)
c QGSPSHARD - hard quark-quark interaction cross-section
c S - energy squared for the interaction (hadron-hadron),
c ICZ - type of the primaty hadron (nucleon)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AR13/    X1(7),A1(7)
        COMMON /Q_AREA6/  PI,BM,AM
        COMMON /Q_AREA15/ FP(5),RQ(5),CD(5)
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA19/ AHL(5)
        COMMON /Q_AREA25/ AHV(5)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,ICZ
201     FORMAT(2X,'QGSPSHARD - HARD QUARK-QUARK INTERACTION CROSS',
     *  ' SECTION:',
     *  2X,'S=',E10.3,2X,'ICZ=',I1)
        XMIN=4.D0*QT0/S
        XMIN=XMIN**(DELH+.5D0)
        QGSPSHARD=0.D0

c Numerical integration over Z1
        DO 2 I=1,7
        DO 2 M=1,2
        Z1=(.5D0*(1.D0+XMIN-(2*M-3)*X1(I)*(1.D0-XMIN)))**(1.D0/
     *  (DELH+.5D0))

        ST2=0.D0
        DO 1 J=1,7
        DO 1 K=1,2
        XX=.5D0*(1.D0+X1(J)*(2*K-3))
        ST2=ST2+A1(J)*(1.D0-Z1**XX)**AHV(ICZ)*
     *  (1.D0-Z1**(1.D0-XX))**AHV(2)
1       CONTINUE

c SJ is the DLA inclusive hard partonic (gluon-gluon) interaction
c cross-section (inclusive cut ladder cross section) for minimal
c 4-momentum transfer squre QT0 and c.m. energy square s_hard = exp YJ;
c SJB - Born cross-section
        CALL PSJINT0(Z1*S,SJ,SJB,1,1)
c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic (quark-quark)
c interaction cross-section for minimal 4-momentum transfer square QT0 and
c c.m. energy square s_hard = exp YJ; SH=pi*R_hard**2 (R_hard**2=4/QT0)
        GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB

        IF(DEBUG.GE.3)WRITE (MONIOU,203)Z1*S,GY
203    FORMAT(2X,'QGSPSHARD:',2X,'S_HARD=',E10.3,2X,'SIGMA_HARD=',E10.3)
        QGSPSHARD=QGSPSHARD-A1(I)*DLOG(Z1)*GY/Z1**DELH*ST2
2       CONTINUE

        QGSPSHARD=QGSPSHARD*(1.D0-XMIN)/(.5D0+DELH)*.25D0
        QGSPSHARD=QGSPSHARD/(GAMFUN(AHV(ICZ)+1.D0)*GAMFUN(AHV(2)+1.D0)
     *  *PI)*GAMFUN(AHV(ICZ)+1.5D0)*GAMFUN(AHV(2)+1.5D0)

        IF(ICZ.EQ.2)THEN
          QGSPSHARD=QGSPSHARD*9.D0
        ELSEIF((ICZ-1)*(ICZ-3)*(ICZ-5).EQ.0)THEN
          QGSPSHARD=QGSPSHARD*6.D0
        ELSE
          QGSPSHARD=QGSPSHARD*3.D0
        ENDIF

c Hard cross-section is divided by Regge radius RS0 and multiplied by
c shower enhancement coefficient CD(ICZ) - to be used for the eikonal
c calculation
        QGSPSHARD=QGSPSHARD/(8.D0*PI*RS0)*CD(ICZ)
        IF(DEBUG.GE.2)WRITE (MONIOU,202)QGSPSHARD
202     FORMAT(2X,'QGSPSHARD=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE PSHOT(WP0,WM0,Z,IPC,EPC,IZP,IZT,ICZ,IQQ)
c Semihard jets production simulation (resulted from parton-parton
c interaction);
c WP0,WM0 - light cone momenta shares (E+-P_l) for the initial partons
c IZP, IZT - types for target and projectile nucleons (hadron)
c WPQ - light cone momenta for the soft preevolution - to be determined below
c IQQ - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        CHARACTER*2 TYQ
        DIMENSION EPT(4),EP3(4),EPJ(4),EPJ1(4),EY(3),
     *  QMIN(2),WP(2),IQC(2),IQP(2),
     *  IPC(2,2),EPC(8,2),IQJ(2),EQJ(4,2),IPQ(2,2),EPQ(8,2),
     *  ebal(4),
     *  QV1(30,50),ZV1(30,50),QM1(30,50),IQV1(30,50),
     *  LDAU1(30,49),LPAR1(30,50),
     *  QV2(30,50),ZV2(30,50),QM2(30,50),IQV2(30,50),
     *  LDAU2(30,49),LPAR2(30,50)!,EP(4,2),EPT0(4)
        COMMON /Q_AREA6/  PI,BM,AMMM
        COMMON /Q_AREA8/  WWM,BE(4),DC(5),DETA,ALMPT
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA42/ TYQ(15)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_AREA46/ EPJET(4,2,15000),IPJET(2,15000)
        COMMON /Q_AREA47/ NJTOT
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.1)WRITE (MONIOU,201)IQQ,WP0,WM0
201     FORMAT(2X,'PSHOT - SEMIHARD INTERACTION SIMULATION:'/
     *  4X,'TYPE OF THE INTERACTION:',I2/
     *  4X,'INITIAL LIGHT CONE MOMENTA:',2E10.3)
c S - total energy squared for the semihard interaction (including preevolution)
        NJTOT0=NJTOT
        IZP0=IZP
        IZT0=IZT

301     S=WP0*WM0
        NJTOT=NJTOT0
        IZP=IZP0
        IZT=IZT0

        IF(IQQ.EQ.3)THEN
c WPI,WMI - light cone momenta for the hard interaction
          WPI=WP0
          WMI=WM0
c PSJINT0(S,SJ,SJB,1,1) - cross-sections interpolation:
c SJ - inclusive hard quark-quark interaction
c cross-section (inclusive cut ladder cross section) for minimal
c 4-momentum transfer square QT0 and c.m. energy square s_hard = S;
c SJB - Born cross-section
          CALL PSJINT0(S,SJ,SJB,1,1)
c GY= Sigma_hard_tot(YJ,QT0) - total hard quark-quark
c interaction cross-section for minimal 4-momentum transfer square QT0 and
c c.m. energy square s_hard = S
          GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB

        ELSE
c-------------------------------------------------
c Rejection function normalization
c-------------------------------------------------
c XMIN corresponds to minimal energy squared for the hard interaction - 4.D0*(QT0+AMJ0)
c AMJ0 - jet mass squared (could be put equal zero)
          XMIN=4.D0*(QT0+AMJ0)/S
          XMIN1=XMIN**(DELH-DEL)
c S - maximal available energy for the rejection function normalization
c Auxilliary type of parton (1 - gluon, 2 - (anti-)quark)
          IQ=(IQQ+1)/2
c Rejection function initialization (corresponding to maximal preevolution - minimal x):
c Ysoft = - ln x, (1-x)**bet is due to gluon structure function in the soft pomeron
          IF(IQQ.EQ.0)THEN
             GB0=-DLOG(XMIN)*(1.D0-DSQRT(XMIN))**(2.D0*BET)
          ELSE
             GB0=(1.D0-XMIN)**BET
          ENDIF

c SJ0 is the inclusive hard (parton IQ - gluon) interaction
c cross-section (inclusive cut ladder cross section) for minimal
c 4-momentum transfer square QT0 and c.m. energy square s_hard = SI;
c SJB0 - Born cross-section
          CALL PSJINT0(S,SJ,SJB,IQ,0)
c GY= Sigma_hard_tot(YJ,QT0) - total hard  (parton IQ - gluon)
c interaction cross-section for minimal 4-momentum transfer square QT0 and
c c.m. energy square s_hard = SI
          GY0=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
          GB0=GB0*GY0/S**DELH/RS0*Z
c-------------------------------------------------
c End of rejection function normalization
c-------------------------------------------------

c-------------------------------------------------
c The sharing of the light cone momenta between soft preevolution and
c hard interaction:
c ( first energy-momentum is shared according to
c f_hard(YJ)~ZPM**(DELH-DEL-1) and then rejected as
c W_rej ~Sigma_hard_tot(YJ) / exp(DELH*YJ)
c ZPM = s_hard / S
c YJ = ln s_hard - rapidity range for the hard parton-parton interaction;
c-------------------------------------------------
1         ZPM=(XMIN1+PSRAN(B10)*(1.D0-XMIN1))**(1.D0/(DELH-DEL))
c SJ is the DLA inclusive hard partonic (gluon-gluon) interaction
c cross-section (inclusive cut ladder cross section) for minimal
c 4-momentum transfer square QT0 and c.m. energy square s_hard = exp YJ;
c SJB - Born cross-section
          CALL PSJINT0(ZPM*S,SJ,SJB,IQ,0)
          YJ=DLOG(ZPM*S)
c RH - interaction radius due to soft preevolution
          RH=RS0-ALF*DLOG(ZPM)

          IF(IQQ.EQ.0)THEN
c XP, XM - light cone momunta shares for the hard interaction
            XP=ZPM**PSRAN(B10)
            XM=ZPM/XP
c Ysoft = - ln ZPM - part of rejection function,
c (1-XP)**bet*(1-XM)**bet is due to gluon structure function in the soft pomeron
            GBYJ=-DLOG(ZPM)*((1.-XP)*(1.-XM))**BET
c WPI,WMI - light cone momenta for the hard interaction
            WPI=WP0*XP
            WMI=WM0*XM
          ELSE
            IF(IQQ.EQ.1)THEN
              WPI=WP0
              WMI=WM0*ZPM
            ELSE
              WPI=WP0*ZPM
              WMI=WM0
            ENDIF
            GBYJ=(1.D0-ZPM)**BET
          ENDIF

c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic
c interaction cross-section for minimal 4-momentum transfer square QT0 and
c c.m. energy square s_hard = exp YJ
          GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB

c-------------------------------------------------
c GBYJ - rejection function for the YJ (ZPM) simulation:
c GBYJ ~  Sigma_hard_tot(YJ,QT0) / exp(DELH*YJ) * exp(-b**2/RH) / RH,
          GBYJ=GBYJ*GY*EXP(-DELH*YJ)/GB0*Z**(RS/RH)/RH
          IF(PSRAN(B10).GT.GBYJ)GOTO 1
        ENDIF
c-------------------------------------------------
        S=WPI*WMI

        IF(DEBUG.GE.2)WRITE (MONIOU,203)S
203     FORMAT(2X,'PSHOT: MASS SQUARED FOR THE HARD PARTON-PARTON',
     *  ' INTERACTION:',E10.3)

c In case of valence quark hard interaction the type of quark is determined by the
c procedure PSVDEF - flavor combinatorics (not good here); IQC(1) - flavor
c for the upper quark (0 in case of gluon),
c IQC(2) - the same for the lower one
        DO 302 I=1,8
        DO 302 M=1,2
302     EPC(I,M)=0.D0

        IF((IQQ-1)*(IQQ-3).EQ.0)THEN
          CALL PSVDEF(IZP,IC1,ICZ)
          IQC(1)=IC1
          IPC(1,1)=0
          IPC(2,1)=0
        ELSE
          IQC(1)=0
          IPC(1,1)=-INT(2.D0*PSRAN(B10)+1.D0)
          IPC(2,1)=-IPC(1,1)
          WP1=WP0-WPI
          WP2=WP1*PSRAN(B10)
          WP1=WP1-WP2
          EPC(1,1)=.5D0*WP1
          EPC(2,1)=EPC(1,1)
          EPC(5,1)=.5D0*WP2
          EPC(6,1)=EPC(5,1)
               ENDIF

        IF((IQQ-2)*(IQQ-3).EQ.0)THEN
          CALL PSVDEF(IZT,IC1,2)
          IQC(2)=IC1
          IPC(1,2)=0
          IPC(2,2)=0
        ELSE
          IQC(2)=0
          IPC(1,2)=-INT(2.D0*PSRAN(B10)+1.D0)
          IPC(2,2)=-IPC(1,2)
          WM1=WM0-WMI
          WM2=WM1*PSRAN(B10)
          WM1=WM1-WM2
          EPC(1,2)=.5D0*WM1
          EPC(2,2)=-EPC(1,2)
          EPC(5,2)=.5D0*WM2
          EPC(6,2)=-EPC(5,2)
        ENDIF

        EPT(1)=.5D0*(WPI+WMI)
        EPT(2)=.5D0*(WPI-WMI)
        EPT(3)=0.D0
        EPT(4)=0.D0
c Minimal 4-momentum transfer squares above and below current ladder run
        QMIN(1)=QT0
        QMIN(2)=QT0
        DO 303 L=1,2
        DO 303 M=1,2
              IPQ(L,M)=IPC(L,M)
        DO 303 I=1,4
303     EPQ(I+4*(L-1),M)=EPC(I+4*(L-1),M)
c Minimal 4-momentum transfer square for gluon-gluon (virtual) interaction
          QMINN=MAX(QMIN(1),QMIN(2))
          SI=QGSPSNORM(EPT)

5         CONTINUE
c 4-momentum squared (c.m. energy square for gluon-gluon (virtual)
c interaction)
        IF(DEBUG.GE.2)WRITE (MONIOU,208)ILAD, SI,IQC,EPT
208     FORMAT(2X,'PSHOT: ',I2,'-TH HARD LADDER;',
     *  ' MASS SQUARED FOR THE LADDDER:',E10.3/
     *  4X,'LADDER END FLAVORS:',2I3/4X,
     *  'LADDER 4-MOMENTUM: ',4E10.3)

        ebal(1)=.5*(wp0+wm0)-ept(1)
        ebal(2)=.5*(wp0-wm0)-ept(2)
        ebal(3)=0.d0-ept(3)
        ebal(4)=0.d0-ept(4)
        do 503 l=1,4
        do 501 m=1,2
        ebal(l)=ebal(l)-epq(l,m)
501     if(iqc(m).eq.0)   ebal(l)=ebal(l)-epq(l+4,m)
        if(njtot.ne.0)then
           do 502 i=1,njtot
           do 502 m=1,2
502        ebal(l)=ebal(l)-epjet(l,m,i)
        endif
503        continue
c            write (*,*)'ebal',ebal,si,njtot

          PT2=EPT(3)**2+EPT(4)**2
          PT=DSQRT(PT2)
          WW=SI+PT2
          SWW=DSQRT(WW)

          IQP(1)=MIN(1,IABS(IQC(1)))
          IQP(2)=MIN(1,IABS(IQC(2)))

c Longitudinal momenta for the interaction
          WP(1)=EPT(1)+EPT(2)
          WP(2)=EPT(1)-EPT(2)

          S2MIN=MAX(QMINN,4.D0*(QT0+AMJ0))
c WWMIN is the minimal energy square needed for triple s-channel gluons
c production with transverse momentum squares q_t**2 above QMIN(JJ),QMINN
          WWMIN=(S2MIN+(PT-DSQRT(QT0))**2+(QT0+AMJ0)*(DSQRT(S2MIN/QT0)-
     *          1.D0))/(1.D0-DSQRT(QT0/S2MIN))
c SJB/SJ is the probability for the last pair of gluons production
c (SJB is the Born cross-section and SJ is the inclusive interaction
c (cut ladder) cross-section)
          SJ=PSJINT(QMIN(1),QMIN(2),SI,IQP(1)+1,IQP(2)+1)
          SJB=QGSPSBINT(QMINN,SI,IQP(1)+1,IQP(2)+1)

        IF(DEBUG.GE.2)WRITE (MONIOU,251)S2MIN,WWMIN,SJ,SJB
251     FORMAT(2X,'PSHOT: KINEMATICAL BOUNDS S2MIN=',E10.3,
     *   2X,'WWMIN=',E10.3/4X,'JET CROSS SETION SJ=',E10.3,
     *   2X,'BORN CROSS SECTION SJB=',E10.3)

          IF(PSRAN(B10).LT.SJB/SJ.
     *          OR.WW.LT.1.2D0*WWMIN)GOTO 12

          IF((SJ-SJB)/SJ.GT..1D0)THEN
            SJ1=PSJINT1(QMIN(1),QMIN(2),SI,IQP(1)+1,IQP(2)+1)
            SJ2=PSJINT1(QMIN(2),QMIN(1),SI,IQP(2)+1,IQP(1)+1)
            DSJ=(SJ2-SJ1)/(SJ-SJB)*.5D0
          ELSE
            DSJ=0.D0
          ENDIF
c Current s-channel gluon is simulated either above the run (JJ=1) or
c below it (JJ=2)
          JJ=INT(1.5D0+DSJ+PSRAN(B10))

          AQ=-(SI+AMJ0+2.D0*PT*DSQRT(QT0))/WW
          BQ=(QT0+AMJ0)/WW
          CQ=QT0/WW
          PQ=-AQ**2/3.D0+BQ
          QQ=AQ**3/13.5D0-AQ*BQ/3.D0+CQ
          PQ=DSQRT(-PQ/3.D0)
          COSQ=-.5D0*QQ/PQ**3
          FQ=ATAN(1.D0/COSQ**2-1.D0)
          IF(COSQ.LT.0.D0)FQ=PI-FQ
          FQ=FQ/3.D0

c XMIN is the minimal longitudinal momentum transfer share in current
c ladder run (corresponding to minimal 4-momentum transfer square QMIN(JJ))
          XMIN=1.D0+AQ/3.D0-2.D0*PQ*COS(FQ)
          XMAX=1.D0+AQ/3.D0-PQ*(DSQRT(3.D0)*SIN(FQ)-COS(FQ))
c QQMAX is the maximal 4-momentum transfer square in the current run
c (corresponding to X=XMIN and 4-momentum transfer at next simulation
c step to be equal QMAX)
          QQMAX=QT0/(1.D0-XMAX)**2
          QQMIN=QT0/(1.D0-XMIN)**2

          IF(QQMIN.LT.S2MIN)THEN
            XMM=(SI-S2MIN+AMJ0+2.D0*PT*DSQRT(QT0))/WW*.5D0
            XMIN=1.D0-XMM-DSQRT(XMM*XMM-(QT0+AMJ0)/WW)
            QQMIN=QT0/(1.D0-XMIN)**2

            IF(QQMIN.LT.QMIN(JJ))THEN
              QQMIN=QMIN(JJ)
              XMM1=WW-2.D0*PT*DSQRT(QQMIN)+QQMIN
              XMM=(SI-S2MIN+AMJ0)/XMM1*.5D0
              XMIN=1.D0-XMM-DSQRT(XMM*XMM-AMJ0/XMM1)
            ENDIF
          ENDIF

*********************************************************
          XM0=MAX(.5D0,1.D0-DSQRT(QT0/QMIN(JJ)))
          IF(XM0.GT..95D0*XMAX.OR.XM0.LT.1.05D0*XMIN)
     *    XM0=.5D0*(XMAX+XMIN)
          QM0=QT0/(1.D0-XM0)**2
          S2MAX=XM0*WW

          SJ0=PSJINT(QM0,QMIN(3-JJ),S2MAX,1,IQP(3-JJ)+1)*
     *    QGSPSFAP(XM0,IQP(JJ),0)+
     *    PSJINT(QM0,QMIN(3-JJ),S2MAX,2,IQP(3-JJ)+1)
     *    *QGSPSFAP(XM0,IQP(JJ),1)

          GB0=SJ0*QM0/QLOG*QGSPSUDS(QM0,IQP(JJ))*1.5D0
          IF(XM0.LE..5D0)THEN
            GB0=GB0*XM0**(1.D0-DELH)
          ELSE
            GB0=GB0*(1.D0-XM0)*2.D0**DELH
          ENDIF
c XMIN, XMAX are put into power DELH to simulate X value below
          XMIN2=MAX(.5D0,XMIN)
          XMIN1=XMIN**DELH
          XMAX1=MIN(XMAX,.5D0)**DELH
          IF(XMIN.GE..5D0)THEN
            DJL=1.D0
          ELSEIF(XMAX.LT..5D0)THEN
            DJL=0.D0
          ELSE
            DJL=1.D0/(1.D0+((2.D0*XMIN)**DELH-1.D0)/DELH/
     *      DLOG(2.D0*(1.D0-XMAX)))
          ENDIF

7         CONTINUE
c Simulation of the longitudinal momentum transfer share in current
c ladder run - from XMIN to XMAX according to dX * X**(DELH-1)
          IF(PSRAN(B10).GT.DJL)THEN
            X=(XMIN1+PSRAN(B10)*(XMAX1-XMIN1))**(1.D0/DELH)
          ELSE
            X=1.D0-(1.D0-XMIN2)*((1.D0-XMAX)/(1.D0-XMIN2))**PSRAN(B10)
          ENDIF
*********************************************************

c Effective momentum squared QQ in the ladder run is simulated
c first as dq**2/q**4 from QMIN(J) to QMAX
          QQ=QQMIN/(1.D0+PSRAN(B10)*(QQMIN/QQMAX-1.D0))

        IF(DEBUG.GE.2)WRITE (MONIOU,253)QQ,QQMIN,QQMAX
253     FORMAT(2X,'PSHOT: QQ=',E10.3,2X,'QQMIN=',E10.3,2X,
     *  'QQMAX=',E10.3)

          QT2=QQ*(1.D0-X)**2
          IF(QT2.LT.QT0)GOTO 7

          IF(QQ.GT.QMINN)THEN
            QMIN2=QQ
          ELSE
            QMIN2=QMINN
          ENDIF

          QT=DSQRT(QT2)
          CALL QGSPSCS(CCOS,SSIN)
c EP3 is now 4-vector for s-channel gluon produced in current ladder run
          EP3(3)=QT*CCOS
          EP3(4)=QT*SSIN
          PT2=(EPT(3)-EP3(3))**2+(EPT(4)-EP3(4))**2
          S2MIN2=MAX(S2MIN,QMIN2)

          ZMIN=(QT2+AMJ0)/WW/(1.D0-X)
c S2 is the maximal c.m. energy square for the parton-parton interaction
c in the next ladder run
          S2=X*(1.D0-ZMIN)*WW-PT2
c Rejection in case of too low WW2 (insufficient for elastic gluon-gluon
c scattering with transverse momentum square q_t**2 above QMIN2)
          IF(S2.LT.S2MIN2)GOTO 7

          SJ1=PSJINT(QQ,QMIN(3-JJ),S2,1,IQP(3-jj)+1)
     *    *QGSPSFAP(X,IQP(JJ),0)
          SJ2=PSJINT(QQ,QMIN(3-JJ),S2,2,IQP(3-jj)+1)
     *    *QGSPSFAP(X,IQP(JJ),1)

c GB7 is the rejection function for X and Q**2 simulation. It consists
c from factor
c Q**2/Qmin**2 * ln(Qmin**2/Lambda_qcd**2)/ln(Q**2/Lambda_qcd**2)
c from Q**2 simulation and factor SJ/(X*WW)**DELH * const from X simulation
          GB7=(SJ1+SJ2)/DLOG(QT2/ALM)*QQ*QGSPSUDS(QQ,IQP(JJ))/GB0

*********************************************************
          IF(X.LE..5D0)THEN
            GB7=GB7*X**(1.D0-DELH)
          ELSE
            GB7=GB7*(1.D0-X)*2.D0**DELH
          ENDIF
*********************************************************
          IF(PSRAN(B10).GT.GB7)GOTO 7

           IF(PSRAN(B10).LT.SJ1/(SJ1+SJ2))THEN
             IF(IQC(JJ).EQ.0)THEN
               JT=1
               JQ=INT(1.5D0+PSRAN(B10))
               IQJ(1)=IPQ(JQ,JJ)
               IQJ(2)=0
               DO 31 I=1,4
               EQJ(I,1)=EPQ(I+4*(JQ-1),JJ)
31            EQJ(I,2)=0.D0
            ELSE
              JT=2
              IF(IQC(JJ).GT.0)THEN
                JQ=1
              ELSE
                JQ=2
              ENDIF
              IQJ(1)=0
              DO 32 I=1,4
32            EQJ(I,1)=0.D0

              IPQ(JQ,JJ)=IPQ(1,JJ)
              DO 135 I=1,4
135           EPQ(I+4*(JQ-1),JJ)=EPQ(I,JJ)
            ENDIF
            IQ1=IQC(JJ)
            IQC(JJ)=0

          ELSE
            IF(IQP(JJ).NE.0)THEN
              IQ1=0
              JT=3
              IF(IQC(JJ).GT.0)THEN
                JQ=1
              ELSE
                JQ=2
              ENDIF
              IQJ(1)=IPQ(1,JJ)
              IQJ(2)=0
              DO 33 I=1,4
              EQJ(I,1)=EPQ(I,JJ)
33            EQJ(I,2)=0.D0

            ELSE
              IQ1=INT(3.D0*PSRAN(B10)+1.D0)*(2*INT(.5D0+PSRAN(B10))-1)
              IQC(JJ)=-IQ1
              JT=4
              IF(IQ1.GT.0)THEN
                JQ=1
              ELSE
                JQ=2
              ENDIF
              IQJ(1)=IPQ(JQ,JJ)
              DO 34 I=1,4
34            EQJ(I,1)=EPQ(I+4*(JQ-1),JJ)
            ENDIF
          ENDIF
          IF(DEBUG.GE.3)WRITE (MONIOU,240)JT

          CALL PSCAJET(QT2,IQ1,QV1,ZV1,QM1,IQV1,
     *          LDAU1,LPAR1,JQ)
          Z=(QT2+QM1(1,1))/WW/(1.D0-X)
          SI=X*(1.D0-Z)*WW-PT2

          IF(SI.GT.S2MIN2)THEN
            IQ=MIN(1,IABS(IQC(JJ)))+1
            GB=PSJINT(QQ,QMIN(3-JJ),SI,IQ,IQP(3-JJ)+1)/
     *      PSJINT(QQ,QMIN(3-JJ),S2,IQ,IQP(3-JJ)+1)
            IF(PSRAN(B10).GT.GB)GOTO 301
          ELSE
            GOTO 301
          ENDIF

          WP3=WP(JJ)*(1.D0-X)
          WM3=(QT2+QM1(1,1))/WP3
          EP3(1)=.5D0*(WP3+WM3)
          EP3(2)=.5D0*(WP3-WM3)*(3-2*JJ)

          PT3=DSQRT(EP3(3)**2+EP3(4)**2)

          CALL PSREC(EP3,QV1,ZV1,QM1,IQV1,LDAU1,LPAR1,IQJ,EQJ,JFL,JQ)
          IF(JFL.EQ.0)GOTO 301

          IF(JT.EQ.1)THEN
            IPQ(JQ,JJ)=IQJ(2)
            DO 35 I=1,4
35          EPQ(I+4*(JQ-1),JJ)=EQJ(I,2)

            IF(IPC(JQ,JJ).EQ.0)THEN
              IPC(JQ,JJ)=IQJ(1)
              DO 36 I=1,4
36            EPC(I+4*(JQ-1),JJ)=EQJ(I,1)
            ENDIF

          ELSEIF(JT.EQ.2)THEN
            IPQ(3-JQ,JJ)=IQJ(1)
            DO 37 I=1,4
37          EPQ(I+4*(2-JQ),JJ)=EQJ(I,1)

          ELSEIF(JT.EQ.3)THEN
            IPQ(1,JJ)=IQJ(2)
            DO 38 I=1,4
38          EPQ(I,JJ)=EQJ(I,2)

            IF(IPC(JQ,JJ).EQ.0)THEN
              IPC(JQ,JJ)=IQJ(1)
              DO 39 I=1,4
39            EPC(I+4*(JQ-1),JJ)=EQJ(I,1)
            ENDIF

          ELSEIF(JT.EQ.4)THEN
            IF(IPC(JQ,JJ).EQ.0)THEN
               IPC(JQ,JJ)=IQJ(1)
               DO 40 I=1,4
40            EPC(I+4*(JQ-1),JJ)=EQJ(I,1)
            ENDIF
            IF(JQ.EQ.1)THEN
              IPQ(1,JJ)=IPQ(2,JJ)
              DO 30 I=1,4
30            EPQ(I,JJ)=EPQ(I+4,JJ)
            ENDIF
          ENDIF

          IF(IABS(IQ1).EQ.3)THEN
            IQQQ=8+IQ1/3*4
          ELSE
            IQQQ=8+IQ1
          ENDIF
        IF(DEBUG.GE.2)WRITE (MONIOU,209)TYQ(IQQQ),QT2,EP3
209     FORMAT(2X,'PSHOT: NEW JET FLAVOR:',A2,
     *  ' PT SQUARED FOR THE JET:',E10.3/
     *  4X,'JET 4-MOMENTUM:',4E10.3)
          DO 8 I=1,4
8         EPT(I)=EPT(I)-EP3(I)
c C.m. energy square, minimal  4-momentum transfer square and gluon 4-vector
c for the next ladder run
          QMIN(JJ)=QQ
          QMINN=QMIN2

c Next simulation step will be considered for current ladder
          GOTO 5
C------------------------------------------------

C------------------------------------------------
c The last gluon pair production (elastic scattering) in the ladder
c is simulated
12        CONTINUE
          IF(DEBUG.GE.2)WRITE (MONIOU,211)SI
211     FORMAT(2X,'PSHOT: HIGHEST VIRTUALITY SUBPROCESS IN THE LADDER'/
     *  4X,'MASS SQUARED FOR THE PROCESS:',E10.3)

          XMIN=QMINN/(QMINN+SI)
          XMIN1=.5D0-DSQRT(.25D0-(QT0+AMJ0)/SI)
          XMIN=MAX(XMIN,XMIN1)
          TMIN=SI*XMIN

          IF(IQC(1).NE.0.OR.IQC(2).NE.0)THEN
            GB0=TMIN**2/DLOG(TMIN*(1.D0-XMIN)/ALM)**2*
     *      PSFBORN(SI,TMIN,IQC(1),IQC(2))
          ELSE
            GB0=.25D0*SI**2/DLOG(TMIN*(1.D0-XMIN)/ALM)**2*
     *      PSFBORN(SI,.5D0*SI,IQC(1),IQC(2))
          ENDIF

C------------------------------------------------
c 4-momentum transfer squared is simulated first as dq_t**2/q_t**4 from
c tmin to s/2
13        Q2=TMIN/(1.D0-PSRAN(B10)*(1.D0-2.D0*TMIN/SI))
          Z=Q2/SI
          QT2=Q2*(1.D0-Z)
          IF(PSRAN(B10).LT..5D0)THEN
            JM=2
            TQ=SI-Q2
          ELSE
            JM=1
            TQ=Q2
          ENDIF

          GB=Q2**2/DLOG(QT2/ALM)**2/GB0*
     *    PSFBORN(SI,TQ,IQC(1),IQC(2))
          IF(DEBUG.GE.3)WRITE (MONIOU,241)Q2,GB
241     FORMAT(2X,'PSHOT: Q2=',E10.3,' GB=',E10.3)

          IF(PSRAN(B10).GT.GB)GOTO 13

          IF(IQC(1).EQ.0.AND.IQC(2).EQ.0)THEN
            JQ=INT(1.5D0+PSRAN(B10))
            IQJ(1)=IPQ(JQ,JM)
            DO 51 I=1,4
51          EQJ(I,1)=EPQ(I+4*(JQ-1),JM)

            IF(PSRAN(B10).LT..5D0)THEN
              JT=1
              IF(IPQ(3-JQ,JM)*IPQ(JQ,3-JM).NE.0)THEN
                IPJ=IPQ(3-JQ,JM)
                IPJ1=IPQ(JQ,3-JM)
                IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                DO 52 I=1,4
                EPJ(I)=EPQ(I+4*(2-JQ),JM)
52              EPJ1(I)=EPQ(I+4*(JQ-1),3-JM)
                CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
                IF(JFL.EQ.0)GOTO 301
              ELSEIF(IPQ(3-JQ,JM).NE.0)THEN
                IPC(JQ,3-JM)=IPQ(3-JQ,JM)
                DO 53 I=1,4
53                   EPC(I+4*(JQ-1),3-JM)=EPQ(I+4*(2-JQ),JM)
              ELSEIF(IPQ(JQ,3-JM).NE.0)THEN
                IPC(3-JQ,JM)=IPQ(JQ,3-JM)
                DO 54 I=1,4
54              EPC(I+4*(2-JQ),JM)=EPQ(I+4*(JQ-1),3-JM)
              ENDIF

              IQJ(2)=0
                     DO 55 I=1,4
55            EQJ(I,2)=0.D0

            ELSE
              JT=2
              IQJ(2)=IPQ(3-JQ,3-JM)
              DO 56 I=1,4
56            EQJ(I,2)=EPQ(I+4*(2-JQ),3-JM)
            ENDIF

          ELSEIF(IQC(1)*IQC(2).EQ.0)THEN
            IF(IQC(1)+IQC(2).GT.0)THEN
              JQ=1
            ELSE
              JQ=2
            ENDIF

            IF(PSRAN(B10).LT..5D0)THEN
              IF(IQC(JM).EQ.0)THEN
                JT=3
                IQJ(1)=IPQ(JQ,JM)
                IQJ(2)=0
                DO 57 I=1,4
                EQJ(I,1)=EPQ(I+4*(JQ-1),JM)
57              EQJ(I,2)=0.D0

                IF(IPQ(3-JQ,JM)*IPQ(1,3-JM).NE.0)THEN
                  IPJ=IPQ(3-JQ,JM)
                  IPJ1=IPQ(1,3-JM)
                  IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
                  IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                  DO 58 I=1,4
                  EPJ(I)=EPQ(I+4*(2-JQ),JM)
58                EPJ1(I)=EPQ(I,3-JM)
                  CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
                  IF(JFL.EQ.0)GOTO 301
                ELSEIF(IPQ(3-JQ,JM).NE.0)THEN
                  IPC(JQ,3-JM)=IPQ(3-JQ,JM)
                  DO 59 I=1,4
59                EPC(I+4*(JQ-1),3-JM)=EPQ(I+4*(2-JQ),JM)
                ELSEIF(IPQ(1,3-JM).NE.0)THEN
                  IPC(3-JQ,JM)=IPQ(1,3-JM)
                  DO 60 I=1,4
60                EPC(I+4*(2-JQ),JM)=EPQ(I,3-JM)
                ENDIF

              ELSE
                JT=4
                IQJ(1)=0
                DO 61 I=1,4
61              EQJ(I,1)=0.D0

                IF(IPQ(1,JM)*IPQ(3-JQ,3-JM).NE.0)THEN
                  IPJ=IPQ(1,JM)
                  IPJ1=IPQ(3-JQ,3-JM)
                  IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
                  IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                  DO 62 I=1,4
                  EPJ(I)=EPQ(I,JM)
62                EPJ1(I)=EPQ(I+4*(2-JQ),3-JM)
                  CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
                  IF(JFL.EQ.0)GOTO 301
                ELSEIF(IPQ(3-JQ,3-JM).NE.0)THEN
                  IPC(JQ,JM)=IPQ(3-JQ,3-JM)
                  DO 63 I=1,4
63                EPC(I+4*(JQ-1),JM)=EPQ(I+4*(2-JQ),3-JM)
                ELSEIF(IPQ(1,JM).NE.0)THEN
                  IPC(3-JQ,3-JM)=IPQ(1,JM)
                  DO 64 I=1,4
64                EPC(I+4*(2-JQ),3-JM)=EPQ(I,JM)
                ENDIF
              ENDIF

            ELSE
              IF(IQC(JM).EQ.0)THEN
                JT=5
                IQJ(2)=IPQ(3-JQ,JM)
                IQJ(1)=IPQ(1,3-JM)
                DO 65 I=1,4
                EQJ(I,2)=EPQ(I+4*(2-JQ),JM)
65              EQJ(I,1)=EPQ(I,3-JM)
              ELSE
                JT=6
                IQJ(1)=IPQ(JQ,3-JM)
                DO 66 I=1,4
66              EQJ(I,1)=EPQ(I+4*(JQ-1),3-JM)
              ENDIF
            ENDIF

          ELSEIF(IQC(1)*IQC(2).GT.0)THEN
            JT=7
            IF(IQC(1).GT.0)THEN
              JQ=1
            ELSE
              JQ=2
            ENDIF
            IQJ(1)=IPQ(1,3-JM)
            DO 67 I=1,4
67          EQJ(I,1)=EPQ(I,3-JM)

          ELSE
            JT=8
            IF(IQC(JM).GT.0)THEN
              JQ=1
            ELSE
              JQ=2
            ENDIF
            IQJ(1)=0
            DO 68 I=1,4
68          EQJ(I,1)=0.D0

            IF(IPQ(1,JM)*IPQ(1,3-JM).NE.0)THEN
              IPJ=IPQ(1,JM)
              IPJ1=IPQ(1,3-JM)
              IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
              IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
              DO 69 I=1,4
              EPJ(I)=EPQ(I,JM)
69            EPJ1(I)=EPQ(I,3-JM)
              CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
              IF(JFL.EQ.0)GOTO 301
            ELSEIF(IPQ(1,3-JM).NE.0)THEN
              IPC(JQ,JM)=IPQ(1,3-JM)
              DO 70 I=1,4
70            EPC(I+4*(JQ-1),JM)=EPQ(I,3-JM)
            ELSEIF(IPQ(1,JM).NE.0)THEN
              IPC(3-JQ,3-JM)=IPQ(1,JM)
              DO 71 I=1,4
71            EPC(I+4*(2-JQ),3-JM)=EPQ(I,JM)
            ENDIF
          ENDIF
          IF(JT.NE.8)THEN
            JQ2=JQ
          ELSE
            JQ2=3-JQ
          ENDIF
          IF(DEBUG.GE.3)WRITE (MONIOU,240)JT
240       FORMAT(2X,'PSHOT: COLOUR CONNECTION JT=:',I1)

          CALL PSCAJET(QT2,IQC(JM),QV1,ZV1,QM1,IQV1,
     *    LDAU1,LPAR1,JQ)
          CALL PSCAJET(QT2,IQC(3-JM),QV2,ZV2,QM2,IQV2,
     *    LDAU2,LPAR2,JQ2)

          AMT1=QT2+QM1(1,1)
          AMT2=QT2+QM2(1,1)

          IF(DSQRT(SI).GT.DSQRT(AMT1)+DSQRT(AMT2))THEN
            Z=XXTWDEC(SI,AMT1,AMT2)
          ELSE
            GOTO 301
          ENDIF

          CALL QGSPSDEFTR(SI,EPT,EY)

          WP3=Z*DSQRT(SI)
          WM3=(QT2+QM1(1,1))/WP3
          EP3(1)=.5D0*(WP3+WM3)
          EP3(2)=.5D0*(WP3-WM3)
          QT=DSQRT(QT2)
          CALL QGSPSCS(CCOS,SSIN)
c ep3 is now 4-vector for first s-channel gluon produced in the ladder run
          EP3(3)=QT*CCOS
          EP3(4)=QT*SSIN

          CALL QGSPSTRANS(EP3,EY)
          PT3=DSQRT(EP3(3)**2+EP3(4)**2)

          CALL PSREC(EP3,QV1,ZV1,QM1,IQV1,LDAU1,LPAR1,IQJ,EQJ,JFL,JQ)
          IF(JFL.EQ.0)GOTO 301

          if(iabs(IQC(JM)).eq.3)then
            iqqq=8+IQC(JM)/3*4
          else
            iqqq=8+IQC(JM)
          endif
          IF(DEBUG.GE.2)WRITE (MONIOU,209)TYQ(IQQQ),QT2

          WP3=(1.D0-Z)*DSQRT(SI)
          WM3=(QT2+QM2(1,1))/WP3
          EP3(1)=.5D0*(WP3+WM3)
          EP3(2)=.5D0*(WP3-WM3)
          EP3(3)=-QT*CCOS
          EP3(4)=-QT*SSIN
          CALL QGSPSTRANS(EP3,EY)
          PT3=DSQRT(EP3(3)**2+EP3(4)**2)

          IF(JT.EQ.1)THEN
            IF(IPC(JQ,JM).EQ.0)THEN
              IPC(JQ,JM)=IQJ(1)
              DO 72 I=1,4
72            EPC(I+4*(JQ-1),JM)=EQJ(I,1)
            ENDIF

            IQJ(1)=IQJ(2)
            IQJ(2)=IPQ(3-JQ,3-JM)
            DO 73 I=1,4
            EQJ(I,1)=EQJ(I,2)
73          EQJ(I,2)=EPQ(I+4*(2-JQ),3-JM)

          ELSEIF(JT.EQ.2)THEN
            IF(IPC(JQ,JM).EQ.0)THEN
              IPC(JQ,JM)=IQJ(1)
              DO 74 I=1,4
74            EPC(I+4*(JQ-1),JM)=EQJ(I,1)
            ENDIF
            IF(IPC(3-JQ,3-JM).EQ.0)THEN
              IPC(3-JQ,3-JM)=IQJ(2)
              DO 75 I=1,4
75            EPC(I+4*(2-JQ),3-JM)=EQJ(I,2)
            ENDIF

            IQJ(2)=IPQ(3-JQ,JM)
            IQJ(1)=IPQ(JQ,3-JM)
            DO 76 I=1,4
            EQJ(I,2)=EPQ(I+4*(2-JQ),JM)
76          EQJ(I,1)=EPQ(I+4*(JQ-1),3-JM)

          ELSEIF(JT.EQ.3)THEN
            IF(IPC(JQ,JM).EQ.0)THEN
              IPC(JQ,JM)=IQJ(1)
              DO 77 I=1,4
77            EPC(I+4*(JQ-1),JM)=EQJ(I,1)
            ENDIF
            IQJ(1)=IQJ(2)
            DO 78 I=1,4
78          EQJ(I,1)= EQJ(I,2)

          ELSEIF(JT.EQ.4)THEN
            IQJ(2)=IQJ(1)
            IQJ(1)=IPQ(JQ,3-JM)
            DO 79 I=1,4
            EQJ(I,2)=EQJ(I,1)
79          EQJ(I,1)=EPQ(I+4*(JQ-1),3-JM)

          ELSEIF(JT.EQ.5)THEN
            IF(IPC(3-JQ,JM).EQ.0)THEN
              IPC(3-JQ,JM)=IQJ(2)
              DO 80 I=1,4
80            EPC(I+4*(2-JQ),JM)=EQJ(I,2)
            ENDIF
            IF(IPC(JQ,3-JM).EQ.0)THEN
              IPC(JQ,3-JM)=IQJ(1)
              DO 81 I=1,4
81            EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
            ENDIF

            IQJ(1)=IPQ(JQ,JM)
            DO 82 I=1,4
82          EQJ(I,1)=EPQ(I+4*(JQ-1),JM)

          ELSEIF(JT.EQ.6)THEN
            IF(IPC(JQ,3-JM).EQ.0)THEN
              IPC(JQ,3-JM)=IQJ(1)
              DO 83 I=1,4
83            EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
            ENDIF

            IQJ(2)=IPQ(3-JQ,3-JM)
            IQJ(1)=IPQ(1,JM)
            DO 84 I=1,4
            EQJ(I,2)=EPQ(I+4*(2-JQ),3-JM)
84          EQJ(I,1)=EPQ(I,JM)

          ELSEIF(JT.EQ.7)THEN
            IF(IPC(JQ,3-JM).EQ.0)THEN
              IPC(JQ,3-JM)=IQJ(1)
              DO 85 I=1,4
85            EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
            ENDIF
            IQJ(1)=IPQ(1,JM)
            DO 86 I=1,4
86          EQJ(I,1)= EPQ(I,JM)
          ENDIF

          CALL PSREC(EP3,QV2,ZV2,QM2,IQV2,LDAU2,LPAR2,IQJ,EQJ,JFL,JQ2)
          IF(JFL.EQ.0)GOTO 301

          if(iabs(IQC(3-JM)).eq.3)then
            iqqq=8+IQC(3-JM)/3*4
          else
            iqqq=8+IQC(3-JM)
          endif
          IF(DEBUG.GE.2)WRITE (MONIOU,209)TYQ(IQQQ),QT2
          IF(DEBUG.GE.2)WRITE (MONIOU,212)NJTOT
212       FORMAT(2X,'PSHOT: TOTAL NUMBER OF JETS:',I2)

          IF(JT.EQ.1)THEN
            IF(IPC(3-JQ,3-JM).EQ.0)THEN
              IPC(3-JQ,3-JM)=IQJ(2)
              DO 87 I=1,4
87            EPC(I+4*(2-JQ),3-JM)=EQJ(I,2)
            ENDIF

          ELSEIF(JT.EQ.2)THEN
            IF(IPC(3-JQ,JM).EQ.0)THEN
              IPC(3-JQ,JM)=IQJ(2)
              DO 88 I=1,4
88            EPC(I+4*(2-JQ),JM)=EQJ(I,2)
            ENDIF
            IF(IPC(JQ,3-JM).EQ.0)THEN
              IPC(JQ,3-JM)=IQJ(1)
              DO 89 I=1,4
89            EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
            ENDIF

          ELSEIF(JT.EQ.4)THEN
            IF(IPC(JQ,3-JM).EQ.0)THEN
              IPC(JQ,3-JM)=IQJ(1)
              DO 90 I=1,4
90            EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
            ENDIF

          ELSEIF(JT.EQ.5)THEN
            IF(IPC(JQ,JM).EQ.0)THEN
              IPC(JQ,JM)=IQJ(1)
              DO 91 I=1,4
91            EPC(I+4*(JQ-1),JM)=EQJ(I,1)
            ENDIF

          ELSEIF(JT.EQ.6)THEN
            IF(IPC(3-JQ,3-JM).EQ.0)THEN
              IPC(3-JQ,3-JM)=IQJ(2)
              DO 92 I=1,4
92            EPC(I+4*(2-JQ),3-JM)=EQJ(I,2)
            ENDIF
            IF(IPC(JQ,JM).EQ.0)THEN
              IPC(JQ,JM)=IQJ(1)
              DO 93 I=1,4
93            EPC(I+4*(JQ-1),JM)=EQJ(I,1)
            ENDIF

          ELSEIF(JT.EQ.7)THEN
            IF(IPC(JQ,JM).EQ.0)THEN
              IPC(JQ,JM)=IQJ(1)
              DO 94 I=1,4
94            EPC(I+4*(JQ-1),JM)=EQJ(I,1)
            ENDIF
          ENDIF
C------------------------------------------------

        IF(DEBUG.GE.3)WRITE (MONIOU,217)
217     FORMAT(2X,'PSHOT - END')
        ebal(1)=.5*(wp0+wm0)
        ebal(2)=.5*(wp0-wm0)
        ebal(3)=0.d0
        ebal(4)=0.d0
        do 500 i=1,njtot
        do 500 m=1,2
        do 500 l=1,4
500        ebal(l)=ebal(l)-epjet(l,m,i)
c            write (*,*)'ebal',ebal
        RETURN
        END
C=======================================================================

        SUBROUTINE PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
c Procedure for jet hadronization - each gluon is
c considered to be splitted into quark-antiquark pair and usual soft
c strings are assumed to be formed between quark and antiquark
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EPJ(4),EPJ1(4),EPT(4)
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        COMMON /Q_AREA46/ EPJET(4,2,15000),IPJET(2,15000)
        COMMON /Q_AREA47/ NJTOT
        SAVE

c        if(ipj*ipj1.gt.0.and.iabs(ipj).ne.3.and.iabs(ipj).le.4.
c     *  and.iabs(ipj1).ne.3.and.iabs(ipj1).le.4.or.
c     *  ipj*ipj1.lt.0.and.(iabs(ipj).eq.3.or.iabs(ipj).gt.4.
c     *  or.iabs(ipj1).eq.3.or.iabs(ipj1).eq.4))then
c      write (*,*)'ipj,ipj1',ipj,ipj1
c           read (*,*)
c        endif

        IF(DEBUG.GE.2)WRITE (MONIOU,201)IPJ,IPJ1,EPJ,EPJ1
201     FORMAT(2X,'PSJDEF: PARTON FLAVORS',
     *  ': IPJ=',I2,2X,'IPJ1=',I2/
     *  4X,'PARTON 4-MOMENTA:',2X,4(E10.3,1X))
        DO 1 I=1,4
1       EPT(I)=EPJ(I)+EPJ1(I)

c Invariant mass squared for the jet
        WW=QGSPSNORM(EPt)
c Minimal mass squared for the jet
        IF(IABS(IPJ).LE.2)THEN
          AM1=AM(1)
        ELSEIF(IABS(IPJ).EQ.4)THEN
          AM1=AM(3)
        ELSE
          AM1=AM(2)
        ENDIF
        IF(IABS(IPJ1).LE.2)THEN
          AM2=AM(1)
        ELSEIF(IABS(IPJ1).EQ.4)THEN
          AM2=AM(3)
        ELSE
          AM2=AM(2)
        ENDIF
        AMJ=(AM1+AM2)**2

        IF(AMJ.GT.WW)THEN
          JFL=0
          RETURN
        ELSE
          JFL=1
        ENDIF

        NJTOT=NJTOT+1
        IF( NJTOT . GT. 15000 ) THEN
          WRITE(MONIOU,*)'PSJDEF: TOO MANY JETS'
          WRITE(MONIOU,*)'PSJDEF: NJTOT = ',NJTOT
          STOP
        ENDIF
        IPJET(1,NJTOT)=IPJ
        IPJET(2,NJTOT)=IPJ1
        DO 2 I=1,4
        EPJET(I,1,NJTOT)=EPJ(I)
2       EPJET(I,2,NJTOT)=EPJ1(I)

        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'PSJDEF - END')
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSJET(Q1,Q2,S,S2MIN,J,L)
C QGSPSJET - inclusive hard cross-section calculation (one more run is added
c to the ladder) - for any ordering
c Q1 - effective momentum cutoff for current end of the ladder,
c Q2 - effective momentum cutoff for opposide end of the ladder,
c S - total c.m. energy squared for the ladder,
c S2MIN - minimal c.m. energy squared for BORN process (above Q1 and Q2)
c J - parton type at current end of the ladder (0 - g, 1 - q)
c L - parton type at opposite end of the ladder (1 - g, 2 - q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA6/  PI,BM,AM
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON/AR13/X1(7),A1(7)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,S2MIN,J,L
201     FORMAT(2X,'QGSPSJET - UNORDERED LADDER CROSS SECTION:'/
     *  4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,'S2MIN=',
     *  E10.3,2X,'J=',I1,2X,'L=',I1)
        QGSPSJET=0.D0

        P=DSQRT(1.D0-3.D0*QT0/S)
        COSF=(1.D0-18.D0*QT0/S)/P**3
        FI=ATAN(1.D0/COSF**2-1.D0)
        IF(COSF.LT.0.D0)FI=PI-FI
        FI=FI/3.D0
        ZMAX=(2.D0-P*(DSQRT(3.D0)*SIN(FI)-COS(FI)))/3.D0
        ZMIN=(1.D0-P*COS(FI))/1.5D0

        IF(QT0/(1.D0-ZMIN)**2.LT.S2MIN)
     *  ZMIN=.5D0*(1.D0+S2MIN/S-DSQRT((1.D0-S2MIN/S)**2-4.D0*QT0/S))

***********************************************************
        IF(1.D0-ZMIN.LT.DSQRT(QT0/Q1))THEN
          QMIN=QT0/(1.D0-ZMIN)**2
        ELSE
          QMIN=Q1
        ENDIF

        QMAX=QT0/(1.D0-ZMAX)**2
        SUD0=QGSPSUDS(QMIN,J)
***********************************************************

        IF(DEBUG.GE.3)WRITE (MONIOU,203)QMIN,QMAX
203     FORMAT(2X,'QGSPSJET:',2X,'QMIN=',E10.3,2X,'QMAX=',E10.3)
        IF(QMAX.GT.QMIN)THEN

c Numerical integration over transverse momentum square;
c Gaussian integration is used
          DO 3 I=1,7
          DO 3 M=1,2
          QI=2.D0*QMIN/(1.D0+QMIN/QMAX+(2*M-3)*X1(I)*(1.D0-QMIN/QMAX))

          ZMAX=(1.D0-DSQRT(QT0/QI))**DELH
          ZMIN=((QI+MAX(QI,S2MIN))/(QI+S))**DELH

          FSJ=0.D0

        IF(DEBUG.GE.3)WRITE (MONIOU,204)QI,ZMIN,ZMAX
204     FORMAT(2X,'QGSPSJET:',2X,'QI=',E10.3,2X,'ZMIN=',E10.3,2X,
     *  'ZMAX=',E10.3)
          IF(ZMAX.GT.ZMIN)THEN
            DO 2 I1=1,7
            DO 2 M1=1,2
            Z=(.5D0*(ZMAX+ZMIN+(2*M1-3)*X1(I1)*(ZMAX-ZMIN)))**
     *      (1.D0/DELH)
            QT=QI*(1.D0-Z)**2
            S2=Z*S-QI*(1.D0-Z)

            SJ=0.D0
            DO 1 K=1,2
1           SJ=SJ+PSJINT(QI,Q2,S2,K,L)*QGSPSFAP(Z,J,K-1)*Z
2           FSJ=FSJ+A1(I1)*SJ/DLOG(QT/ALM)/Z**DELH
            FSJ=FSJ*(ZMAX-ZMIN)
          ENDIF

3         QGSPSJET=QGSPSJET+A1(I)*FSJ*QI*QGSPSUDS(QI,J)
          QGSPSJET=QGSPSJET*(1.D0/QMIN-1.D0/QMAX)/SUD0/DELH/18.D0
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSJET
202     FORMAT(2X,'QGSPSJET=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSJET1(Q1,Q2,S,S2MIN,J,L)
C QGSPSJET1 - inclusive hard cross-section calculation (one more run is added
c to the ladder) - for strict ordering
c Q1 - effective momentum cutoff for current end of the ladder,
c Q2 - effective momentum cutoff for opposide end of the ladder,
c S - total c.m. energy squared for the ladder,
c S2MIN - minimal c.m. energy squared for BORN process (above Q1 and Q2)
c J - parton type at current end of the ladder (0 - g, 1 - q)
c L - parton type at opposite end of the ladder (1 - g, 2 - q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA6/  PI,BM,AM
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON/AR13/X1(7),A1(7)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,S2MIN,J,L
201     FORMAT(2X,'QGSPSJET1 - STRICTLY ORDERED LADDER CROSS SECTION:'/
     *  4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,'S2MIN=',
     *  E10.3,2X,'J=',I1,2X,'L=',I1)
        QGSPSJET1=0.D0

        P=DSQRT(1.D0-3.D0*QT0/S)
        COSF=(1.D0-18.D0*QT0/S)/P**3
        FI=ATAN(1.D0/COSF**2-1.D0)
        IF(COSF.LT.0.D0)FI=PI-FI
        FI=FI/3.D0
        ZMAX=(2.D0-P*(DSQRT(3.D0)*SIN(FI)-COS(FI)))/3.D0
        ZMIN=(1.D0-P*COS(FI))/1.5D0

        IF(QT0/(1.D0-ZMIN)**2.LT.S2MIN)
     *  ZMIN=.5D0*(1.D0+S2MIN/S-DSQRT((1.D0-S2MIN/S)**2-4.D0*QT0/S))

***********************************************************
        IF(1.D0-ZMIN.LT.DSQRT(QT0/Q1))THEN
          QMIN=QT0/(1.D0-ZMIN)**2
        ELSE
          QMIN=Q1
        ENDIF

        QMAX=QT0/(1.D0-ZMAX)**2
        SUD0=QGSPSUDS(QMIN,J)
***********************************************************

        IF(DEBUG.GE.3)WRITE (MONIOU,203)QMIN,QMAX
203     FORMAT(2X,'QGSPSJET1:',2X,'QMIN=',E10.3,2X,'QMAX=',E10.3)
        IF(QMAX.GT.QMIN)THEN

c Numerical integration over transverse momentum square;
c Gaussian integration is used
          DO 3 I=1,7
          DO 3 M=1,2
          QI=2.D0*QMIN/(1.D0+QMIN/QMAX+(2*M-3)*X1(I)*(1.D0-QMIN/QMAX))

          ZMAX=(1.D0-DSQRT(QT0/QI))**DELH
          ZMIN=((QI+MAX(QI,S2MIN))/(QI+S))**DELH

          FSJ=0.D0

        IF(DEBUG.GE.3)WRITE (MONIOU,204)QI,ZMIN,ZMAX
204     FORMAT(2X,'QGSPSJET1:',2X,'QI=',E10.3,2X,'ZMIN=',E10.3,2X,
     *  'ZMAX=',E10.3)
          IF(ZMAX.GT.ZMIN)THEN
            DO 2 I1=1,7
            DO 2 M1=1,2
            Z=(.5D0*(ZMAX+ZMIN+(2*M1-3)*X1(I1)*(ZMAX-ZMIN)))**
     *      (1.D0/DELH)
            QT=QI*(1.D0-Z)**2
            S2=Z*S-QI*(1.D0-Z)

            SJ=0.D0
            DO 1 K=1,2
1           SJ=SJ+PSJINT1(QI,Q2,S2,K,L)*QGSPSFAP(Z,J,K-1)*Z
2           FSJ=FSJ+A1(I1)*SJ/DLOG(QT/ALM)/Z**DELH
            FSJ=FSJ*(ZMAX-ZMIN)
          ENDIF

3         QGSPSJET1=QGSPSJET1+A1(I)*FSJ*QI*QGSPSUDS(QI,J)
          QGSPSJET1=QGSPSJET1*(1.D0/QMIN-1.D0/QMAX)/SUD0/DELH/18.D0
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSJET1
202     FORMAT(2X,'QGSPSJET1=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSJINT(Q1,Q2,S,M,L)
C PSJINT - inclusive hard cross-section interpolation - for any ordering
c in the ladder
c Q1 - effective momentum cutoff for current end of the ladder,
c Q2 - effective momentum cutoff for opposide end of the ladder,
c S - total c.m. energy squared for the ladder,
c M - parton type at current end of the ladder (1 - g, 2 - q)
c L - parton type at opposite end of the ladder (1 - g, 2 - q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION WI(3),WJ(3),WK(3)
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA29/ CSJ(17,17,68)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,M,L
201     FORMAT(2X,'PSJINT - UNORDERED LADDER CROSS SECTION INTERPOL.:'/
     *  4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,
     *  2X,'M=',I1,2X,'L=',I1)
        PSJINT=0.D0
        QQ=MAX(Q1,Q2)
      IF(S.LE.MAX(4.D0*QT0,QQ))THEN
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT
202     FORMAT(2X,'PSJINT=',E10.3)
        RETURN
      ENDIF

        ML=17*(M-1)+34*(L-1)
        QLI=DLOG(Q1/QT0)/1.38629D0
        QLJ=DLOG(Q2/QT0)/1.38629D0
        SL=DLOG(S/QT0)/1.38629D0
        SQL=SL-MAX(QLI,QLJ)
        I=INT(QLI)
        J=INT(QLJ)
        K=INT(SL)
        IF(I.GT.13)I=13
        IF(J.GT.13)J=13

        IF(SQL.GT.10.D0)THEN
          IF(K.GT.14)K=14
          IF(I.GT.K-3)I=K-3
          IF(J.GT.K-3)J=K-3
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)
          WK(2)=SL-K
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          DO 1 I1=1,3
          DO 1 J1=1,3
          DO 1 K1=1,3
1         PSJINT=PSJINT+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
          PSJINT=EXP(PSJINT)
        ELSEIF(SQL.LT.1.D0.AND.I+J.NE.0)THEN
          SQ=(S/MAX(Q1,Q2)-1.D0)/3.D0
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)

          DO 2 I1=1,3
          I2=I+I1
          DO 2 J1=1,3
          J2=J+J1
          K2=MAX(I2,J2)+1+ML
2         PSJINT=PSJINT+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)
          PSJINT=EXP(PSJINT)*SQ
        ELSEIF(K.EQ.1)THEN
          SQ=(S/QT0/4.D0-1.D0)/3.D0
          WI(2)=QLI
          WI(1)=1.D0-QLI
          WJ(2)=QLJ
          WJ(1)=1.D0-QLJ

          DO 3 I1=1,2
          DO 3 J1=1,2
3         PSJINT=PSJINT+CSJ(I1,J1,3+ML)*WI(I1)*WJ(J1)
          PSJINT=EXP(PSJINT)*SQ
        ELSEIF(K.LT.15)THEN
          KL=INT(SQL)
          IF(I+KL.GT.12)I=12-KL
          IF(J+KL.GT.12)J=12-KL
          IF(I+J+KL.EQ.1)KL=2
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)
          WK(2)=SQL-KL
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          DO 4 I1=1,3
          I2=I+I1
          DO 4 J1=1,3
          J2=J+J1
          DO 4 K1=1,3
          K2=MAX(I2,J2)+KL+K1-1+ML
4         PSJINT=PSJINT+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)*WK(K1)
          PSJINT=EXP(PSJINT)
        ELSE
          K=15
          IF(I.GT.K-3)I=K-3
          IF(J.GT.K-3)J=K-3
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)
          WK(2)=SL-K
          WK(1)=1.D0-WK(2)

          DO 5 I1=1,3
          DO 5 J1=1,3
          DO 5 K1=1,2
5         PSJINT=PSJINT+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
          PSJINT=EXP(PSJINT)
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT
        RETURN
        END
C=======================================================================

        SUBROUTINE PSJINT0(S,SJ,SJB,M,L)
C PSJINT0 - inclusive hard cross-section interpolation - for minimal
c effective momentum cutoff in the ladder
c S - total c.m. energy squared for the ladder,
c SJ - inclusive jet cross-section,
c SJB - Born cross-section,
c M - parton type at current end of the ladder (0 - g, 1 - q)
c L - parton type at opposite end of the ladder (0 - g, 1 - q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION WK(3)
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA32/ CSJ(17,2,2),CSB(17,2,2)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,M,L
201     FORMAT(2X,'PSJINT0 - HARD CROSS SECTION INTERPOLATION:'/
     *  4X,'S=',E10.3,2X,'M=',I1,2X,'L=',I1)
        SJ=0.D0
        SJB=0.D0
      IF(S.LE.4.D0*QT0)THEN
        IF(DEBUG.GE.3)WRITE (MONIOU,202)SJ,SJB
202     FORMAT(2X,'PSJINT0: SJ=',E10.3,2X,'SJB=',E10.3)
        RETURN
      ENDIF

        SL=DLOG(S/QT0)/1.38629d0
        K=INT(SL)
        IF(K.EQ.1)THEN
          SQ=(S/QT0/4.D0-1.D0)/3.D0
          SJB=EXP(CSB(3,M+1,L+1))*SQ
          SJ=EXP(CSJ(3,M+1,L+1))*SQ
        ELSE
          IF(K.GT.14)K=14
          WK(2)=SL-K
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          DO 1 K1=1,3
          SJ=SJ+CSJ(K+K1,M+1,L+1)*WK(K1)
1         SJB=SJB+CSB(K+K1,M+1,L+1)*WK(K1)
          SJB=EXP(SJB)
          SJ=EXP(SJ)
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)SJ,SJB
        RETURN
        END
C=======================================================================

        FUNCTION PSJINT1(Q1,Q2,S,M,L)
C PSJINT1 - inclusive hard cross-section interpolation - for strict ordering
c in the ladder
c Q1 - effective momentum cutoff for current end of the ladder,
c Q2 - effective momentum cutoff for opposide end of the ladder,
c S - total c.m. energy squared for the ladder,
c M - parton type at current end of the ladder (1 - g, 2 - q)
c L - parton type at opposite end of the ladder (1 - g, 2 - q)
C-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION WI(3),WJ(3),WK(3)
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA30/ CSJ(17,17,68)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,M,L
201     FORMAT(2X,'PSJINT1 - STRICTLY ORDERED LADDER CROSS SECTION',
     *  ' INTERPOLATION:'/
     *  4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,
     *  4X,'M=',I1,2X,'L=',I1)
        PSJINT1=0.D0
        QQ=MAX(Q1,Q2)
      IF(S.LE.MAX(4.D0*QT0,QQ))THEN
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT1
202     FORMAT(2X,'PSJINT1=',E10.3)
        RETURN
      ENDIF

        ML=17*(M-1)+34*(L-1)
        QLI=DLOG(Q1/QT0)/1.38629d0
        QLJ=DLOG(Q2/QT0)/1.38629d0
        SL=DLOG(S/QT0)/1.38629d0
        SQL=SL-MAX(QLI,QLJ)
        I=INT(QLI)
        J=INT(QLJ)
        K=INT(SL)
        IF(I.GT.13)I=13
        IF(J.GT.13)J=13

        IF(SQL.GT.10.D0)THEN
          IF(K.GT.14)K=14
          IF(I.GT.K-3)I=K-3
          IF(J.GT.K-3)J=K-3
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)
          WK(2)=SL-K
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          DO 1 I1=1,3
          DO 1 J1=1,3
          DO 1 K1=1,3
1         PSJINT1=PSJINT1+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
          PSJINT1=EXP(PSJINT1)
        ELSEIF(SQL.LT.1.D0.AND.I+J.NE.0)THEN
          SQ=(S/MAX(Q1,Q2)-1.D0)/3.D0
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)

          DO 2 I1=1,3
          I2=I+I1
          DO 2 J1=1,3
          J2=J+J1
          K2=MAX(I2,J2)+1+ML
2         PSJINT1=PSJINT1+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)
          PSJINT1=EXP(PSJINT1)*SQ
        ELSEIF(K.EQ.1)THEN
          SQ=(S/QT0/4.D0-1.D0)/3.D0
          WI(2)=QLI
          WI(1)=1.D0-QLI
          WJ(2)=QLJ
          WJ(1)=1.D0-QLJ

          DO 3 I1=1,2
          DO 3 J1=1,2
3         PSJINT1=PSJINT1+CSJ(I1,J1,3+ML)*WI(I1)*WJ(J1)
          PSJINT1=EXP(PSJINT1)*SQ
        ELSEIF(K.LT.15)THEN
          KL=INT(SQL)
          IF(I+KL.GT.12)I=12-KL
          IF(J+KL.GT.12)J=12-KL
          IF(I+J+KL.EQ.1)KL=2

          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)
          WK(2)=SQL-KL
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          DO 4 I1=1,3
          I2=I+I1
          DO 4 J1=1,3
          J2=J+J1
          DO 4 K1=1,3
          K2=MAX(I2,J2)+KL+K1-1+ML
4         PSJINT1=PSJINT1+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)*WK(K1)
          PSJINT1=EXP(PSJINT1)
        ELSE
          K=15
          IF(I.GT.K-3)I=K-3
          IF(J.GT.K-3)J=K-3
          WI(2)=QLI-I
          WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
          WI(1)=1.D0-WI(2)+WI(3)
          WI(2)=WI(2)-2.D0*WI(3)
          WJ(2)=QLJ-J
          WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
          WJ(1)=1.D0-WJ(2)+WJ(3)
          WJ(2)=WJ(2)-2.D0*WJ(3)
          WK(2)=SL-K
          WK(1)=1.D0-WK(2)

          DO 5 I1=1,3
          DO 5 J1=1,3
          DO 5 K1=1,2
5         PSJINT1=PSJINT1+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
          PSJINT1=EXP(PSJINT1)
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT1
        RETURN
        END
C=======================================================================

       FUNCTION QGSPSLAM(S,A,B)
c Kinematical function for two particle decay - maximal Pt-value
c A - first particle mass squared,
C B - second particle mass squared,
C S - two particle invariant mass
c-----------------------------------------------------------------------
       IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
       COMMON /Q_AREA43/ MONIOU
       COMMON /Q_DEBUG/  DEBUG
       SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,A,B
201     FORMAT(2X,'QGSPSLAM - KINEMATICAL FUNCTION S=',E10.3,2X,'A=',
     *  E10.3,2X,'B=',E10.3)
       QGSPSLAM=.25D0/S*(S+A-B)**2-A
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSLAM
202     FORMAT(2X,'QGSPSLAM=',E10.3)
       RETURN
       END
C=======================================================================

        FUNCTION QGSPSNORM(EP)
c 4-vector squared calculation
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP(4)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)EP
201     FORMAT(2X,'QGSPSNORM - 4-VECTOR SQUARED FOR ',
     *  'EP=',4(E10.3,1X))
        QGSPSNORM=EP(1)**2
        DO 1 I=1,3
1       QGSPSNORM=QGSPSNORM-EP(I+1)**2
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSNORM
202     FORMAT(2X,'QGSPSNORM=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE PSREC(EP,QV,ZV,QM,IQV,LDAU,LPAR,IQJ,EQJ,JFL,JQ)
c Jet reconstructuring procedure - 4-momenta for all final jets are determined
c EP(i) - jet 4-momentum
C-----------------------------------------------------------------------
c QV(i,j) - effective momentum for the branching of the parton in i-th row
c on j-th level (0 - in case of no branching)
c ZV(i,j) - Z-value for the branching of the parton in i-th row
c on j-th level
c QM(i,j) - mass squared for the parton in i-th row
c on j-th level
c IQV(i,j) - flavours for the parton in i-th row on j-th level
c LDAU(i,j) - first daughter row for the branching of the parton in i-th row
c on j-th level
c LPAR(i,j) - the parent row for the parton in i-th row on j-th level
C-----------------------------------------------------------------------
               IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP(4),EP3(4),EPV(4,30,50),
     *  QV(30,50),ZV(30,50),QM(30,50),IQV(30,50),
     *  LDAU(30,49),LPAR(30,50),
     *  IQJ(2),EQJ(4,2),IPQ(2,30,50),EPQ(8,30,50),
     *  EPJ(4),EPJ1(4)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)JQ,EP,IQJ
201     FORMAT(2X,'PSREC - JET RECONSTRUCTURING: JQ=',I1/
     *  4X,'JET 4-MOMENTUM EP=',4(E10.3,1X)/4X,'IQJ=',2I2)
        JFL = 1
        DO 1 I=1,4
        EPV(I,1,1)=EP(I)
1       EPQ(I,1,1)=EQJ(I,1)
        IPQ(1,1,1)=IQJ(1)

        IF(IQV(1,1).EQ.0)THEN
          DO 2 I=1,4
2         EPQ(I+4,1,1)=EQJ(I,2)
          IPQ(2,1,1)=IQJ(2)
        ENDIF

        NLEV=1
        NROW=1

3       CONTINUE

        IF(QV(NROW,NLEV).EQ.0.D0)THEN
           IPJ=IQV(NROW,NLEV)
           IF(IPJ.NE.0)THEN
             IF(EPQ(1,NROW,NLEV).NE.0.D0)THEN
               IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
              DO 4 I=1,4
              EPJ(I)=EPV(I,NROW,NLEV)
4             EPJ1(I)=EPQ(I,NROW,NLEV)
              IPJ1=IPQ(1,NROW,NLEV)
              IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
              CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
        IF(DEBUG.GE.3)WRITE (MONIOU,211)IPJ,IPJ1,JFL
211     FORMAT(2X,'PSREC - NEW STRING FLAVOURS: ',2I3,' JFL=',I1)
              IF(JFL.EQ.0)RETURN
            ELSE
              IPQ(1,NROW,NLEV)=IPJ
              DO 5 I=1,4
5             EPQ(I,NROW,NLEV)=EPV(I,NROW,NLEV)
        IF(DEBUG.GE.3)WRITE (MONIOU,212)IPJ,
     *  (EPV(I,NROW,NLEV),I=1,4),JFL
212     FORMAT(2X,'PSREC: NEW FINAL JET FLAVOR: ',I3,2X,
     *         'JET 4-MOMENTUM:', 4(E10.3,1X),' JFL=',I1)
            ENDIF

           ELSE
             IPJ=INT(2.D0*PSRAN(B10)+1.D0)*(3-2*JQ)
            DO 6 I=1,4
6           EPJ(I)=.5D0*EPV(I,NROW,NLEV)

            DO 9 M=1,2
            IF(EPQ(1+4*(M-1),NROW,NLEV).NE.0.D0)THEN
              DO 7 I=1,4
7             EPJ1(I)=EPQ(4*(M-1)+I,NROW,NLEV)
              IPJ1=IPQ(M,NROW,NLEV)
              IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
              CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
              IF(JFL.EQ.0)RETURN
            ELSE
              IPQ(M,NROW,NLEV)=IPJ
              DO 8 I=1,4
8             EPQ(4*(M-1)+I,NROW,NLEV)=EPJ(I)
            ENDIF
9           IPJ=-IPJ
          ENDIF

        IF(DEBUG.GE.3)WRITE (MONIOU,204)NLEV,NROW,IQV(NROW,NLEV),
     *  (EPV(I,NROW,NLEV),I=1,4)
204     FORMAT(2X,'PSREC: FINAL JET AT LEVEL NLEV=',I2,
     *  ' NROW=',I2/4X,'JET FLAVOR: ',I3,2X,'JET 4-MOMENTUM:',
     *  4(E10.3,1X))
         ELSE

          DO 10 I=1,4
10        EP3(I)=EPV(I,NROW,NLEV)
          CALL QGSPSDEFROT(EP3,S0X,C0X,S0,C0)
          Z=ZV(NROW,NLEV)
          QT2=(Z*(1.D0-Z))**2*QV(NROW,NLEV)
          LDROW=LDAU(NROW,NLEV)

          WP0=EP3(1)+EP3(2)
          WPI=Z*WP0
          WMI=(QT2+QM(LDROW,NLEV+1))/WPI
          EP3(1)=.5D0*(WPI+WMI)
          EP3(2)=.5D0*(WPI-WMI)
          QT=DSQRT(QT2)
          CALL QGSPSCS(C,S)
          EP3(3)=QT*C
          EP3(4)=QT*S
          CALL QGSPSROTAT(EP3,S0X,C0X,S0,C0)

          DO 11 I=1,4
11        EPV(I,LDROW,NLEV+1)=EP3(I)
        IF(DEBUG.GE.3)WRITE (MONIOU,206)NLEV+1,LDROW,EP3
206     FORMAT(2X,'PSREC: JET AT LEVEL NLEV=',I2,
     *  ' NROW=',I2/4X,'JET 4-MOMENTUM:',4(E10.3,1X))

          WPI=(1.D0-Z)*WP0
          WMI=(QT2+QM(LDROW+1,NLEV+1))/WPI
          EP3(1)=.5D0*(WPI+WMI)
          EP3(2)=.5D0*(WPI-WMI)
          EP3(3)=-QT*C
          EP3(4)=-QT*S
          CALL QGSPSROTAT(EP3,S0X,C0X,S0,C0)
        IF(DEBUG.GE.3)WRITE (MONIOU,206)NLEV+1,LDROW+1,EP3

          DO 12 I=1,4
12        EPV(I,LDROW+1,NLEV+1)=EP3(I)

          IF(IQV(NROW,NLEV).EQ.0)THEN
            IF(IQV(LDROW,NLEV+1).NE.0)THEN
              IPQ(1,LDROW,NLEV+1)=IPQ(1,NROW,NLEV)
              IPQ(1,LDROW+1,NLEV+1)=IPQ(2,NROW,NLEV)
              DO 13 I=1,4
              EPQ(I,LDROW,NLEV+1)=EPQ(I,NROW,NLEV)
13            EPQ(I,LDROW+1,NLEV+1)=EPQ(I+4,NROW,NLEV)
            ELSE
              IPQ(1,LDROW,NLEV+1)=IPQ(1,NROW,NLEV)
              IPQ(2,LDROW,NLEV+1)=0
              IPQ(1,LDROW+1,NLEV+1)=0
              IPQ(2,LDROW+1,NLEV+1)=IPQ(2,NROW,NLEV)
              DO 14 I=1,4
              EPQ(I,LDROW,NLEV+1)=EPQ(I,NROW,NLEV)
              EPQ(I+4,LDROW,NLEV+1)=0.D0
              EPQ(I,LDROW+1,NLEV+1)=0.D0
14            EPQ(I+4,LDROW+1,NLEV+1)=EPQ(I+4,NROW,NLEV)
            ENDIF
          ELSE
            IF(IQV(LDROW,NLEV+1).EQ.0)THEN
              IPQ(1,LDROW,NLEV+1)=IPQ(1,NROW,NLEV)
              IPQ(2,LDROW,NLEV+1)=0
              IPQ(1,LDROW+1,NLEV+1)=0
              DO 15 I=1,4
              EPQ(I,LDROW,NLEV+1)=EPQ(I,NROW,NLEV)
              EPQ(I+4,LDROW,NLEV+1)=0.D0
15            EPQ(I,LDROW+1,NLEV+1)=0.D0
            ELSE
              IPQ(1,LDROW,NLEV+1)=0
              IPQ(1,LDROW+1,NLEV+1)=0
              IPQ(2,LDROW+1,NLEV+1)=IPQ(1,NROW,NLEV)
              DO 16 I=1,4
              EPQ(I,LDROW,NLEV+1)=0.D0
              EPQ(I,LDROW+1,NLEV+1)=0.D0
16            EPQ(I+4,LDROW+1,NLEV+1)=EPQ(I,NROW,NLEV)
            ENDIF
          ENDIF

          NROW=LDROW
          NLEV=NLEV+1
          GOTO 3
        ENDIF

17      CONTINUE
        IF(NLEV.EQ.1)THEN
          IQJ(1)=IPQ(1,1,1)
          DO 18 I=1,4
18        EQJ(I,1)=EPQ(I,1,1)
          IF(IQV(1,1).EQ.0)THEN
            IQJ(2)=IPQ(2,1,1)
            DO 19 I=1,4
19          EQJ(I,2)=EPQ(I+4,1,1)
          ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)iqj
202     FORMAT(2X,'PSREC - END',2x,'iqj=',2i2)
        RETURN
      ENDIF

        LPROW=LPAR(NROW,NLEV)

        IF(LDAU(LPROW,NLEV-1).EQ.NROW)THEN
           IF(IQV(NROW,NLEV).EQ.0)THEN
             IF(EPQ(1,LPROW,NLEV-1).EQ.0.D0)THEN
              IPQ(1,LPROW,NLEV-1)=IPQ(1,NROW,NLEV)
              DO 20 I=1,4
20            EPQ(I,LPROW,NLEV-1)=EPQ(I,NROW,NLEV)
            ENDIF
            IPQ(1,NROW+1,NLEV)=IPQ(2,NROW,NLEV)
            DO 21 I=1,4
21          EPQ(I,NROW+1,NLEV)=EPQ(I+4,NROW,NLEV)
          ELSE
            IF(IQV(LPROW,NLEV-1).EQ.0)THEN
              IF(EPQ(1,LPROW,NLEV-1).EQ.0.D0)THEN
                IPQ(1,LPROW,NLEV-1)=IPQ(1,NROW,NLEV)
                DO 22 I=1,4
22              EPQ(I,LPROW,NLEV-1)=EPQ(I,NROW,NLEV)
              ENDIF
            ELSE
              IPQ(1,NROW+1,NLEV)=IPQ(1,NROW,NLEV)
              DO 23 I=1,4
23            EPQ(I,NROW+1,NLEV)=EPQ(I,NROW,NLEV)
            ENDIF
          ENDIF
          NROW=NROW+1
          GOTO 3

        ELSE
          IF(IQV(NROW,NLEV).EQ.0)THEN
            IF(IQV(LPROW,NLEV-1).EQ.0)THEN
              IF(EPQ(5,LPROW,NLEV-1).EQ.0.D0)THEN
                IPQ(2,LPROW,NLEV-1)=IPQ(2,NROW,NLEV)
                DO 24 I=1,4
24              EPQ(I+4,LPROW,NLEV-1)=EPQ(I+4,NROW,NLEV)
              ENDIF
            ELSE
              IF(EPQ(1,LPROW,NLEV-1).EQ.0.D0)THEN
                IPQ(1,LPROW,NLEV-1)=IPQ(2,NROW,NLEV)
                DO 25 I=1,4
25              EPQ(I,LPROW,NLEV-1)=EPQ(I+4,NROW,NLEV)
              ENDIF
            ENDIF
          ELSE
            IF(IQV(LPROW,NLEV-1).EQ.0.AND.
     *      EPQ(5,LPROW,NLEV-1).EQ.0.D0)THEN
                IPQ(2,LPROW,NLEV-1)=IPQ(1,NROW,NLEV)
                DO 26 I=1,4
26              EPQ(I+4,LPROW,NLEV-1)=EPQ(I,NROW,NLEV)
            ENDIF
          ENDIF

          NROW=LPROW
          NLEV=NLEV-1
          GOTO 17
        ENDIF
        END
C=======================================================================

      FUNCTION PSREJS(S,Z,IQQ)
c PSREJS - rejection function for the energy sharing for semihard
c interaction (Hi_semihard(S)/S**delh)
c S - energy squared for the semihard interaction,
c Z - impact parameter factor, Z=exp(-b**2/Rp),
c IQQ - type of the hard interaction (0 - gg, 1 - qg, 2 - gq)
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
      COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
      COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
      COMMON /Q_AR13/    X1(7),A1(7)
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Z,IQQ
201     FORMAT(2X,'PSREJS - REJECTION FUNCTION TABULATION: '/
     *  4X,'S=',E10.3,2X,'Z=',E10.3,2X,'IQQ=',I1)
      XMIN=4.D0*(QT0+AMJ0)/S
      XMIN=XMIN**(DELH-DEL)
      PSREJS=0.D0

c Numerical integration over Z1
      DO 2 I=1,7
      DO 2 M=1,2
      Z1=(.5D0*(1.D0+XMIN-(2*M-3)*X1(I)*(1.D0-XMIN)))**(1.D0/
     *(DELH-DEL))

c SJ is the inclusive hard partonic interaction
c cross-section (inclusive cut ladder cross section) for minimal
c 4-momentum transfer squre QT0 and c.m. energy square s_hard = exp YJ;
c SJB - Born cross-section
      YJ=DLOG(Z1*S)
      CALL PSJINT0(Z1*S,SJ,SJB,IQQ,0)
c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic
c interaction cross-section for minimal 4-momentum transfer square QT0 and
c c.m. energy square s_hard = exp YJ; SH=pi*R_hard**2 (R_hard**2=4/QT0)
      GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
      RH=RS0-ALF*DLOG(Z1)

      IF(IQQ.NE.0)THEN
        PSREJS=PSREJS+A1(I)*GY/(Z1*S)**DELH*Z**(RS0/RH)/RH*
     *  (1.D0-Z1)*BET
      ELSE
        ST2=0.D0
        DO 1 J=1,7
1       ST2=ST2+A1(J)*((1.D0-Z1**(.5D0*(1.D0+X1(J))))*
     *  (1.D0-Z1**(.5D0*(1.D0-X1(J)))))**BET

        PSREJS=PSREJS-A1(I)*DLOG(Z1)*GY/(Z1*S)**DELH*Z**(RS0/RH)/RH*ST2
      ENDIF
2     CONTINUE
      PSREJS=DLOG(PSREJS*(1.D0-XMIN)/Z)
        IF(DEBUG.GE.2)WRITE (MONIOU,202)PSREJS
202     FORMAT(2X,'PSREJS=',E10.3)
      RETURN
      END
C=======================================================================

        FUNCTION PSREJV(S)
c PSREJV - rejection function for the energy sharing for quark-quark hard
c interaction (sigma_hard(S)/S**delh)
c S - energy squared for the hard interaction
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S
201     FORMAT(2X,'PSREJV - REJECTION FUNCTION TABULATION: ',
     *  'S=',E10.3)
c SJ is the inclusive hard QUARK-QUARK interaction
c cross-section (inclusive cut ladder cross section) for minimal
c 4-momentum transfer squre QT0 and c.m. energy square s;
c SJB - Born cross-section
        CALL PSJINT0(S,SJ,SJB,1,1)

c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic (quark-quark)
c interaction cross-section for minimal 4-momentum transfer square QT0 and
c c.m. energy square s; SH=pi*R_hard**2 (R_hard**2=4/QT0)
        GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
        PSREJV=DLOG(GY/S**DELH)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSREJV
202     FORMAT(2X,'PSREJV=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSRJINT(YJ,Z0,IQQ)
c PSRJINT - Rejection function for the energy sharing (Hi_semih(S)/S**delh)
c YJ=ln S,
c Z0 - impact parameter factor, Z0=exp(-b**2/Rp),
c IQQ - type of hard interaction (0 - gg; 1 - qg, 2 - gq; 3 - qq)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION A(3)
        COMMON /Q_AREA1/  IA(2),ICZ,ICP
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA23/ RJV(50)
        COMMON /Q_AREA24/ RJS(50,5,10)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)YJ,Z0,IQQ
201     FORMAT(2X,'PSRJINT - REJECTION FUNCTION INTERPOLATION:'/
     *  4X,'YJ=',E10.3,2X,'Z0=',E10.3,2X,'IQQ=',I1)
        YY=(YJ-AQT0)*2.D0
*       JY=INT(YY)
        JY=MIN(48,INT(YY))       !  modified 15.oct.03 D.H.

        IF(IQQ.EQ.3)THEN
          IF(JY.EQ.0)THEN
            PSRJINT=EXP(RJV(1))*YY+(EXP(RJV(2))-2.D0*
     *      EXP(RJV(1)))*YY*(YY-1.D0)*.5D0
          ELSE
            PSRJINT=EXP(RJV(JY)+(RJV(JY+1)-RJV(JY))*(YY-JY)
     *      +(RJV(JY+2)+RJV(JY)-2.D0*RJV(JY+1))*(YY-JY)*
     *      (YY-JY-1.D0)*.5D0)
          ENDIF
        ELSE
          Z=Z0**(RS/RS0)
          IQ=(IQQ+1)/2+1+2*(ICZ-1)
          JZ=INT(5.D0*Z)
          IF(JZ.GT.3)JZ=3
          WZ=5.D0*Z-JZ

          IF(JZ.EQ.0)THEN
            I1=2
          ELSE
            I1=1
          ENDIF

          DO 1 I=I1,3
          J1=JZ+I-1
          IF(JY.EQ.0)THEN
            A(I)=EXP(RJS(1,J1,IQ))*YY+(EXP(RJS(2,J1,IQ))-2.D0*
     *      EXP(RJS(1,J1,IQ)))*YY*(YY-1.D0)*.5D0
            IF(A(I).GT.0.D0)THEN
              A(I)=DLOG(A(I))
            ELSE
              A(I)=-80.D0
            ENDIF
          ELSE
            A(I)=RJS(JY,J1,IQ)+(RJS(JY+1,J1,IQ)-
     *      RJS(JY,J1,IQ))*(YY-JY)
     *      +(RJS(JY+2,J1,IQ)+RJS(JY,J1,IQ)-2.D0*
     *      RJS(JY+1,J1,IQ))*(YY-JY)*(YY-JY-1.D0)*.5D0
          ENDIF
1         CONTINUE

          IF(JZ.NE.0)THEN
            PSRJINT=EXP(A(1)+(A(2)-A(1))*WZ+(A(3)+A(1)-2.D0*A(2))*WZ*
     *      (WZ-1.D0)*.5D0)*Z
          ELSE
            PSRJINT=(EXP(A(2))*WZ+(EXP(A(3))-2.D0*EXP(A(2)))*WZ*
     *      (WZ-1.D0)*.5D0)*Z
            IF(PSRJINT.LE.0.D0)PSRJINT=1.D-10
          ENDIF
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSRJINT
202     FORMAT(2X,'PSRJINT=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSROOT(QLMAX,G,J)
c PSROOT - effective momentum tabulation for given set of random number
c values and maximal effective momentum QMAX values - according to the
c probability of branching: (1 - timelike Sudakov formfactor)
c QLMAX - ln QMAX/16/QTF,
c G - dzeta number (some function of ksi)
c J - type of the parton (1-g,2-q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)QLMAX,G,J
201     FORMAT(2X,'PSQINT - BRANCHING MOMENTUM TABULATION:'/
     *  4X,'QLMAX=',E10.3,2X,'G=',E10.3,2X,'J=',I1)
        QL0=0.D0
        QL1=QLMAX
        F0=-G
        F1=1.D0-G
        SUD0=-DLOG(PSUDINT(QLMAX,J))

1       QL2=QL1-(QL1-QL0)*F1/(F1-F0)
        IF(QL2.LT.0.D0)THEN
          QL2=0.D0
          F2=-G
        ELSEIF(QL2.GT.QLMAX)THEN
          QL2=QLMAX
          F2=1.D0-G
        ELSE
          F2=-DLOG(PSUDINT(QL2,J))/SUD0-G
        ENDIF

        IF(ABS(F2).GT.1.D-3)THEN
          QL0=QL1
          QL1=QL2
          F0=F1
          F1=F2
          GOTO 1
        ELSE
          PSROOT=QL2
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSROOT
202     FORMAT(2X,'PSROOT=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE QGSPSROTAT(EP,S0X,C0X,S0,C0)
c Spacial rotation to the lab. system for 4-vector EP
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP(4),EP1(3)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,S0X,C0X,S0,C0
201     FORMAT(2X,'QGSPSROTAT - SPACIAL ROTATION:'/4X,
     *  '4-VECTOR EP=',4(E10.3,1X)/4X,'S0X=',E10.3,'C0X=',E10.3,
     *  2X,'S0=',E10.3,'C0=',E10.3)
        EP1(3)=EP(4)
        EP1(2)=EP(2)*S0+EP(3)*C0
        EP1(1)=EP(2)*C0-EP(3)*S0

        EP(2)=EP1(1)
        EP(4)=EP1(2)*S0X+EP1(3)*C0X
        EP(3)=EP1(2)*C0X-EP1(3)*S0X
        IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
202     FORMAT(2X,'QGSPSROTAT: ROTATED 4-VECTOR EP=',
     *  2X,4E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSQINT(QLMAX,G,J)
c PSQINT - effective momentum interpolation for given random number G
c and maximal effective momentum QMAX
c QLMAX - ln QMAX/16/QTF,
c G - random number (0<G<1)
c J - type of the parton (1-g,2-q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION WI(3),WK(3)
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA34/ QRT(10,101,2)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)QLMAX,G,J
201     FORMAT(2X,'PSQINT - BRANCHING MOMENTUM INTERPOLATION:'/
     *  4X,'QLMAX=',E10.3,2X,'G=',E10.3,2X,'J=',I1)
        QLI=QLMAX/1.38629d0
        SUD0=1.D0/PSUDINT(QLMAX,J)
        SL=100.D0*DLOG(1.D0-G*(1.D0-SUD0))/DLOG(SUD0)
        I=INT(QLI)
        K=INT(SL)
        IF(K.GT.98)K=98
        WK(2)=SL-K
        WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
        WK(1)=1.D0-WK(2)+WK(3)
        WK(2)=WK(2)-2.D0*WK(3)
        PSQINT=0.D0

        IF(I.GT.7)I=7
        WI(2)=QLI-I
        WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
        WI(1)=1.D0-WI(2)+WI(3)
        WI(2)=WI(2)-2.D0*WI(3)

        DO 1 K1=1,3
        DO 1 I1=1,3
1       PSQINT=PSQINT+QRT(I+I1,K+K1,J)*WI(I1)*WK(K1)
        IF(PSQINT.LE.0.D0)PSQINT=0.D0
        PSQINT=16.D0*QTF*EXP(PSQINT)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSQINT
202     FORMAT(2X,'PSQINT=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE PSSHAR(LS,NHP,NW,NT)
c Inelastic interaction - energy sharing procedure:
c LS - total number of  cut soft pomeron blocks (froissarons),
c NHP - total number of hard pomerons,
c NW - number of interacting projectile nucleons (excluding diffracted),
c NT - number of target nucleons in active state
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
C D.H.  REAL*16 GBH,GBH0
        DIMENSION WP(56),WM(56),WHA(4000),WHB(4000),LHA0(56),
     *  LHB0(56),IZP(56),IZT(56),WP0H(56),WM0H(56),
     *  WPP(2),WMM(2),EP3(4),LQA0(56),LQB0(56),IPC(2,2),EPC(8,2),
     *  ILA(56),ILB(56),ELA(4,56),ELB(4,56),EP(4),EP1(4)
        COMMON /Q_AREA1/  IA(2),ICZ,ICP
        COMMON /Q_AREA2/  S,Y0,WP0,WM0
        COMMON /Q_AREA9/  LQA(56),LQB(56),NQS(1000),IAS(1000),
     *  IBS(1000),LHA(56),LHB(56),ZH(4000),IAH(4000),IBH(4000),
     *  IQH(4000),LVA(56),LVB(56)
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA12/ NSH
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA19/ AHL(5)
        COMMON /Q_AREA20/ WPPP
        COMMON /Q_AREA25/ AHV(5)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        COMMON /Q_AREA47/ NJTOT

ctp from epos
      integer ng1evt,ng2evt,ikoevt
      real    rglevt,sglevt,eglevt,fglevt,typevt
      common/c2evt/ng1evt,ng2evt,rglevt,sglevt,eglevt,fglevt,ikoevt
     *,typevt            !in epos.inc

        SAVE
        EXTERNAL PSRAN
        DATA xdiv /100.D0/

        IF(DEBUG.GE.1)WRITE (MONIOU,201)NW,NT,NHP,LS
201     FORMAT(2X,'PSSHARE - ENERGY SHARING PROCEDURE'/
     *  4X,'NUMBER OF WOUNDED PROJECTILE NUCLEONS(HADRONS) NW=',I2/
     *  4X,'NUMBER OF TARGET NUCLEONS IN THE ACTIVE STATE NT=',I2/
     *  4X,'NUMBER OF SEMIHARD BLOCKS NHP=',I3/
     *  4X,'NUMBER OF SOFT POMERON BLOCKS LS=',I3)
        NSH1=NSH
        DO 101 I=1,NW
101     LQA0(I)=LQA(I)
        DO 102 I=1,NT
102     LQB0(I)=LQB(I)

100     NSH=NSH1
        NJTOT=0
        DO 103 I=1,NW
103     LQA(I)=LQA0(I)
        DO 104 I=1,NT
104     LQB(I)=LQB0(I)
c-------------------------------------------------
c Initial nucleons (hadrons) types recording
        IF(IA(1).NE.1)THEN
c IZP(i) - i-th projectile nucleons type (proton - 2, neutron - 3)
          DO 1 I=1,NW
1         IZP(I)=INT(2.5+PSRAN(B10))
        ELSE
c IZP(1)=ICP - projectile hadron type
          IZP(1)=ICP
        ENDIF
        IF(IA(2).NE.1)THEN
c IZT(j) - j-th target nucleon type (proton - 2 or neutron - 3)
          DO 2 I=1,NT
2         IZT(I)=INT(2.5+PSRAN(B10))
        ELSE
c Target proton
         IZT(1)=2
        ENDIF
c-------------------------------------------------

c WREJ - parameter for energy sharing (to minimise rejection)
        WREJ=.0001D0

3       CONTINUE

        IF(NHP.NE.0)THEN
        IF(DEBUG.GE.3)WRITE (MONIOU,211)NHP
211     FORMAT(2X,'PSSHARE: NUMBER OF HARD POMERONS NHP=',I3)
c-------------------------------------------------
c-------------------------------------------------
c Rejection function initialization:
c-------------------------------------------------
c energy-momentum will be shared between pomerons
c according to s**DEL dependence for soft pomeron and
c according to s**DELH dependence for pomeron with hard block,
c then rejection is used according to real Sigma_hard(s) dependence.
c Rejection is expected to be minimal for the uniform energy
c distribution between pomerons ( s_hard = s / LHA(I) / LHB(J) )
          GBH0=.6D0
c NREJ - total number of rejections
          NREJ=0
          NHP1=NHP

          DO 5 IH=1,NHP1
        IF(DEBUG.GE.3)WRITE (MONIOU,212)IH
212     FORMAT(2X,'PSSHARE: GBH-INI; CONTRIBUTION FROM ',I3,
     *   '-TH HARD POMERON')
c-------------------------------------------------
c LHA(i) (LHB(j)) - total number of cut hard blocks, connected to i-th projectile
c (j-th target) nucleon (hadron);
c IAH(ih) (IBH(ih)) - number (position in array) of the projectile (target) nucleon,
c connected to ih-th hard block;
c ZH(ih) - factor exp(-R_ij/R_p) for ih-th hard block;
c IQH(ih) - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
          IQQ=IQH(IH)
          Z=ZH(IH)
          I=IAH(IH)
          J=IBH(IH)

c Uniform energy distribution between hard pomerons
          ZA=1.D0/LHA(I)
          ZB=1.D0/LHB(J)
c SI - c.m. energy squared for one hard block
          SI=ZA*ZB*S

          IF(SI.LT.4.D0*(QT0+AMJ0))THEN
c-------------------------------------------------
c One hard pomeron is removed (the energy is insufficient to simulate
c great number of pomerons)
c-------------------------------------------------
            NHP=NHP-1
            LHA(I)=LHA(I)-1
            LHB(J)=LHB(J)-1

            IF(IQQ.EQ.1)THEN
              LVA(I)=0
            ELSEIF(IQQ.EQ.2)THEN
              LVB(J)=0
            ELSEIF(IQQ.EQ.3)THEN
              LVA(I)=0
              LVB(J)=0
            ENDIF
c Rewriting of other hard pomerons characteristics
            IF(NHP.GE.IH)THEN
              DO 4 IH1=IH,NHP
              IQH(IH1)=IQH(IH1+1)
              ZH(IH1)=ZH(IH1+1)
              IAH(IH1)=IAH(IH1+1)
4             IBH(IH1)=IBH(IH1+1)
            ENDIF
c End of removing - event will be simulated from the very beginning
c-------------------------------------------------
            GOTO 3
          ENDIF

c Total rapidity for the interaction (for one hard block)
          YI=DLOG(SI)
          IF(YI.GT.17.D0)YI=17.D0
c Rejection function normalization (on maximal available energy)
          GBH0=GBH0/PSRJINT(YI,Z,IQQ)
          GBH0 = GBH0/xdiv
5         CONTINUE
        IF(DEBUG.GE.3)WRITE (MONIOU,213)
213     FORMAT(2X,'PSSHARE: GBH-INI - END')
c-------------------------------------------------
c End of rejection function normalization
c-------------------------------------------------

c-------------------------------------------------
c LHA0(i), LHB0(j) arrays are used for energy sharing procedure
c (they define number of remained cut hard blocks connected to given nucleon from
c projectile or target respectively);
c WP, WM - arrays for the rest of light cone momenta (E+-P_l) for those
c nucleons (hadrons)
c Hard pomerons connected to valence quarks are excluded from LHA0(i), LHB0(j)
c (to be considered separetely)
6         DO 7 I=1,NW
          LHA0(I)=LHA(I)-LVA(I)
7         WP(I)=WP0

          DO 8 I=1,NT
          LHB0(I)=LHB(I)-LVB(I)
8         WM(I)=WM0

c-------------------------------------------------
c Projectile valence quarks light cone momenta are choosen according to
c 1/sqrt(x) * x**delh * (1-x)**AHV(ICZ), ICZ is the type of the projectile
          DO 10 I=1,NW
          IF(LVA(I).NE.0)THEN
9           XW=PSRAN(B10)**(1.D0/(.5D0+DELH))
            IF(PSRAN(B10).GT.(1.D0-XW)**AHV(ICZ))GOTO 9
        IF(DEBUG.GE.3)WRITE (MONIOU,214)I,XW
214     FORMAT(2X,'PSSHARE: ',I2,'-TH PROJ. NUCLEON (HADRON); LIGHT',
     *  ' CONE MOMENTUM SHARE XW=',E10.3)
c WP0H(i) -  valence quark light cone momentum for i-th projectile nucleon
            WP0H(I)=XW*WP(I)
c WP(i) - the remainder of the light cone momentum for i-th projectile nucleon
            WP(I)=WP(I)*(1.D0-XW)
          ENDIF
10        CONTINUE

c Target valence quarks light cone momenta are choosen according to
c 1/sqrt(x) * x**delh * (1-x)**AHV(2) (target nucleon)
          DO 12 I=1,NT
          IF(LVB(I).NE.0)THEN
11          XW=PSRAN(B10)**(1.D0/(.5D0+DELH))
            IF(PSRAN(B10).GT.(1.D0-XW)**AHV(2))GOTO 11
        IF(DEBUG.GE.3)WRITE (MONIOU,215)I,XW
215     FORMAT(2X,'PSSHARE: ',I2,'-TH TARGET NUCLEON (HADRON); LIGHT',
     *  ' CONE MOMENTUM SHARE XW=',E10.3)
c WM0H(i) -  valence quark light cone momentum for i-th target nucleon
            WM0H(I)=XW*WM(I)
c WM(i) - the remainder of the light cone momentum for i-th target nucleon
            WM(I)=WM(I)*(1.D0-XW)
          ENDIF
12        CONTINUE
c-------------------------------------------------

          GBH=GBH0
c-------------------------------------------------
c Cycle over all cut hard blocks
c-------------------------------------------------
          DO 18 IH=1,NHP1
c-------------------------------------------------
c IAH(ih) (IBH(ih)) - number (position in array) of the projectile (target) nucleon,
c connected to ih-th hard block;
c ZH(ih) - factor exp(-R_ij/R_p) for ih-th hard block;
c IQH(ih) - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
          IQQ=IQH(IH)
          Z=ZH(IH)
          I=IAH(IH)
          J=IBH(IH)

          IF((IQQ-3)*(IQQ-1).EQ.0)THEN
c WHA(ih) - light cone momentum (E+P_l) for ih-th hard block
c Read out of the valence quark light cone momentum
            WHA(IH)=WP0H(I)
          ELSE
c LHA0(i) - number of remained cut hard blocks connected to i-th projectile nucleon
            LHA0(I)=LHA0(I)-1
c Energy is shared between pomerons according to s**DEL dependence for soft
c pomeron and according to s**DELH dependence for the hard block;
c AHL(ICZ) determines energetic spectrum of the leading hadronic state of
c type ICZ
            BPI=1.D0/(1.D0+AHL(ICZ)+
     *      (1.D0+DELH)*LHA0(I))
c            BPI=1.D0/(1.D0+AHL(ICZ)+(1.D0+DEL)*LQA(I)+
c     *      (1.D0+DELH)*LHA0(I))
15          XW=1.-PSRAN(B10)**BPI
c Rejection according to XW**DELH
            IF(PSRAN(B10).GT.XW**DELH)GOTO 15
c WHA(ih) - light cone momentum (E+P_l) for ih-th hard block
            WHA(IH)=WP(I)*XW
c WP(i) - the remainder of the light cone momentum for i-th projectile nucleon
            WP(I)=WP(I)*(1.D0-XW)
          ENDIF

          IF((IQQ-3)*(IQQ-2).EQ.0)THEN
c WHB(ih) - light cone momentum (E-P_l) for ih-th hard block
c Read out of the valence quark light cone momentum
            WHB(IH)=WM0H(J)
          ELSE
c Energy is shared between pomerons - in the same way as above
            LHB0(J)=LHB0(J)-1
            BPI=1.D0/(1.D0+AHL(2)+(1.D0+DELH)
     *      *LHB0(J))
c            BPI=1.D0/(1.D0+AHL(2)+(1.D0+DEL)*LQB(J)+(1.D0+DELH)
c     *      *LHB0(J))
16          XW=1.-PSRAN(B10)**BPI
            IF(PSRAN(B10).GT.XW**DELH)GOTO 16
c WHB(ih) - light cone momentum (E-P_l) for ih-th hard block
            WHB(IH)=WM(J)*XW
c WM(j) - the remainder of the light cone momentum for j-th target nucleon
            WM(J)=WM(J)*(1.D0-XW)
          ENDIF

c Invariant mass for ih-th hard block
          SW=WHA(IH)*WHB(IH)
          IF(SW.LT.4.D0*(QT0+AMJ0))THEN
c Rejection in case of insufficient mass
            NREJ=NREJ+1

            IF(NREJ.GT.30)THEN
c-------------------------------------------------
c In case of great number of rejections number of hard blocks is put down
c-------------------------------------------------
c Number of remained hard blocks
              NHP=NHP-1
              LHA(I)=LHA(I)-1
              LHB(J)=LHB(J)-1

              IF(IQQ.EQ.1)THEN
                LVA(I)=0
              ELSEIF(IQQ.EQ.2)THEN
                LVB(J)=0
              ELSEIF(IQQ.EQ.3)THEN
                LVA(I)=0
                LVB(J)=0
              ENDIF

              IF(NHP.GE.IH)THEN
                DO 17 IH1=IH,NHP
                IQH(IH1)=IQH(IH1+1)
                ZH(IH1)=ZH(IH1+1)
                IAH(IH1)=IAH(IH1+1)
17              IBH(IH1)=IBH(IH1+1)
              ENDIF
              GOTO 3
c-------------------------------------------------
c End of removing - event will be simulated from the very beginning
c-------------------------------------------------

            ELSE
              GOTO 6
            ENDIF
          ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,216)IH,WHA(IH),WHB(IH),WP(I),WM(J)
216     FORMAT(2X,'PSSHARE: ',I3,'-TH SEMIHARD BLOCK; LIGHT',
     *  ' CONE MOMENTA SHARES:',2E10.3/
     *  4X,'REMAINED LIGHT CONE MOMENTA:',2E10.3)

          YH=DLOG(SW)
c PSRINT(YH,Z,IQQ) - phi_hard(s_hard) / s_hard ** DELH;
c YH = ln s_hard;
c Z - factor exp(-R_ij/R_p) for the hard block;
c IQQ - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
c Rejection function is multiplied by PSRINT(YH,Z,IQQ) for the ih-th block
          GBH=GBH*PSRJINT(YH,Z,IQQ)
          GBH = GBH * xdiv
18        CONTINUE
c End of the loop for rejection function determination
c-------------------------------------------------

c-------------------------------------------------
c Rejection procedure (due to the deviation of the  phi_hard(s_hard)
c dependence from pure powerlike  s_hard ** DELH law)
        IF(DEBUG.GE.2)WRITE (MONIOU,217)1.D0-GBH,NHP
217     FORMAT(2X,'PSSHARE: REJECTION PROBABILITY:',E10.3,
     *  2X,'NUMBER OF SEMIHARD BLOCKS:',I3)
          IF(PSRAN(B10).GT.GBH)THEN
            NREJ=NREJ+1

            IF(NREJ.GT.30)THEN
        IF(DEBUG.GE.2)WRITE (MONIOU,218)
218     FORMAT(2X,'PSSHARE: MORE THAN 30 REJECTIONS - HARD POMERON',
     *  ' NUMBER IS PUT DOWN')
c-------------------------------------------------
c In case of great number of rejections number of hard blocks is put down
c LNH - number of hard blocks to be removed
c-------------------------------------------------
              LNH=1+NHP/20
              DO 19 IHP=NHP-LNH+1,NHP
              IIH=IAH(IHP)
              JIH=IBH(IHP)
              IQQ=IQH(IHP)

              IF(IQQ.EQ.1)THEN
                LVA(IIH)=0
              ELSEIF(IQQ.EQ.2)THEN
                LVB(JIH)=0
              ELSEIF(IQQ.EQ.3)THEN
                LVA(IIH)=0
                LVB(JIH)=0
              ENDIF

              LHA(IIH)=LHA(IIH)-1
19            LHB(JIH)=LHB(JIH)-1

              NHP=NHP-LNH
              GOTO 3
c-------------------------------------------------
c End of removing - event will be simulated from the very beginning
c-------------------------------------------------
            ELSE
              GOTO 6
            ENDIF
          ENDIF

***********************************************************************
          DO 31 I=1,NW
31        LHA0(I)=LHA(I)
          DO 32 I=1,NT
32        LHB0(I)=LHB(I)
***********************************************************************

c-------------------------------------------------
c Particle production for all cut pomerons with hard blocks
c-------------------------------------------------
          DO 20 IH=1,NHP
          IQQ=IQH(IH)
          Z=ZH(IH)
          I=IAH(IH)
          J=IBH(IH)
***********************************************************************
          LHA0(I)=LHA0(I)-1
          LHB0(J)=LHB0(J)-1
***********************************************************************
c WPI, WMI - light cone momenta for current (ih-th) hard pomeron
          WPI=WHA(IH)
          WMI=WHB(IH)
        IF(DEBUG.GE.2)WRITE (MONIOU,219)IH,IQQ,WPI,WMI,WP(I),WM(J)
219     FORMAT(2X,'PSSHARE: ',I3,
     *  '-TH HARD BLOCK; TYPE OF THE INTERACTION:',I1/
     *  4X,'INITIAL LIGHT CONE MOMENTA:',2E10.3/
     *  4X,'REMAINED LIGHT CONE MOMENTA:',2E10.3)
c-------------------------------------------------
c PSHOT procedure is used for hard partonic interaction -
c initial jets simulation
          CALL PSHOT(WPI,WMI,Z,IPC,EPC,IZP(I),IZT(J),ICZ,IQQ)
          IF(IQQ.EQ.1.OR.IQQ.EQ.3)THEN
            IF((IABS(IZP(I)).GT.5.OR.IABS(IZP(I)).EQ.3).AND.
     *      IZP(I).GT.0.OR.IABS(IZP(I)).NE.3.AND.
     *      IABS(IZP(I)).LE.5.AND.IZP(I).LT.0)THEN
              JQ=1
            ELSE
              JQ=2
            ENDIF
            ILA(I)=IPC(JQ,1)
            DO 330 L=1,4
330         ELA(L,I)=EPC(L+4*(JQ-1),1)
          ENDIF
          IF(IQQ.EQ.2.OR.IQQ.EQ.3)THEN
            IF((IABS(IZT(J)).GT.5.OR.IABS(IZT(J)).EQ.3).AND.
     *      IZT(J).GT.0.OR.IABS(IZT(J)).NE.3.AND.
     *      IABS(IZT(J)).LE.5.AND.IZT(J).LT.0)THEN
              JQ=1
            ELSE
              JQ=2
            ENDIF
            ILB(J)=IPC(JQ,2)
            DO 331 L=1,4
331         ELB(L,J)=EPC(L+4*(JQ-1),2)
          ENDIF
          IF(IQQ.EQ.3.AND.ILA(I)+ILB(J).EQ.0)NIAS=J
c-------------------------------------------------
c          SW=WP(I)*WM(J)
c          IF(WP(I).LT.0.D0.OR.WM(J).LT.0.D0.OR.
c     *    SW.LT.(AM(ICZ)+AM(2))**2)THEN
c            NREJ=NREJ+1
c          write (*,*)'i,j,WP(I),WM(J),sw',i,j,WP(I),WM(J),sw
c            GOTO 100
c          ENDIF

c Leading hadronic state fragmentation is treated in the same way as low mass
c diffraction (exhitation mass is determined by secodary reggeon intercept
c dM**2~M**(-3))
          IF(LQA(I)+LHA0(I).EQ.0.AND.LQB(J)+LHB0(J).EQ.0)THEN
            IF(LVA(I).EQ.0.AND.LVB(J).EQ.0)THEN
              CALL XXDDFR(WP(I),WM(J),IZP(I),IZT(J))
            ELSEIF(LVA(I).EQ.0)THEN
              CALL XXDPR(WP(I),WM(J),IZP(I),IZT(J),1)
              IF(ILB(J).NE.0)THEN
                DO 341 L=1,4
341             EP1(L)=ELB(L,J)
                EP(1)=.5D0*WM(J)
                EP(2)=-EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILB(J)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ELSEIF(LVB(J).EQ.0)THEN
              CALL XXDTG(WP(I),WM(J),IZP(I),IZT(J),1)
              IF(ILA(I).NE.0)THEN
                DO 342 L=1,4
342             EP1(L)=ELA(L,I)
                EP(1)=.5D0*WP(I)
                EP(2)=EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILA(I)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ELSE
              IF(ILA(I).NE.0)THEN
                DO 343 L=1,4
343             EP1(L)=ELA(L,I)
                EP(1)=.5D0*WP(I)
                EP(2)=EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILA(I)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
              IF(ILB(J).NE.0)THEN
                DO 351 L=1,4
351             EP1(L)=ELB(L,J)
                EP(1)=.5D0*WM(J)
                EP(2)=-EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILB(J)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ENDIF
          ELSEIF(LQA(I)+LHA0(I).EQ.0)THEN
            IF(LVA(I).EQ.0)THEN
              CALL XXDPR(WP(I),WM(J),IZP(I),IZT(J),LQB(J)+LHB0(J))
            ELSE
              IF(ILA(I).NE.0)THEN
                DO 344 L=1,4
344             EP1(L)=ELA(L,I)
                EP(1)=.5D0*WP(I)
                EP(2)=EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILA(I)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ENDIF
          ELSEIF(LQB(J)+LHB0(J).EQ.0)THEN
            IF(LVB(J).EQ.0)THEN
              CALL XXDTG(WP(I),WM(J),IZP(I),IZT(J),LQA(I)+LHA0(I))
            ELSE
              IF(ILB(J).NE.0)THEN
                DO 345 L=1,4
345             EP1(L)=ELB(L,J)
                EP(1)=.5D0*WM(J)
                EP(2)=-EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILB(J)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ENDIF
          ENDIF
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
20        CONTINUE
c-------------------------------------------------
c End of the hard blocks loop
c-------------------------------------------------

        ELSE
c-------------------------------------------------
c Initial light cone momenta initialization in case of no one cut hard block
          DO 21 I=1,NW
21        WP(I)=WP0
          DO 22 I=1,NT
22        WM(I)=WM0
        ENDIF

        IF(LS.NE.0)THEN
c-------------------------------------------------
c The loop for all cut froissarons (blocks of soft pomerons)
c-------------------------------------------------
          DO 28 IS=1,LS
c NP=NQS(is) - number of cut pomerons in is-th block;
c IAS(is) (IBS(is)) - number (position in array) of the projectile (target) nucleon,
c connected to is-th block of soft pomerons;
c LQA(i) (LQB(j)) - total number of cut soft pomerons, connected to i-th projectile
c (j-th target) nucleon (hadron);
c WP(i) (WM(j)) - the remainder of the light cone momentum for i-th projectile
c (j-th target) nucleon (hadron);
c NP=NQS(is) - number of cut pomerons in is-th block;
c LQ1, LQ2 define the numbers of the remained cut pomerons  connected
c to given nucleons (hadrons)
          I=IAS(IS)
          J=IBS(IS)
          LQ1=LQA(I)
          LQ2=LQB(J)
          WPN=WP(I)
          WMN=WM(J)
          NP=NQS(IS)
      IF(DEBUG.GE.3)WRITE (MONIOU,222)IS,I,J,NP
222   FORMAT(2X,'PSSHARE: ',I3,'-TH SOFT POMERON BLOCK IS',
     *      ' CONNECTED TO ',I2,
     *      '-TH PROJECTILE NUCLEON'/4x,'(HADRON) AND ',I2,
     *      '-TH TARGET NUCLEON'/
     *      4X,'NUMBER OF CUT SOFT POMERONS IN THE BLOCK:',I2)
c-------------------------------------------------
c The loop for all cut pomerons in the block
          DO 27 IP=1,NP

cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c High mass diffraction - probability WPPP
14        JPP=0
cdh       IF(LQ1.EQ.1.AND.WPN.EQ.WP0.AND.PSRAN(B10).LT.WPPP)THEN
          IF(LQ1.EQ.1.AND.WPN.EQ.WP0.AND.PSRAN(B10).LT.WPPP
     *    .AND.LVB(J).EQ.0)THEN    !!!!!!!!!!!!!!!!!!so-07.03.99
c In case of only one cut soft pomeron high mass diffraction is simulated with the
c probability WPPP/2 or triple pomeron contribution - also WPPP/2 to have AGK cancell.
c - only for projectile hadron (nucleons) (for target - neglected)
c YW is the branching point position (in rapidity)
            YW=1.D0+PSRAN(B10)*(Y0-2.D0)
      IF(DEBUG.GE.3)WRITE (MONIOU,223)YW
223   FORMAT(2X,'PSSHARE: TRIPLE POMERON CONTRIBUTION YW=',E10.3)
c Light cone momentum (E+P_l) for the diffractive state (which is just usual cut
c pomeron)
            XPW=EXP(-YW)
            JPP=1
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

          ELSE
            LQ1=LQ1-1
c Energy-momentum is shared between pomerons according to s**DEL dependence for soft
c pomeron; AHL(ICZ) determines energy spectrum of leading hadronic
c state of type ICZ
            BPI=1.D0/(1.D0+AHL(ICZ)+(1.D0+DEL)*LQ1)
23          XPW=1.-PSRAN(B10)**BPI
c Rejection according to XW**DEL
            IF(PSRAN(B10).GT.XPW**DEL)GOTO 23
          ENDIF

          LQ2=LQ2-1
c Energy-momentum is shared between pomerons according to s**DEL dependence for soft
c pomeron - similar to projectile case
          BPI=1.D0/(1.D0+AHL(2)+(1.D0+DEL)*LQ2)
24        XMW=1.-PSRAN(B10)**BPI
c Rejection according to XW**DEL
          IF(PSRAN(B10).GT.XMW**DEL)GOTO 24
c-------------------------------------------------

cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c High mass diffraction is rejected in case of insufficient energy
         IF(JPP.EQ.1.AND.XPW*XMW*WPN*WMN.LT.2.72D0)THEN
            LQ2=LQ2+1
            GOTO 14
          ENDIF
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

c WPI is the light cone momentum (E+P_l) for the pomeron;
c WPN is the remainder of the light cone momentum for given nucleon (hadron)
          WPI=WPN*XPW
          WPN=WPN-WPI
          WMI=WMN*XMW
          WMN=WMN-WMI

************************************************************************
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        IF(LQ1.EQ.0.AND.LVA(I).EQ.0)THEN
          CALL IXXDEF(IZP(I),IC11,IC12,ICZ)
        ELSE
          IC11=0
          IC12=0
        ENDIF
        IF(LQ2.EQ.0.AND.LVB(J).EQ.0)THEN
          CALL IXXDEF(IZT(J),IC21,IC22,2)
        ELSE
          IC21=0
          IC22=0
        ENDIF

cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c Fragmentation process for the pomeron ( quarks and antiquarks types at the
c ends of the two strings are determined, energy-momentum is shared
c between them and strings fragmentation is simulated )
      IF(DEBUG.GE.3)WRITE (MONIOU,224)IP,WPI,WMI
224   FORMAT(2X,'PSSHARE: ',I2,'-TH SOFT POMERON IN THE BLOCK'/
     *      4X,'LIGHT CONE MOMENTA FOR THE POMERON:',2E10.3)
          CALL XXSTR(WPI,WMI,WPN,WMN,IC11,IC12,IC22,IC21)
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c Triple pomeron contribution simulation
          IF(JPP.EQ.1)THEN
            IF(PSRAN(B10).LT..5D0)THEN
              SW=WPN*WMN
              IF(WPN.LT.0.D0.OR.WMN.LT.0.D0.OR.
     *        SW.LT.(AM(ICZ)+AM(2))**2)THEN
cdh
                if (debug.ge.1)
     *            write (*,*)'difr,i,j,WPn,WMn,sw,lq1,lq2',
     *                             i,j,WPn,WMn,sw,lq1,lq2
                NREJ=NREJ+1
                GOTO 100
              ENDIF
              typevt=3       !high mass diffraction

              IF(LQ2.EQ.0)THEN
                CALL XXDTG(WPN,WMN,IZP(I),IZT(J),0)
              ELSE
                WP1=WPN
                WM1=AM(ICZ)**2/WP1
                EP3(1)=.5D0*(WP1+WM1)
                EP3(2)=.5D0*(WP1-WM1)
                EP3(3)=0.D0
                EP3(4)=0.D0
                CALL XXREG(EP3,IZP(I))
                WMN=WMN-WM1
                WPN=0.D0
              ENDIF
              GOTO 30
            ELSE

c Triple pomeron contribution simulation (both pomerons are cut)
      IF(DEBUG.GE.3)WRITE (MONIOU,225)
225   FORMAT(2X,'PSSHARE: TRIPLE POMERON CONRITRIBUTION WITH 3 CUT',
     *' POMERONS')
              WMM(1)=1.D0/WPI
              WMN=WMN-WMM(1)
c Light cone momentum (E-P_l) sharing for the two pomerons
              WMM(2)=WMM(1)*PSRAN(B10)
              WMM(1)=WMM(1)-WMM(2)
              LQ1=2
              DO 26 L=1,2
              LQ1=LQ1-1
c Light cone momentum (E+P_l) sharing for the two pomerons
              BPI=(1.D0+DEL)*LQ1+1.D0+AHL(ICZ)
              BPI=1.D0/BPI
25            XPW=1.-PSRAN(B10)**BPI
              IF(PSRAN(B10).GT.XPW**DEL)GOTO 25
              WPP(L)=WPN*XPW
              WPN=WPN*(1.D0-XPW)
c Fragmentation process for the pomerons
26            CALL XXSTR(WPP(L),WMM(L),WPN,WMN,0,0,0,0)
              SW=WPN*WMN
              IF(WPN.LT.0.D0.OR.WMN.LT.0.D0.OR.
     *        SW.LT.(AM(ICZ)+AM(2))**2)THEN
                NREJ=NREJ+1
                GOTO 100
              ENDIF
            ENDIF
          ENDIF
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
27        CONTINUE
c End of the pomeron loop
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c          SW=WPN*WMN
c          IF(WPN.LT.0.D0.OR.WMN.LT.0.D0.OR.
c     *    SW.LT.(AM(ICZ)+AM(2))**2)THEN
c            NREJ=NREJ+1
c            GOTO 100
c          ENDIF

c Leading hadronic state fragmentation is treated in the same way as low mass
c diffraction (exhitation mass is determined by secodary reggeon intercept
c dM**2~M**(-3))
          IF(LQ1.EQ.0.AND.LQ2.EQ.0)THEN
            IF(LVA(I).EQ.0.AND.LVB(J).EQ.0)THEN
              CALL XXDDFR(WPN,WMN,IZP(I),IZT(J))
            ELSEIF(LVA(I).EQ.0)THEN
              CALL XXDPR(WPN,WMN,IZP(I),IZT(J),1)
              IF(ILB(J).NE.0)THEN
                DO 346 L=1,4
346             EP1(L)=ELB(L,J)
                EP(1)=.5D0*WMN
                EP(2)=-EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILB(J)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ELSEIF(LVB(J).EQ.0)THEN
              CALL XXDTG(WPN,WMN,IZP(I),IZT(J),1)
              IF(ILA(I).NE.0)THEN
                DO 347 L=1,4
347             EP1(L)=ELA(L,I)
                EP(1)=.5D0*WPN
                EP(2)=EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILA(I)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
               IF(JFL.EQ.0)GOTO 100
              ENDIF
            ELSE
              IF(ILA(I).NE.0)THEN
                DO 348 L=1,4
348             EP1(L)=ELA(L,I)
                EP(1)=.5D0*WPN
                EP(2)=EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILA(I)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
              IF(ILB(J).NE.0)THEN
                DO 349 L=1,4
349             EP1(L)=ELB(L,J)
                EP(1)=.5D0*WMN
                EP(2)=-EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILB(J)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ENDIF

          ELSEIF(LQ1.EQ.0)THEN
            IF(LVA(I).EQ.0)THEN
              CALL XXDPR(WPN,WMN,IZP(I),IZT(J),LQ2)
            ELSE
              IF(ILA(I).NE.0)THEN
                DO 350 L=1,4
350             EP1(L)=ELA(L,I)
                EP(1)=.5D0*WPN
                EP(2)=EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILA(I)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ENDIF

          ELSEIF(LQ2.EQ.0)THEN
            IF(LVB(J).EQ.0)THEN
              CALL XXDTG(WPN,WMN,IZP(I),IZT(J),LQ1)
            ELSE
              IF(ILB(J).NE.0)THEN
                DO 352 L=1,4
352             EP1(L)=ELB(L,J)
                EP(1)=.5D0*WMN
                EP(2)=-EP(1)
                EP(3)=0.D0
                EP(4)=0.D0
                IPJ1=ILB(J)
                IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
                CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
                IF(JFL.EQ.0)GOTO 100
              ENDIF
            ENDIF
          ENDIF
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c-------------------------------------------------
c The numbers of the remained cut pomerons connected to given nucleons (hadrons)
c as well as the rest of the longitudinal momenta for these nucleons are
c recorded
30        LQA(I)=LQ1
          LQB(J)=LQ2
          WP(I)=WPN
28        WM(J)=WMN
        ENDIF
c-------------------------------------------------
c End of the soft blocks loop
c-------------------------------------------------
        IF(IA(1).EQ.1.AND.LVA(1).NE.0.AND.ILA(1).EQ.0)THEN
          EP(1)=.5D0*WP(1)
          EP(2)=EP(1)
          EP(3)=0.D0
          EP(4)=0.D0
          EP1(1)=.5D0*WM(NIAS)
          EP1(2)=-EP1(1)
          EP1(3)=0.D0
          EP1(4)=0.D0
          CALL PSJDEF(IZP(1),IZT(NIAS),EP,EP1,JFL)
          IF(JFL.EQ.0)GOTO 100
        ENDIF
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        CALL XXJETSIM
************************************************************************
      IF(DEBUG.GE.3)WRITE (MONIOU,227)
227   FORMAT(2X,'PSSHARE - END')
        RETURN
        END
C=======================================================================

      SUBROUTINE QGSPSTRANS(EP,EY)
c Lorentz transform according to parameters EY ( determining Lorentz shift
c along the Z,X,Y-axis respectively (EY(1),EY(2),EY(3)))
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EY(3),EP(4)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,EY
201     FORMAT(2X,'QGSPSTRANS - LORENTZ BOOST FOR 4-VECTOR'/4X,'EP=',
     *  2X,4(E10.3,1X)/4X,'BOOST PARAMETERS EY=',3E10.3)
c Lorentz transform to lab. system according to 1/EY(i) parameters
        DO 1 I=1,3
        IF(EY(4-I).NE.1.D0)THEN
          WP=(EP(1)+EP(5-I))/EY(4-I)
          WM=(EP(1)-EP(5-I))*EY(4-I)
          EP(1)=.5D0*(WP+WM)
          EP(5-I)=.5D0*(WP-WM)
        ENDIF
1       CONTINUE
        IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
202     FORMAT(2X,'QGSPSTRANS: TRANSFORMED 4-VECTOR EP=',
     *  2X,4(E10.3,1X))
        RETURN
        END
C=======================================================================

      SUBROUTINE QGSPSTRANS1(EP,EY)
c Lorentz transform according to parameters EY ( determining Lorentz shift
c along the Z,X,Y-axis respectively (EY(1),EY(2),EY(3)))
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EY(3),EP(4)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,EY
201     FORMAT(2X,'QGSPSTRANS1 - LORENTZ BOOST FOR 4-VECTOR'/4X,'EP=',
     *  2X,4(E10.3,1X)/4X,'BOOST PARAMETERS EY=',3E10.3)
c Lorentz transform to lab. system according to 1/EY(i) parameters
          DO 2 I=1,3
          IF(EY(I).NE.1.D0)THEN
            WP=(EP(1)+EP(I+1))*EY(I)
            WM=(EP(1)-EP(I+1))/EY(I)
            EP(1)=.5D0*(WP+WM)
            EP(I+1)=.5D0*(WP-WM)
          ENDIF
2         CONTINUE
        IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
202     FORMAT(2X,'QGSPSTRANS1: TRANSFORMED 4-VECTOR EP=',
     *  2X,4(E10.3,1X))
        RETURN
        END
C=======================================================================

        FUNCTION PSUDINT(QLMAX,J)
c PSUDINT - timelike Sudakov formfactor interpolation
c QLMAX - ln QMAX/16/QTF,
c J - type of the parton (0-g,1-q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION WK(3)
        COMMON /Q_AREA33/ FSUD(10,2)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)J,QLMAX
201     FORMAT(2X,'PSUDINT - SPACELIKE FORM FACTOR INTERPOLATION:'/
     *  4X,'PARTON TYPE J=',
     *  I1,2X,'MOMENTUM LOGARITHM QLMAX=',E10.3)
        QL=QLMAX/1.38629d0

        IF(QL.LE.0.D0)THEN
          PSUDINT=1.D0
        ELSE
          K=INT(QL)
          IF(K.GT.7)K=7
          WK(2)=QL-K
          WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
          WK(1)=1.D0-WK(2)+WK(3)
          WK(2)=WK(2)-2.D0*WK(3)

          PSUDINT=0.D0
          DO 1 K1=1,3
1         PSUDINT=PSUDINT+FSUD(K+K1,J)*WK(K1)
          IF(PSUDINT.LE.0.D0)PSUDINT=0.D0
          PSUDINT=EXP(-PSUDINT)
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSUDINT
202     FORMAT(2X,'PSUDINT=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION QGSPSUDS(Q,J)
c QGSPSUDS - spacelike Sudakov formfactor
c Q - maximal value of the effective momentum,
c J - type of parton (0 - g, 1 - q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA6/  PI,BM,AM
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)J,Q
201     FORMAT(2X,'QGSPSUDS - SPACELIKE FORM FACTOR: PARTON TYPE J=',
     *  I1,2X,'MOMENTUM Q=',E10.3)
        IF(Q.GT.QT0)THEN
          QLM=DLOG(Q/ALM)
          QGSPSUDS=(QLM*DLOG(QLM/QLOG)-DLOG(Q/QT0))/9.D0

          IF(J.EQ.0)THEN
            QGSPSUDS=QGSPSUDS*6.D0
          ELSE
            QGSPSUDS=QGSPSUDS/.375D0
          ENDIF
          QGSPSUDS=EXP(-QGSPSUDS)

        ELSE
          QGSPSUDS=1.D0
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)QGSPSUDS
202     FORMAT(2X,'QGSPSUDS=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSUDT(QMAX,J)
c PSUDT - timelike Sudakov formfactor
c QMAX - maximal value of the effective momentum,
c J - type of parton (0 - g, 1 - q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON/AR13/X1(7),A1(7)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)J,QMAX
201     FORMAT(2X,'PSUDT - TIMELIKE FORM FACTOR: PARTON TYPE J=',
     *  I1,2X,'MOMENTUM QMAX=',E10.3)
        PSUDT=0.D0
        QLMAX=DLOG(DLOG(QMAX/16.D0/ALM))
        QFL=DLOG(DLOG(QTF/ALM))

c Numerical integration over transverse momentum square;
c Gaussian integration is used
          DO 1 I=1,7
          DO 1 M=1,2
          QTL=.5D0*(QLMAX+QFL+(2*M-3)*X1(I)*(QLMAX-QFL))
          QT=ALM*EXP(EXP(QTL))
          IF(QT.GE.QMAX/16.D0)QT=QMAX/16.0001D0
          ZMIN=.5D0-DSQRT((.25D0-DSQRT(QT/QMAX)))
          ZMAX=1.D0-ZMIN
          IF(J.EQ.0)THEN
******************************************************
            AP=(PSAPINT(ZMAX,0,0)-PSAPINT(ZMIN,0,0)+
     *      PSAPINT(ZMAX,0,1)-PSAPINT(ZMIN,0,1))*.5D0
******************************************************
          ELSE
            AP=PSAPINT(ZMAX,1,0)-PSAPINT(ZMIN,1,0)
          ENDIF
1         PSUDT=PSUDT+A1(I)*AP
          PSUDT=PSUDT*(QLMAX-QFL)/9.D0
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSUDT
202     FORMAT(2X,'PSUDT=',E10.3)
        RETURN
        END
C=======================================================================

        FUNCTION PSV(X,Y,XB,IB)
c XXV - eikonal dependent factor for hadron-nucleus interaction
c (used for total and diffractive hadron-nucleus cross-sections calculation)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
cdh     DIMENSION XB(56,3),FHARD(3)
        DIMENSION XB(210,3),FHARD(3)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)X,Y,IB
201     FORMAT(2X,'PSV - EIKONAL FACTOR: NUCLEON COORDINATES X=',
     *  E10.3,2X,'Y=',E10.3/4X,'NUMBER OF ACTIVE TARGET NUCLEONS IB='
     *  ,I2)
        DV=0.D0
c????????????????????????????????????????????
        DO 1 M=1,IB
        Z=PSDR(X-XB(M,1),Y-XB(M,2))
        DV=DV+PSFAZ(Z,FSOFT,FHARD,FSHARD)+FHARD(1)+FHARD(2)+FHARD(3)
1       CONTINUE
        PSV=(1.D0-EXP(-DV))**2

C       DH=1.D0
C       DO 1 M=1,IB
C       Z=PSDR(X-XB(M,1),Y-XB(M,2))
C       DV=DV+PSFAZ(Z,FSOFT,FHARD,FSHARD)
C 1     DH=DH*(1.D0-FHARD(1)-FHARD(2)-FHARD(3))
c????????????????????????????????????????????????
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSV
202     FORMAT(2X,'PSV=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE PSVDEF(ICH,IC1,ICZ)
c Determination of valence quark flavour -
c for valence quark hard scattering
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)ICH,ICZ
201     FORMAT(2X,'PSVDEF: HADRON TYPE ICH=',I2,' AUXILLIARY TYPE ICZ='
     *  ,I1)

        IS=IABS(ICH)/ICH
        IF(ICZ.EQ.1)THEN
          IC1=ICH*(1-3*INT(.5+PSRAN(B10)))
          ICH=-IC1-ICH
        ELSEIF(ICZ.EQ.2)THEN
          IF(PSRAN(B10).GT..33333D0.OR.ICH.LT.0)THEN
            IC1=ICH-IS
            ICH=3*IS
          ELSE
            IC1=4*IS-ICH
            ICH=ICH+4*IS
          ENDIF
        ELSEIF(ICZ.EQ.3)THEN
          IC1=ICH-3*IS
          ICH=-4*IS
        ELSEIF(ICZ.EQ.4)THEN
          IC1=ICH-9*IS
          ICH=5*IS
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)IC1,ICH
202     FORMAT(2X,'PSVDEF-END: QUARK FLAVOR IC1=',I2,
     *  'DIQUARK TYPE ICH=',I2)
        RETURN
        END
C=======================================================================

        FUNCTION PSZSIM(QQ,J)
c PSZSIM - light cone momentum share simulation (for the timelike
c branching)
c QQ - effective momentum value,
c J - type of the parent parton (0-g,1-q)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN


        IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,J
201     FORMAT(2X,'PSZSIM - Z-SHARE SIMULATION: QQ=',E10.3,2X,'J=',I1)
        ZMIN=.5D0-DSQRT(.25D0-DSQRT(QTF/QQ))
        QLF=DLOG(QTF/ALM)

1       CONTINUE
        IF(J.EQ.1)THEN
          PSZSIM=.5D0*(2.D0*ZMIN)**PSRAN(B10)
******************************************************
          GB=PSZSIM*(QGSPSFAP(PSZSIM,0,0)+QGSPSFAP(PSZSIM,0,1))/7.5D0
******************************************************
        ELSE
          PSZSIM=ZMIN*((1.D0-ZMIN)/ZMIN)**PSRAN(B10)
          GB=PSZSIM*QGSPSFAP(PSZSIM,1,0)*.375D0
        ENDIF
        QT=QQ*(PSZSIM*(1.D0-PSZSIM))**2
        GB=GB/DLOG(QT/ALM)*QLF
        IF(DEBUG.GE.3)WRITE (MONIOU,203)QT,GB
203     FORMAT(2X,'PSZSIM: QT=',E10.3,2X,'GB=',E10.3)
        IF(PSRAN(B10).GT.GB)GOTO 1
        IF(DEBUG.GE.3)WRITE (MONIOU,202)PSZSIM
202     FORMAT(2X,'PSZSIM=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE IXXDEF(ICH,IC1,IC2,ICZ)
c Determination of parton flavours in forward and backward direction -
c for valence quark hard scattering
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)ICH,ICZ
201     FORMAT(2X,'IXXDEF: HADRON TYPE ICH=',I2,' AUXILLIARY TYPE ICZ='
     *  ,I1)
        IS=IABS(ICH)/ICH
        IF(ICZ.EQ.1)THEN
          IC1=ICH*(1-3*INT(.5+PSRAN(B10)))
          ICH1=ICH*INT(.5D0+PSRAN(B10))
          IC2=-IC1*IABS(ICH1)-(ICH+IC1)*IABS(ICH-ICH1)

        ELSEIF(ICZ.EQ.2)THEN
c Valence quark type simulation ( for the proton )
          IC1=INT(1.3333+PSRAN(B10))
c Leading nucleon type simulation ( flavors combinatorics )
          ICH1=(2-IC1)*INT(PSRAN(B10)+.5)+2
c The type of the parton at the end of the rest string ( after the
c leading nucleon ejection )
          IC2=(3-ICH1)*(2-IC1)-2

          IF(IABS(ICH).EQ.3)THEN
            IC1=3-IC1
            IC2=-3-IC2
            ICH1=5-ICH1
          ENDIF
          IF(ICH.LT.0)THEN
            IC1=-IC1
            IC2=-IC2
            ICH1=-ICH1
          ENDIF

        ELSEIF(ICZ.EQ.3)THEN
          IC1=ICH-3*IS
          IC2=-IS*INT(1.5+PSRAN(B10))
          ICH1=3*IS-IC2
        ELSEIF(ICZ.EQ.4)THEN
          IC1=ICH-9*IS
          IC2=IS*INT(1.5+PSRAN(B10))
          ICH1=9*IS-IC2
        ELSEIF(ICZ.EQ.5)THEN
          IC1=IS*INT(1.5+PSRAN(B10))
          IC2=-IC1
          ICH1=ICH
        ENDIF

        ICH=ICH1
        IF(DEBUG.GE.3)WRITE (MONIOU,202)IC1,IC2,ICH
202     FORMAT(2X,'IXXDEF-END: PARTON FLAVORS IC1=',I2,' IC2=',I2,
     *  'NEW HADRON TYPE ICH=',I2)
        RETURN
        END
C=======================================================================

      FUNCTION IXXSON(NS,AW,G)
c Poisson distribution:
c AW - average value,
c NS-1 - maximal allowed value,
c G - random number
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)AW,NS-1,G
201     FORMAT(2X,'IXXSON - POISSON DITR.: AVERAGE AW=',E10.3,
     *  ' MAXIMAL VALUE NS=',I2,' RANDOM NUMBER G=',E10.3)
      W=EXP(-AW)
        SUMM=W
        DO 1 I=1,NS
        J = I
        IF(G.LT.SUMM)GOTO 2
        W=W*AW/I
1       SUMM=SUMM+W
2       IXXSON=J-1
        IF(DEBUG.GE.3)WRITE (MONIOU,202)IXXSON
202     FORMAT(2X,'IXXSON=',I2)
        RETURN
        END
C=======================================================================

      SUBROUTINE XXAINI(E0N,ICP0,IAP,IAT)
c Additional initialization procedure
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
******************************************************
      DIMENSION WK(3),WA(3)
******************************************************
      COMMON /Q_AREA1/  IA(2),ICZ,ICP
      COMMON /Q_AREA2/  S,Y0,WP0,WM0
      COMMON /Q_AREA4/  EY0(3)
      COMMON /Q_AREA5/  RD(2),CR1(2),CR2(2),CR3(2)
      COMMON /Q_AREA6/  PI,BM,AM
      COMMON /Q_AREA7/  RP1
      COMMON /Q_AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
      COMMON /Q_AREA15/ FP(5),RQ(5),CD(5)
      COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
      COMMON /Q_AREA22/ SJV,FJS(5,3)
      COMMON /Q_AREA35/  SJV0(10,5),FJS0(10,5,15)
      COMMON /Q_AREA43/ MONIOU
******************************************************
      COMMON /Q_AREA44/ GZ(10,5,4),GZP(10,5,4)
      COMMON /Q_AREA45/ GDT,GDP   !so00
******************************************************
      COMMON /Q_DEBUG/  DEBUG
      COMMON /Q_QGSNEX1/ XA,XB,BQGS,BMAXQGS,BMAXNEX,BMINNEX   !ctp
      DIMENSION XA(210,3),XB(210,3)
      SAVE

        IF(DEBUG.GE.1)WRITE (MONIOU,201)ICP0,IAP,IAT,E0N
201     FORMAT(2X,'XXAINI - MINIINITIALIZATION: PARTICLE TYPE ICP0=',
     *  I1,2X,'PROJECTILE MASS NUMBER IAP=',I2/4X,
     *  'TARGET MASS NUMBER IAT=',I2,' INTERACTION ENERGY E0N=',E10.3)
      ICP=ICP0
      IA(1)=IAP
      IA(2)=IAT
c ICZ - auxiliary type for the primary particle (1- pion, 2 - nucleon, 3 - kaon,
c 4 - D-meson, 5 - Lambda_C)
      IF(IABS(ICP).LT.6)THEN
        ICZ=IABS(ICP)/2+1
      ELSE
        ICZ=(IABS(ICP)+1)/2
      ENDIF

c Energy dependent factors:
c WP0, WM0 - initial light cone momenta for the interaction (E+-p)
      S=2.D0*E0N*AMN
      WP0=DSQRT(S)
      WM0=WP0
c Y0 - total rapidity range for the interaction
      Y0=DLOG(S)
c RS - soft pomeron elastic scattering slope (lambda_ab)
      RS=RQ(ICZ)+ALFP*Y0
c RS0 - initial slope (sum of the pomeron-hadron vertices slopes squared - R_ab)
      RS0=RQ(ICZ)
c FS - factor for pomeron eikonal calculation (gamma_ab * s**del /lambda_ab * C_ab
      FS=FP(ICZ)*EXP(Y0*DEL)/RS*CD(ICZ)
c RP1 - factor for the impact parameter dependence of the eikonal ( in fm^2 )
      RP1=RS*4.D0*.0391D0/AM**2

      EY0(2)=1.D0
      EY0(3)=1.D0
      EY0(1)=DSQRT(AMN/E0N/2.D0)

c-------------------------------------------------
c Nuclear radii and weights for nuclear configurations simulation - procedure GEA
      DO 1 I=1,2
c RD(I) - Wood-Saxon density radius (fit to the data of Murthy et al.)
      RD(I)=0.7D0*FLOAT(IA(I))**.446/AM
      CR1(I)=1.D0+3.D0/RD(I)+6.D0/RD(I)**2+6.D0/RD(I)**3
      CR2(I)=3.D0/RD(I)
      CR3(I)=3.D0/RD(I)+6.D0/RD(I)**2
      IF(IA(I).LT.10.AND.IA(I).NE.1)THEN
c RD(I) - gaussian density radius (for light nucleus)
        RD(I)=.9D0*FLOAT(IA(I))**.3333/AM
        IF(IA(I).EQ.2)RD(I)=3.16D0
c RD -> RD * A / (A-1) - to use Van Hove simulation method - procedure GEA
        RD(I)=RD(I)*DSQRT(2.D0*IA(I)/(IA(I)-1.))
      ENDIF
1     CONTINUE

      GDT=0.D0
c-------------------------------------------------
c Impact parameter cutoff setting
c-------------------------------------------------
      IF(IA(1).NE.1)THEN
c Primary nucleus:
c Impact parameter cutoff value ( only impact parameters less than BM are
c simulated; probability to have larger impact parameter is less than 1% )
        BM=RD(1)+RD(2)+5.D0
      ELSE
c Hadron-nucleus interaction
c BM - impact parameter cutoff value
        BM=RD(2)+5.D0
      ENDIF

      BMAXQGS=BM*AM                 !ctp

      YE=DLOG10(E0N)
      IF(YE.LT.1.D0)YE=1.D0
      JE=INT(YE)
      IF(JE.GT.8)JE=8

******************************************************
      WK(2)=YE-JE
      WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
      WK(1)=1.D0-WK(2)+WK(3)
      WK(2)=WK(2)-2.D0*WK(3)

      SJV=SJV0(JE,ICZ)*WK(1)+SJV0(JE+1,ICZ)*WK(2)+SJV0(JE+2,ICZ)*WK(3)

      DO 2 I=1,5
      DO 2 M=1,3
      M1=M+3*(ICZ-1)
2     FJS(I,M)=FJS0(JE,I,M1)*WK(1)+FJS0(JE+1,I,M1)*WK(2)+
     *FJS0(JE+2,I,M1)*WK(3)

      GDT=0.D0
      GDP=0.D0  !so00
      IF(IA(1).EQ.1)THEN
        YA=IA(2)
        YA=DLOG(YA)/1.38629D0+1.D0
        JA=MIN(INT(YA),2)
        WA(2)=YA-JA
        WA(3)=WA(2)*(WA(2)-1.D0)*.5D0
        WA(1)=1.D0-WA(2)+WA(3)
        WA(2)=WA(2)-2.D0*WA(3)
        DO 3 I=1,3
        DO 3 M=1,3
        GDP=GDP+GZP(JE+I-1,ICZ,JA+M-1)*WK(I)*WA(M)  !so00
3       GDT=GDT+GZ(JE+I-1,ICZ,JA+M-1)*WK(I)*WA(M)
      ENDIF
c        write (*,*)'gdt=',gdt
******************************************************

        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXAINI - END')
      RETURN
      END
C=======================================================================

      SUBROUTINE XXASET
c Particular model parameters setting
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
      CHARACTER *2 TYQ
      COMMON /Q_AREA3/  RMIN,EMAX,EEV
      COMMON /Q_AREA6/  PI,BM,AM
      COMMON /Q_AREA8/  WWM,BE(4),DC(5),DETA,ALMPT
      COMMON /Q_AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
      COMMON /Q_AREA11/ B10
      COMMON /Q_AREA20/ WPPP
      COMMON /Q_AREA21/ DMMIN(5)
      COMMON /Q_AREA28/ ARR(4)
      COMMON /Q_AREA40/ JDIFR
      COMMON /Q_AREA42/ TYQ(15)
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE

        IF(DEBUG.GE.1)WRITE (MONIOU,201)
201     FORMAT(2X,'XXASET - HADRONIZATION PARAMETERS SETTING')
c Regge intercepts for the uu~, qqq~q~, us~, uc~ trajectories
      ARR(1)=0.5D0
      ARR(2)=-.5D0
      ARR(3)=0.D0
      ARR(4)=-2.D0
c WPPP - Triple pomeron interaction probability (for two cut pomerons and cut
c between them)
      WPPP=0.4d0
c JDIFR - flag for the low mass diffraction (for JDIFR=0 not considered)
      JDIFR=1

c-------------------------------------------------
c Parameters for the soft fragmentation:
c DC(i) - relative probabilities for udu~d~(i=1), ss~(i=2), cc~(i=3)-pairs creation
c from the vacuum for the quark (u,d,u~,d~) fragmentation;
c ss~(i=4), cc~(i=5) - for the diquark (ud, u~d~) fragmentation
      DC(1)=.06D0
      DC(2)=.10D0
*     DC(3)=.0003D0     ! To switch off charmed particles set to 0.000
      DC(3)=.000D0
      DC(4)=.36D0
*     DC(5)=.01D0     ! To switch off charmed particles set to 0.000
      DC(5)=.0D0
cc  DETA - ratio of etas production density to all pions production density (1/9)
      DETA=.11111D0
c WWM defines mass threshold for string to decay into three or more hadrons
c ( ajustable parameter for string fragmentation )
      WWM=.53D0
c BE(i) - parameter for Pt distribution (exponential) for uu~(dd~), ss~, qqq~q~,
c cc~ pairs respectively (for the soft fragmentation)
      BE(1)=.22D0
      BE(2)=.35D0
      BE(3)=.29D0
      BE(4)=.40D0
c ALMPT - parameter for the fragmentation functions (soft ones):
c ALMPT = 1 + 2 * alfa_R * <pt**2> (Kaidalov proposed 0.5 value for ALMPT-1,
c Sov.J.Nucl.Phys.,1987))
      ALMPT=1.7D0

c-------------------------------------------------
c Parameters for nuclear spectator part fragmentation:
c RMIN - coupling radius squared (fm^2),
c EMAX - relative critical energy ( divided per mean excitation energy (~12.5 Mev)),
c EEV - relative evaporation energy ( divided per mean excitation energy (~12.5 Mev))
      RMIN=3.35D0
      EMAX=.11D0
      EEV=.25D0

c-------------------------------------------------
c DMMIN(i) - minimal diffractive mass for low-mass diffraction for pion, nucleon,
c kaon, D-meson, Lambda_C corresp.
      DMMIN(1)=.76D0
      DMMIN(2)=1.24D0
      DMMIN(3)=.89D0
      DMMIN(4)=2.01D0
      DMMIN(5)=2.45D0
c Proton, kaon, pion, D-meson, Lambda, Lambda_C, eta masses
      AMN=.939D0
      AMK=.496D0
      AM0=.14D0
      AMC=1.868D0
      AMLAM=1.116D0
      AMLAMC=2.27D0
      AMETA=.548D0

c-------------------------------------------------
c B10 - initial value of the pseudorandom number,
c PI  - pi-number
c AM  - diffusive radius for the Saxon-Wood nuclear density parametrization
      B10=.43876194D0
      PI=3.1416D0
      AM=.523D0

C STMASS - minimal string mass to produce secondary particles
      STMASS=4.D0*AM0**2
c Here and below all radii, distances and so on are divided by AM.
      RMIN=RMIN/AM**2

      TYQ(1)='DD'
      TYQ(2)='UU'
      TYQ(3)='C '
      TYQ(4)='S '
      TYQ(5)='UD'
      TYQ(6)='D '
      TYQ(7)='U '
      TYQ(8)='G '
      TYQ(9)='u '
      TYQ(10)='d '
      TYQ(11)='ud'
      TYQ(12)='s '
      TYQ(13)='c '
      TYQ(14)='uu'
      TYQ(15)='dd'
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXASET - END')
      RETURN
      END
C=======================================================================

        SUBROUTINE XXDDFR(WP0,WM0,ICP,ICT)
c Double diffractive dissociation
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP3(4),EY(3)!,EP1(4),EP2(4)
        COMMON /Q_AREA1/  IA(2),ICZ,ICP0
        COMMON /Q_AREA2/  S,Y0,WP00,WM00
        COMMON /Q_AREA8/  WWM,BE(4),DC(5),DETA,ALMPT
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA21/ DMMIN(5)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)ICP,ICT,WP0,WM0
201     FORMAT(2X,'XXDDFR - LEADING CLUSTERS HADRONIZATION:'
     *  /4X,'CLUSTER TYPES ICP=',I2,2X,
     *  'ICT=',I2/4X,'AVAILABLE LIGHT CONE MOMENTA: WP0=',E10.3,
     *  ' WM0=',E10.3)
        DO 100 I=1,3
100     EY(I)=1.D0

        SD0=WP0*WM0
        IF(SD0.LT.0.D0)SD0=0.D0
        DDMIN1=DMMIN(ICZ)
        DDMIN2=DMMIN(2)
        DDMAX1=MIN(5.D0,DSQRT(SD0)-DDMIN2)

        IF(DDMAX1.LT.DDMIN1)THEN
c Registration of too slow "leading" hadron if its energy is insufficient for
c diffractive exhitation
          IF(DSQRT(SD0).LT.AM(ICZ)+AM(2))THEN
            IF(WP0.GT.0.D0.AND.(AM(ICZ)+AM(2))**2/WP0.LT..5D0*WM00)THEN
              SD0=(AM(ICZ)+AM(2))**2
              WM0=SD0/WP0
            ELSE
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
              RETURN
            ENDIF
          ENDIF

          EP3(3)=0.D0
          EP3(4)=0.D0
          XW=XXTWDEC(SD0,AM(ICZ)**2,AM(2)**2)
          WP1=XW*WP0
          WM1=AM(ICZ)**2/WP1
          EP3(1)=.5D0*(WP1+WM1)
          EP3(2)=.5D0*(WP1-WM1)
          CALL XXREG(EP3,ICP)
          WM2=WM0-WM1
          WP2=AM(2)**2/WM2
          EP3(1)=.5D0*(WP2+WM2)
          EP3(2)=.5D0*(WP2-WM2)
          CALL XXREG(EP3,ICT)
          WP0=0.D0
          WM0=0.D0
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
          RETURN
        ENDIF

        DMASS1=(DDMIN1/(1.D0-PSRAN(B10)*(1.D0-DDMIN1/DDMAX1)))**2
        DDMAX2=MIN(5.D0,DSQRT(SD0)-DSQRT(DMASS1))
        DMASS2=(DDMIN2/(1.D0-PSRAN(B10)*(1.D0-DDMIN2/DDMAX2)))**2

        WPD1=WP0*XXTWDEC(SD0,DMASS1,DMASS2)
        WMD1=DMASS1/WPD1
        WMD2=WM0-WMD1
        WPD2=DMASS2/WMD2

        IF(ICP.NE.0)IS=IABS(ICP)/ICP
        IF(ICZ.EQ.5)THEN
          ICH1=ICP
          ICH2=0
          AMH1=AM(5)**2
          AMH2=AM(1)**2

          PTMAX=QGSPSLAM(DMASS1,AMH1,AMH2)
          IF(PTMAX.LT.0.)PTMAX=0.
          IF(PTMAX.LT.BE(4)**2)THEN
1           PTI=PTMAX*PSRAN(B10)
            IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BE(4)))GOTO 1
          ELSE
2           PTI=(BE(4)*DLOG(PSRAN(B10)*PSRAN(B10)))**2
            IF(PTI.GT.PTMAX)GOTO 2
          ENDIF
          AMT1=AMH1+PTI
          AMT2=AMH2+PTI
          Z=XXTWDEC(DMASS1,AMT1,AMT2)
          WP1=WPD1*Z
          WM1=AMT1/WP1
          EP3(1)=.5D0*(WP1+WM1)
          EP3(2)=.5D0*(WP1-WM1)
          PT=DSQRT(PTI)
          CALL QGSPSCS(C,S)
          EP3(3)=PT*C
          EP3(4)=PT*S
          CALL XXREG(EP3,ICH1)

          WP1=WPD1*(1.D0-Z)
          WM1=AMT2/WP1
          EP3(1)=.5D0*(WP1+WM1)
          EP3(2)=.5D0*(WP1-WM1)
          EP3(3)=-PT*C
          EP3(4)=-PT*S
          CALL XXREG(EP3,ICH2)
          GOTO 3
        ENDIF

        IF(ICZ.EQ.1)THEN
          IF(ICP.NE.0)THEN
            IC1=ICP*(1-3*INT(.5D0+PSRAN(B10)))
            IC2=-ICP-IC1
          ELSE
            IC1=INT(1.5D0+PSRAN(B10))*(2*INT(.5D0+PSRAN(B10))-1)
            IC2=-IC1
          ENDIF
        ELSEIF(ICZ.EQ.2)THEN
          IF(PSRAN(B10).GT..33333D0)THEN
            IC1=3*IS
            IC2=ICP-IS
          ELSE
            IC1=ICP+4*IS
            IC2=4*IS-ICP
          ENDIF
        ELSEIF(ICZ.EQ.3)THEN
          IC1=-4*IS
          IC2=ICP-3*IS
        ELSEIF(ICZ.EQ.4)THEN
          IC1=5*IS
          IC2=ICP-9*IS
        ENDIF
        CALL XXGENER(WPD1,WMD1,EY,0.D0,1.D0,0.D0,1.D0,IC1,IC2)

3       CONTINUE
        IS=IABS(ICT)/ICT
        IF(PSRAN(B10).GT..33333D0)THEN
          IC1=3*IS
          IC2=ICT-IS
        ELSE
          IC1=ICT+4*IS
          IC2=4*IS-ICT
        ENDIF
        CALL XXGENER(WPD2,WMD2,EY,0.D0,1.D0,0.D0,1.D0,IC2,IC1)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXDDFR - END')
        RETURN
        END
C=======================================================================

        SUBROUTINE XXDEC2(EP,EP1,EP2,WW,A,B)
c Two particle decay
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        dimension ep(4),ep1(4),ep2(4),EY(3)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        COMMON /Q_AREA11/ B10
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)
201     FORMAT(2X,'XXDEC2 - TWO PARTICLE DECAY')

        PL=QGSPSLAM(WW,A,B)
        EP1(1)=DSQRT(PL+A)
        EP2(1)=DSQRT(PL+B)
        PL=DSQRT(PL)
        COSZ=2.D0*PSRAN(B10)-1.D0
        PT=PL*DSQRT(1.D0-COSZ**2)
        EP1(2)=PL*COSZ
        CALL QGSPSCS(C,S)
        EP1(3)=PT*C
        EP1(4)=PT*S
        do 1 I=2,4
1       EP2(I)=-EP1(I)
        CALL QGSPSDEFTR(WW,EP,EY)
        CALL QGSPSTRANS(EP1,EY)
        CALL QGSPSTRANS(EP2,EY)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXDEC2 - END')
        RETURN
        END
C=======================================================================

        SUBROUTINE XXDEC3(EP,EP1,EP2,EP3,SWW,AM1,AM2,AM3)

c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP(4),EP1(4),EP2(4),EP3(4),EPT(4),EY(3)
        COMMON/AREA11/B10
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)
201     FORMAT(2X,'XXDEC3 - THREE PARTICLE DECAY')
        AM12=AM1**2
        AM23=(AM2+AM3)**2
        AM32=(AM2-AM3)**2
        S23MAX=(SWW-AM1)**2
        EMAX=.25D0*(SWW+(AM12-AM23)/SWW)**2
        GB0=DSQRT((EMAX-AM12)/EMAX*(1.D0-AM23/S23MAX)
     *  *(1.D0-AM32/S23MAX))
1       P1=PSRAN(B10)*(EMAX-AM12)
        E1=DSQRT(P1+AM12)
        S23=SWW**2+AM12-2.D0*E1*SWW
        GB=DSQRT(P1*(1.D0-AM23/S23)*(1.D0-AM32/S23))/E1/GB0
        IF(PSRAN(B10).GT.GB)GOTO 1

        P1=DSQRT(P1)
        EP1(1)=E1
        COSZ=2.D0*PSRAN(B10)-1.D0
        PT=P1*DSQRT(1.D0-COSZ**2)
        EP1(2)=P1*COSZ
        CALL QGSPSCS(C,S)
        EP1(3)=PT*C
        EP1(4)=PT*S
        do 2 I=2,4
2       EPT(I)=-EP1(I)
        EPT(1)=SWW-EP1(1)
        CALL QGSPSDEFTR(SWW**2,EP,EY)
        CALL QGSPSTRANS(EP1,EY)
        CALL QGSPSTRANS(EPT,EY)

        CALL XXDEC2(EPT,EP2,EP3,S23,AM2**2,AM3**2)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXDEC3 - END')
        RETURN
        END
C=======================================================================

        SUBROUTINE XXDPR(WP0,WM0,ICP,ICT,LQ2)
c Projectile hadron dissociation
c Leading hadronic state hadronization
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP3(4),EY(3)!,EP1(4),EP2(4)
        COMMON /Q_AREA1/  IA(2),ICZ,ICP0
        COMMON /Q_AREA2/  S,Y0,WP00,WM00
        COMMON /Q_AREA8/  WWM,BE(4),DC(5),DETA,ALMPT
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
        COMMON /Q_AREA21/ DMMIN(5)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN


        IF(DEBUG.GE.2)WRITE (MONIOU,201)ICP,ICT,WP0,WM0
201     FORMAT(2X,'XXDPR - LEADING (PROJECTILE) CLUSTER HADRONIZATION:'
     *  /4X,'CLUSTER TYPE ICP=',I2,2X,'TARGET TYPE ',
     *  'ICT=',I2/4X,'AVAILABLE LIGHT CONE MOMENTA: WP0=',E10.3,
     *  ' WM0=',E10.3)
        DO 100 I=1,3
100     EY(I)=1.D0

        SD0=WP0*WM0
        IF(SD0.LT.0.D0)SD0=0.D0
        DDMAX=MIN(5.D0,DSQRT(SD0)-AM(2))
        DDMIN=DMMIN(ICZ)

        IF(DDMAX.LT.DDMIN)THEN
c Registration of too slow "leading" hadron if its energy is insufficient for
c diffractive exhitation
          EP3(3)=0.D0
          EP3(4)=0.D0

          IF(LQ2.NE.0)THEN
            WPI=WP0
            IF(AM(ICZ)**2.GT.WPI*WM0)THEN
              IF(WPI.GT.0.D0.AND.AM(ICZ)**2/WPI.LT..5D0*WM00)THEN
                WMI=AM(ICZ)**2/WPI
                WM0=WMI
              ELSE
                RETURN
              ENDIF
cdh 2 lines added  in accordance with s. ostapchenko 17.9.99
            ELSE
              WMI=AM(ICZ)**2/WPI
cdh
            ENDIF
            WM0=WM0-WMI
            WP0=0.D0
            EP3(1)=.5D0*(WPI+WMI)
            EP3(2)=.5D0*(WPI-WMI)
            CALL XXREG(EP3,ICP)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
            RETURN
          ELSE

            IF(DSQRT(SD0).LT.AM(ICZ)+AM(2))THEN
              IF(WP0.GT.0.D0.AND.(AM(ICZ)+AM(2))**2/WP0.LT..5D0*WM00)
     *        THEN
                SD0=(AM(ICZ)+AM(2))**2
                WM0=SD0/WP0
              ELSE
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
                RETURN
              ENDIF
            ENDIF
            XW=XXTWDEC(SD0,AM(ICZ)**2,AM(2)**2)
            WP1=XW*WP0
            WM1=AM(ICZ)**2/WP1
            EP3(1)=.5D0*(WP1+WM1)
            EP3(2)=.5D0*(WP1-WM1)
            CALL XXREG(EP3,ICP)
            WM2=WM0-WM1
            WP2=AM(2)**2/WM2
            EP3(1)=.5D0*(WP2+WM2)
            EP3(2)=.5D0*(WP2-WM2)
            CALL XXREG(EP3,ICT)
            WP0=0.D0
            WM0=0.D0
          ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
          RETURN
        ENDIF

        IF(ICP.NE.0)IS=IABS(ICP)/ICP

        DMASS=DDMIN**2/(1.D0-PSRAN(B10)*(1.D0-(DDMIN/DDMAX)))**2

        IF(LQ2.NE.0)THEN
          WPD=WP0
          WMD=DMASS/WPD
          WM0=WM0-WMD
          WP0=0.D0
        ELSE
        IF(ICZ.EQ.5)THEN
          WPD=WP0*XXTWDEC(SD0,DMASS,AM(2)**2)
          WMD=DMASS/WPD
          WM2=WM0-WMD
          WP2=AM(2)**2/WM2
          EP3(1)=.5D0*(WP2+WM2)
          EP3(2)=.5D0*(WP2-WM2)
          EP3(3)=0.D0
          EP3(4)=0.D0
          CALL XXREG(EP3,ICT)
        ELSE
          PTMAX=QGSPSLAM(SD0,DMASS,AM(2)**2)
          IF(PTMAX.LT.0.)PTMAX=0.
          PTI=-1.D0/RS*DLOG(1.D0-PSRAN(B10)*(1.D0-EXP(-RS*PTMAX)))

          AMT1=DMASS+PTI
          AMT2=AM(2)**2+PTI
          WPD=WP0*XXTWDEC(SD0,AMT1,AMT2)
          WMD=AMT1/WPD
          WM2=WM0-WMD
          WP2=AMT2/WM2
          PT=DSQRT(PTI)
          CALL QGSPSCS(CCOS,SSIN)
          EP3(3)=PT*CCOS
          EP3(4)=PT*SSIN
          EP3(1)=.5D0*(WP2+WM2)
          EP3(2)=.5D0*(WP2-WM2)
          CALL XXREG(EP3,ICT)
          EP3(3)=-EP3(3)
          EP3(4)=-EP3(4)
          EP3(1)=.5D0*(WPD+WMD)
          EP3(2)=.5D0*(WPD-WMD)
          CALL QGSPSDEFTR(DMASS,EP3,EY)
          WPD=DSQRT(DMASS)
          WMD=WPD
        ENDIF
          WP0=0.D0
          WM0=0.D0
        ENDIF

        IF(ICZ.EQ.5)THEN
          ICH1=ICP
          ICH2=0
          AMH1=AM(5)**2
          AMH2=AM(1)**2

          PTMAX=QGSPSLAM(DMASS,AMH1,AMH2)
          IF(PTMAX.LT.0.)PTMAX=0.
          IF(PTMAX.LT.BE(4)**2)THEN
1           PTI=PTMAX*PSRAN(B10)
            IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BE(4)))GOTO 1
          ELSE
2           PTI=(BE(4)*DLOG(PSRAN(B10)*PSRAN(B10)))**2
            IF(PTI.GT.PTMAX)GOTO 2
          ENDIF
          AMT1=AMH1+PTI
          AMT2=AMH2+PTI
          Z=XXTWDEC(DMASS,AMT1,AMT2)
          WP1=WPD*Z
          WM1=AMT1/WP1
          EP3(1)=.5D0*(WP1+WM1)
          EP3(2)=.5D0*(WP1-WM1)
          PT=DSQRT(PTI)
          CALL QGSPSCS(C,S)
          EP3(3)=PT*C
          EP3(4)=PT*S
          CALL XXREG(EP3,ICH1)

          WP1=WPD*(1.D0-Z)
          WM1=AMT2/WP1
          EP3(1)=.5D0*(WP1+WM1)
          EP3(2)=.5D0*(WP1-WM1)
          EP3(3)=-PT*C
          EP3(4)=-PT*S
          CALL XXREG(EP3,ICH2)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
          RETURN
        ENDIF

        IF(ICZ.EQ.1)THEN
          IF(ICP.NE.0)THEN
            IC1=ICP*(1-3*INT(.5D0+PSRAN(B10)))
            IC2=-ICP-IC1
          ELSE
            IC1=INT(1.5D0+PSRAN(B10))*(2*INT(.5D0+PSRAN(B10))-1)
            IC2=-IC1
          ENDIF
        ELSEIF(ICZ.EQ.2)THEN
          IF(PSRAN(B10).GT..33333D0)THEN
            IC1=3*IS
            IC2=ICP-IS
          ELSE
            IC1=ICP+4*IS
            IC2=4*IS-ICP
          ENDIF
        ELSEIF(ICZ.EQ.3)THEN
          IC1=-4*IS
          IC2=ICP-3*IS
        ELSEIF(ICZ.EQ.4)THEN
          IC1=5*IS
          IC2=ICP-9*IS
        ENDIF
        CALL XXGENER(WPD,WMD,EY,0.D0,1.D0,0.D0,1.D0,
     *  IC1,IC2)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXDPR - END')
        RETURN
        END
C=======================================================================

        SUBROUTINE XXDTG(WP0,WM0,ICP,ICT,LQ1)
c Target nucleon dissociation
c Leading hadronic state hadronization
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP3(4),EY(3)
        COMMON /Q_AREA1/  IA(2),ICZ,ICP0
        COMMON /Q_AREA2/  S,Y0,WP00,WM00
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
        COMMON /Q_AREA21/ DMMIN(5)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN


        IF(DEBUG.GE.2)WRITE (MONIOU,201)ICT,ICP,WP0,WM0
201     FORMAT(2X,'XXDTG - LEADING (TARGET) CLUSTER HADRONIZATION:'
     *  /4X,'CLUSTER TYPE ICT=',I2,2X,'PROJECTILE TYPE ',
     *  'ICP=',I2/4X,'AVAILABLE LIGHT CONE MOMENTA: WP0=',E10.3,
     *  ' WM0=',E10.3)
        DO 100 I=1,3
100     EY(I)=1.D0

        SD0=WP0*WM0
        IF(SD0.LT.0.D0)SD0=0.D0
        DDMIN=DMMIN(2)
        DDMAX=MIN(5.D0,DSQRT(SD0)-AM(ICZ))

        IF(DDMAX.LT.DDMIN)THEN
c Registration of too slow "leading" hadron if its energy is insufficient for
c diffractive exhitation
          EP3(3)=0.D0
          EP3(4)=0.D0

          IF(LQ1.NE.0)THEN
            WMI=WM0
            IF( WP0.LE.0.D0.OR.AM(2)**2.GT.WMI*WP0)RETURN
            WPI=AM(2)**2/WMI
            WP0=WP0-WPI
            WM0=0.D0
            EP3(1)=.5D0*(WPI+WMI)
            EP3(2)=.5D0*(WPI-WMI)
            CALL XXREG(EP3,ICT)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
            RETURN
          ELSE

            IF(DSQRT(SD0).LT.AM(ICZ)+AM(2))THEN
              IF(WP0.GT.0.D0.AND.(AM(ICZ)+AM(2))**2/WP0.LT..5D0*WM00)
     *        THEN
                SD0=(AM(ICZ)+AM(2))**2
                WM0=SD0/WP0
              ELSE
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
                RETURN
              ENDIF
            ENDIF
            XW=XXTWDEC(SD0,AM(ICZ)**2,AM(2)**2)
            WP1=XW*WP0
            WM1=AM(ICZ)**2/WP1
            EP3(1)=.5D0*(WP1+WM1)
            EP3(2)=.5D0*(WP1-WM1)
            CALL XXREG(EP3,ICP)
            WM2=WM0-WM1
            WP2=AM(2)**2/WM2
            EP3(1)=.5D0*(WP2+WM2)
            EP3(2)=.5D0*(WP2-WM2)
            CALL XXREG(EP3,ICT)
            WP0=0.D0
            WM0=0.D0
          ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
          RETURN
        ENDIF

        DMASS=(DDMIN/(1.D0-PSRAN(B10)*(1.D0-DDMIN/DDMAX)))**2
        IF(LQ1.NE.0)THEN
          WMD=WM0
          WPD=DMASS/WMD
          WP0=WP0-WPD
          WM0=0.D0
        ELSE
          PTMAX=QGSPSLAM(SD0,DMASS,AM(ICZ)**2)
          IF(PTMAX.LT.0.)PTMAX=0.
          PTI=-1.D0/RS*DLOG(1.D0-PSRAN(B10)*(1.D0-EXP(-RS*PTMAX)))

          AMT1=DMASS+PTI
          AMT2=AM(ICZ)**2+PTI
          WMD=WM0*XXTWDEC(SD0,AMT1,AMT2)
          WPD=AMT1/WMD
          WP2=WP0-WPD
          WM2=AMT2/WP2
          PT=DSQRT(PTI)
          CALL QGSPSCS(CCOS,SSIN)
          EP3(3)=PT*CCOS
          EP3(4)=PT*SSIN
          EP3(1)=.5D0*(WP2+WM2)
          EP3(2)=.5D0*(WP2-WM2)
          CALL XXREG(EP3,ICP)
          EP3(3)=-EP3(3)
          EP3(4)=-EP3(4)
          EP3(1)=.5D0*(WPD+WMD)
          EP3(2)=.5D0*(WPD-WMD)
          CALL QGSPSDEFTR(DMASS,EP3,EY)
          WPD=DSQRT(DMASS)
          WMD=WPD
          WP0=0.D0
          WM0=0.D0
        ENDIF

        IS=IABS(ICT)/ICT
        IF(PSRAN(B10).GT..33333D0)THEN
          IC1=3*IS
          IC2=ICT-IS
        ELSE
          IC1=ICT+4*IS
          IC2=4*IS-ICT
        ENDIF
        CALL XXGENER(WPD,WMD,EY,
     *  0.D0,1.D0,0.D0,1.D0,IC2,IC1)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXDTG - END')
        RETURN
        END
C=======================================================================

        SUBROUTINE XXFAU(B,GZ)
c Integrands for hadron-hadron and hadron-nucleus cross-sections calculation
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION GZ(3),GZ0(2)
        COMMON /Q_AREA1/  IA(2),ICZ,ICP
        COMMON /Q_AREA16/ CC(5)
        COMMON /Q_AR1/    ANORM
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)
201     FORMAT(2X,'XXFAU - INTEGRANDS FOR HADRON-HADRON AND '
     *    ,'HADRON-NUCLEUS CROSS-SECTIONS CALCULATION')

        CALL XXFZ(B,GZ0)
        DO 1 L=1,2
1       GZ0(L)=GZ0(L)*CC(2)*ANORM*.5D0

        AB=FLOAT(IA(2))

        GZ1=(1.D0-GZ0(1))**AB
        GZ2=(1.D0-GZ0(2))**AB
        GZ3=(1.D0-CC(2)*GZ0(2)-2.D0*(1.D0-CC(2))*GZ0(1))**AB


        GZ(1)=CC(ICZ)**2*(GZ2-GZ3)
        GZ(2)=CC(ICZ)*(1.D0-CC(ICZ))*(1.D0+GZ2-2.D0*GZ1)
        GZ(3)=CC(ICZ)*(1.D0-GZ2)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXFAU - END')
        RETURN
        END
C=======================================================================

         SUBROUTINE XXFRAG(SA,NA,RC)
c Connected nucleon clasters extraction - used for the nuclear spectator part
c multifragmentation:
c-----------------------------------------------------------------------
         IMPLICIT DOUBLE PRECISION (A-H,O-Z)
         INTEGER DEBUG
cdh      DIMENSION SA(56,3)
         DIMENSION SA(210,3)
         COMMON /Q_AREA13/ NSF,IAF(56)
         COMMON /Q_AREA43/ MONIOU
         COMMON /Q_DEBUG/  DEBUG
         SAVE

         IF(DEBUG.GE.2)WRITE (MONIOU,201)NA
201      FORMAT(2X,'XXFRAG-MULTIFRAGMENTATION: NUCLEUS MASS NUMBER: NA='
     *   ,I2)
         IF(DEBUG.GE.3)THEN
           WRITE (MONIOU,203)
203        FORMAT(2X,'NUCLEONS COORDINATES:')
204        FORMAT(2X,3E10.3)
           DO 205 I=1,NA
205        WRITE (MONIOU,204)(SA(I,L),L=1,3)
         ENDIF

         NI=1
         NG=1
         J=0
1        J=J+1
         J1=NI+1
         DO 4 I=J1,NA
         RI=0.D0
         DO 2 M=1,3
2        RI=RI+(SA(J,M)-SA(I,M))**2
         IF(RI.GT.RC)GOTO 4
         NI=NI+1
         NG=NG+1
         IF(I.EQ.NI)GOTO 4
         DO 3 M=1,3
         S0=SA(NI,M)
         SA(NI,M)=SA(I,M)
3        SA(I,M)=S0
4        CONTINUE
         IF(J.LT.NI.AND.NA-NI.GT.0)GOTO 1
         NSF=NSF+1
         IAF(NSF)=NG
         IF(DEBUG.GE.3)WRITE (MONIOU,206)NSF,IAF(NSF)
206      FORMAT(2X,'XXFRAG: FRAGMENT N',I2,2X,'FRAGMENT MASS - ',I2)
         NG=1
         J=NI
         NI=NI+1
         IF(NA-NI)6,5,1
5        NSF=NSF+1
         IAF(NSF)=1
         IF(DEBUG.GE.3)WRITE (MONIOU,206)NSF,IAF(NSF)
6        CONTINUE
         IF(DEBUG.GE.3)WRITE (MONIOU,202)
202      FORMAT(2X,'XXFRAG - END')
         RETURN
         END
C=======================================================================

      SUBROUTINE XXFRAGM(NS,XA)
c Fragmentation of the spectator part of the nucleus
c XA(56,3) - arrays for spectator nucleons positions
c NS - total number of spectators
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
cdh   DIMENSION XA(56,3)
      DIMENSION XA(210,3)
      INTEGER DEBUG
      COMMON /Q_AREA1/  IA(2),ICZ,ICP
      COMMON /Q_AREA3/  RMIN,EMAX,EEV
      COMMON /Q_AREA11/ B10
c NSF - number of secondary fragments;
c IAF(i) - mass of the i-th fragment
      COMMON /Q_AREA13/ NSF,IAF(56)
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE
      EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)NS
201     FORMAT(2X,'XXFRAGM: NUMBER OF SPECTATORS: NS=',I2)

        NSF=0

        IF(NS-1)6,1,2
c Single spectator nucleon is recorded
1     NSF=NSF+1
      IAF(NSF)=1
        IF(DEBUG.GE.3)WRITE (MONIOU,205)
205     FORMAT(2X,'XXFRAGM - SINGLE SPECTATOR')
        GOTO 6
2       EEX=0.D0
c EEX - spectator part excitation energy; calculated as the sum of excitations
c from all wounded nucleons ( including diffractively excited )
        DO 3 I=1,IA(1)-NS
c Partial excitation is simulated according to distribution f(E) ~ 1/sqrt(E)
c * exp(-E/(2*<E>)), for sqrt(E) we have then normal distribution
3     EEX=EEX+(PSRAN(B10)+PSRAN(B10)+PSRAN(B10)+
     *      PSRAN(B10)+PSRAN(B10)-2.5D0)**2*2.4D0
          IF(DEBUG.GE.3)WRITE (MONIOU,203)EEX
203     FORMAT(2X,'XXFRAGM: EXCITATION ENERGY: EEX=',E10.3)

c If the excitation energy per spectator is larger than EMAX
c multifragmentation takes place ( percolation algorithm is used for it )
        IF(EEX/NS.GT.EMAX)THEN
c Multifragmentation
          CALL XXFRAG(XA,NS,RMIN)
        ELSE

c Otherwise average number of eveporated nucleons equals EEX/EEV, where
c EEV - mean excitation energy carried out by one nucleon
          NF=IXXSON(NS,EEX/EEV,PSRAN(B10))
          NSF=NSF+1
c Recording of the fragment produced
          IAF(NSF)=NS-NF
          IF(DEBUG.GE.3)WRITE (MONIOU,206)IAF(NSF)
206     FORMAT(2X,'XXFRAGM - EVAPORATION: MASS NUMBER OF THE FRAGMENT:'
     *  ,I2)

c Some part of excitation energy is carried out by alphas; we determine the
c number of alphas simply as NF/4
          NAL=NF/4
          IF(NAL.NE.0)THEN
c Recording of the evaporated alphas
            DO 4 I=1,NAL
            NSF=NSF+1
4           IAF(NSF)=4
          ENDIF

          NF=NF-4*NAL
          IF(NF.NE.0)THEN
c Recording of the evaporated nucleons
            DO 5 I=1,NF
            NSF=NSF+1
5           IAF(NSF)=1
          ENDIF
          IF(DEBUG.GE.3)WRITE (MONIOU,204)NF,NAL
204     FORMAT(2X,'XXFRAGM - EVAPORATION: NUMBER OF NUCLEONS NF=',I2,
     *  'NUMBER OF ALPHAS NAL=',I2)
        ENDIF
6       CONTINUE
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXFRAGM - END')
        RETURN
        END
C=======================================================================

        SUBROUTINE XXFZ(B,GZ)
c Hadron-hadron and hadron-nucleus cross sections calculation
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION GZ(2),FHARD(3)
        COMMON /Q_AREA1/  IA(2),ICZ,ICP
        COMMON /Q_AREA2/  S,Y0,WP0,WM0
        COMMON /Q_AREA7/  RP1
        COMMON /Q_AR13/    X1(7),A1(7)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)
201     FORMAT(2X,'XXFZ - HADRONIC CROSS-SECTIONS CALCULATION')

        DO 1 L=1,2
1       GZ(L)=0.D0
        E1=EXP(-1.D0)

        DO 2 I1=1,7
        DO 2 M=1,2
        Z=.5D0+X1(I1)*(M-1.5D0)
        S1=DSQRT(RP1*Z)
        ZV1=EXP(-Z)
        S2=DSQRT(RP1*(1.D0-DLOG(Z)))
        ZV2=E1*Z
C??????????
C       VV1=EXP(-PSFAZ(ZV1,FSOFT,FHARD,FSHARD))*(1.D0-FHARD(1)
C    *  -FHARD(2)-FHARD(3))
C       VV2=EXP(-PSFAZ(ZV2,FSOFT,FHARD,FSHARD))*(1.D0-FHARD(1)
C    *  -FHARD(2)-FHARD(3))

        VV1=EXP(-PSFAZ(ZV1,FSOFT,FHARD,FSHARD)-FHARD(1)
     *  -FHARD(2)-FHARD(3))
        VV2=EXP(-PSFAZ(ZV2,FSOFT,FHARD,FSHARD)-FHARD(1)
     *  -FHARD(2)-FHARD(3))
c???????????

        IF(IA(2).EQ.1)THEN
          CG1=1.D0
          CG2=1.D0
        ELSE
          CG1=XXROT(B,S1)
          CG2=XXROT(B,S2)
        ENDIF

        DO 2 L=1,2
2       GZ(L)=GZ(L)+ A1(I1)*(CG1*(1.D0-VV1**L)+CG2*(1.D0-VV2**L)/Z)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXFZ - END')
        RETURN
        END
C=======================================================================

      SUBROUTINE XXGAU(GZ)
c Impact parameter integration for impact parameters <BM -
c for hadron-hadron and hadron-nucleus cross-sections calculation
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
      DIMENSION GZ(3),GZ0(3)
      COMMON /Q_AREA6/ PI,BM,AM
      COMMON /Q_AR13/   X1(7),A1(7)
      COMMON /Q_AR2/   R,RM
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)
201     FORMAT(2X,'XXGAU - NUCLEAR CROSS-SECTIONS CALCULATION')

      DO 1 I=1,3
1     GZ(I)=0.D0

      DO 2 I=1,7
      DO 2 M=1,2
      B=BM*DSQRT(.5D0+X1(I)*(M-1.5D0))
      CALL XXFAU(B,GZ0)
      DO 2 L=1,3
2     GZ(L)=GZ(L)+GZ0(L)*A1(I)
      DO 3 L=1,3
3     GZ(L)=GZ(L)*(BM*AM)**2*PI*.5D0
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXGAU - END')
      RETURN
      END
C=======================================================================

      SUBROUTINE XXGAU1(GZ)
c Impact parameter integration for impact parameters >BM -
c for hadron-hadron and hadron-nucleus cross-sections calculation
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
      DIMENSION GZ(3),GZ0(3)
      COMMON /Q_AREA6/ PI,BM,AM
      COMMON /Q_AR15/   X5(2),A5(2)
      COMMON /Q_AR2/   R,RM
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)
201     FORMAT(2X,'XXGAU1 - NUCLEAR CROSS-SECTIONS CALCULATION')

      DO 1 I=1,2
      B=BM+X5(I)
      CALL XXFAU(B,GZ0)
      DO 1 L=1,3
1     GZ(L)=GZ(L)+GZ0(L)*A5(I)*EXP(X5(I))*B*2.D0*PI*AM*AM
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXGAU1 - END')
      RETURN
      END
C=======================================================================

        SUBROUTINE XXGENER(WP0,WM0,EY0,S0X,C0X,S0,C0,IC1,IC2)
c To simulate the fragmentation of the string into secondary hadrons
c The algorithm conserves energy-momentum;
c WP0, WM0 are initial longitudinal momenta ( E+p, E-p ) of the quarks
c at the ends of the string; IC1, IC2 - their types
c The following partons types are used: 1 - u, -1 - U, 2 - d, -2 - D,
c 3 - ud, -3 - UD, 4 - s, -4 - S, 5 - c, -5 - C,
c  6 - uu, 7 - dd, -6 - UU, -7 - DD
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        CHARACTER *2 TYQ
        DIMENSION WP(2),IC(2),EPT(4),EP(4),EY(3),EY0(3)
c WP(1), WP(2) - current longitudinal momenta of the partons at the string
c ends, IC(1), IC(2) - their types
        COMMON /Q_AREA8/  WWM,BEP,BEN,BEK,BEC,DC(5),DETA,ALMPT
        COMMON /Q_AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA19/ AHL(5)
********************************************************
        COMMON /Q_AREA21/ DMMIN(5)
********************************************************
        COMMON /Q_AREA28/ ARR(4)
        COMMON /Q_AREA42/ TYQ(15)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)TYQ(8+IC1),TYQ(8+IC2),
     *  WP0,WM0,EY0,S0X,C0X,S0,C0
201     FORMAT(2X,'XXGENER: PARTON FLAVORS AT THE ENDS OF THE STRING:',
     *  2X,A2,2X,A2/4X,'LIGHT CONE MOMENTA OF THE STRING: ',E10.3,
     *  2X,E10.3/4X,'EY0=',3E10.3/4X,
     *  'S0X=',E10.3,2X,'C0X=',E10.3,2X,'S0=',E10.3,2X,'C0=',E10.3)

        WW=WP0*WM0
        EPT(1)=.5D0*(WP0+WM0)
        EPT(2)=.5D0*(WP0-WM0)
        EPT(3)=0.D0
        EPT(4)=0.D0
        IC(1)=IC1
        IC(2)=IC2

1     SWW=DSQRT(WW)
      CALL QGSPSDEFTR(WW,EPT,EY)
      J=INT(2.D0*PSRAN(B10))+1
      IF(DEBUG.GE.3)THEN
        IQT=8+IC(J)
        WRITE (MONIOU,203)J,TYQ(IQT),WW
203     FORMAT(2X,'XXGENER: CURRENT PARTON FLAVOR AT THE END ',I1,
     *  ' OF THE STRING: ',A2/4X,' STRING MASS: ',E10.3)
      ENDIF

      IAB=IABS(IC(J))
      IS=IC(J)/IAB
      IF(IAB.GT.5)IAB=3
      IAJ=IABS(IC(3-J))
      IF(IAJ.GT.5)IAJ=3
      IF(IAJ.EQ.3)THEN
        RESTM=AMN
      ELSEIF(IAJ.EQ.4)THEN
          RESTM=AMK
      ELSEIF(IAJ.EQ.5)THEN
        RESTM=AMC
      ELSE
        RESTM=AM0
      ENDIF

      IF(IAB.LE.2.AND.SWW.GT.RESTM+2.D0*AM0+WWM.OR.
     *IAB.EQ.3.AND.SWW.GT.RESTM+AM0+AMN+WWM.OR.
     *IAB.EQ.4.AND.SWW.GT.RESTM+AM0+AMK+WWM.OR.
     *IAB.EQ.5.AND.SWW.GT.RESTM+AM0+AMC+WWM)THEN

        IF(IAB.LE.2)THEN
          IF(SWW.GT.RESTM+2.D0*AMC.AND.PSRAN(B10).LT.DC(3))THEN
c D-meson generation
            RESTM=(RESTM+AMC)**2
            BET=BEC
            AMI=AMC**2
            ALF=ALMPT-ARR(4)
            BLF=AHL(4)
            IC0=IC(J)-9*IS
            IC(J)=5*IS
          ELSEIF(SWW.GT.RESTM+2.D0*AMN.AND.PSRAN(B10).LT.DC(1))THEN
c Nucleon generation
            RESTM=(RESTM+AMN)**2
            BET=BEN
            AMI=AMN**2
            ALF=ALMPT-ARR(2)
            BLF=AHL(2)
            IC0=IC(J)+IS
            IC(J)=-3*IS
          ELSEIF(SWW.GT.RESTM+2.D0*AMK.AND.PSRAN(B10).LT.DC(2))THEN
c Kaon generation
            RESTM=(RESTM+AMK)**2
            BET=BEK
            AMI=AMK**2
            ALF=ALMPT-ARR(3)
            BLF=AHL(3)
            IC0=IC(J)+3*IS
            IC(J)=4*IS
          ELSEIF(SWW.GT.RESTM+AMETA+AM0.AND.PSRAN(B10).LT.DETA)THEN
c Eta generation
            RESTM=(RESTM+AM0)**2
            BET=BEK
            AMI=AMETA**2
            ALF=ALMPT-ARR(1)
            BLF=AHL(1)
            IC0=10
          ELSE
c Pion generation
            RESTM=(RESTM+AM0)**2
            BET=BEP
            AMI=AM0**2
            ALF=ALMPT-ARR(1)
            BLF=AHL(1)

            IF(PSRAN(B10).LT..3333D0)THEN
              IC0=0
            ELSE
              IC0=3*IS-2*IC(J)
              IC(J)=3*IS-IC(J)
            ENDIF
          ENDIF

        ELSEIF(IAB.EQ.3)THEN
          IF(SWW.GT.RESTM+AMC+AMLAMC.AND.PSRAN(B10).LT.DC(5).AND.
     *    IABS(IC(J)).EQ.3)THEN
c Lambda_C generation
            RESTM=(RESTM+AMC)**2
            BET=BEC
            AMI=AMLAMC**2
            ALF=ALMPT-ARR(4)
            BLF=AHL(5)
            IC0=9*IS
            IC(J)=-5*IS
          ELSEIF(SWW.GT.RESTM+AMK+AMLAM.AND.PSRAN(B10).LT.DC(4).AND.
     *    IABS(IC(J)).EQ.3)THEN
c Lambda generation
            RESTM=(RESTM+AMK)**2
            BET=BEK
            AMI=AMLAM**2
            ALF=ALMPT-ARR(3)
            BLF=AHL(2)+ARR(1)-ARR(3)
            IC0=6*IS
            IC(J)=-4*IS
          ELSE
c Nucleon generation
            RESTM=(RESTM+AM0)**2
            BET=BEN
            AMI=AMN**2
            ALF=ALMPT-ARR(1)
            BLF=AHL(2)
            IF(IABS(IC(J)).EQ.3)THEN
              IC0=IS*INT(2.5D0+PSRAN(B10))
              IC(J)=IS-IC0
            ELSE
              IC0=IC(J)-4*IS
              IC(J)=IC0-4*IS
            ENDIF
          ENDIF

        ELSEIF(IAB.EQ.4)THEN
          IF(SWW.GT.RESTM+AMN+AMLAM.AND.PSRAN(B10).LT.DC(1))THEN
c Lambda generation
            RESTM=(RESTM+AMN)**2
            BET=BEN
            AMI=AMLAM**2
            ALF=ALMPT-ARR(2)
            BLF=AHL(2)+ARR(1)-ARR(3)
            IC0=6*IS
            IC(J)=-3*IS
          ELSE
c Kaon generation
            RESTM=(RESTM+AM0)**2
            BET=BEP
            AMI=AMK**2
            ALF=ALMPT-ARR(1)
            BLF=AHL(3)
            IC(J)=IS*INT(1.5D0+PSRAN(B10))
            IC0=-3*IS-IC(J)
          ENDIF

        ELSEIF(IAB.EQ.5)THEN
          IF(SWW.GT.RESTM+AMN+AMLAMC.AND.PSRAN(B10).LT.DC(1))THEN
c Lambda_C generation
            RESTM=(RESTM+AMN)**2
            BET=BEN
            AMI=AMLAMC**2
            ALF=ALMPT-ARR(2)
            BLF=AHL(5)
            IC0=9*IS
            IC(J)=-3*IS
          ELSE
c D-meson generation
            RESTM=(RESTM+AM0)**2
            BET=BEP
            AMI=AMC**2
            ALF=ALMPT-ARR(1)
            BLF=AHL(4)
            IC(J)=IS*INT(1.5D0+PSRAN(B10))
            IC0=9*IS-IC(J)
          ENDIF
        ENDIF

********************************************************
        PTMAX=QGSPSLAM(WW,RESTM,AMI)
        IF(PTMAX.LT.0.)PTMAX=0.

        IF(PTMAX.LT.BET**2)THEN
2         PTI=PTMAX*PSRAN(B10)
          IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BET))GOTO 2
        ELSE
3         PTI=(BET*DLOG(PSRAN(B10)*PSRAN(B10)))**2
          IF(PTI.GT.PTMAX)GOTO 3
        ENDIF

        AMT=AMI+PTI
        RESTM1=RESTM+PTI
********************************************************
c        ALF=ALF+2.*PTI

        ZMIN=DSQRT(AMT/WW)
        ZMAX=XXTWDEC(WW,AMT,RESTM1)
        Z1=(1.-ZMAX)**ALF
        Z2=(1.-ZMIN)**ALF
4       Z=1.-(Z1+(Z2-Z1)*PSRAN(B10))**(1./ALF)
        IF(PSRAN(B10).GT.(Z/ZMAX)**BLF)GOTO 4
        WP(J)=Z*SWW
        WP(3-J)=AMT/WP(J)
        EP(1)=.5D0*(WP(1)+WP(2))
        EP(2)=.5D0*(WP(1)-WP(2))
        PTI=DSQRT(PTI)
        CALL QGSPSCS(C,S)
        EP(3)=PTI*C
        EP(4)=PTI*S

        EPT(1)=SWW-EP(1)
        DO 5 I=2,4
5       EPT(I)=-EP(I)
        WW=QGSPSNORM(EPT)
        IF(WW.LT.RESTM)GOTO 4

        CALL QGSPSTRANS(EP,EY)
        CALL QGSPSTRANS(EPT,EY)

        IF(S0X.NE.0.D0.OR.S0.NE.0.D0)THEN
          CALL QGSPSROTAT(EP,S0X,C0X,S0,C0)
        ENDIF

        IF(EY0(1)*EY0(2)*EY0(3).NE.1.D0)THEN
          CALL QGSPSTRANS(EP,EY0)
        ENDIF
        CALL XXREG(EP,IC0)
      ELSE


        AMI2=RESTM**2
        BET=BEP
        IF(IAB.LE.2.AND.IAJ.LE.2)THEN
          AMI=AM0**2
          IC0=-IC(1)-IC(2)
          IF(IC0.NE.0)THEN
            IC(J)=IC0*INT(.5D0+PSRAN(B10))
            IC(3-J)=IC0-IC(J)
          ELSE
            IF(PSRAN(B10).LT..2D0)THEN
              IC(J)=0
              IC(3-J)=0
            ELSE
              IC(J)=3*IS-2*IC(J)
              IC(3-J)=-IC(J)
            ENDIF
          ENDIF

        ELSEIF(IAB.EQ.3.OR.IAJ.EQ.3)THEN
          IF(IAB.EQ.3)THEN
            AMI=AMN**2
            IF(IABS(IC(J)).EQ.3)THEN
              IF(IAJ.EQ.3)THEN
                IF(IABS(IC(3-J)).EQ.3)THEN
                  IC(J)=IS*INT(2.5D0+PSRAN(B10))
                  IC(3-J)=-IC(J)
                ELSE
                  IC(3-J)=IC(3-J)+4*IS
                  IC(J)=5*IS+IC(3-J)
                ENDIF
              ELSEIF(IAJ.LT.3)THEN
                IF(PSRAN(B10).LT..3333D0)THEN
                  IC(J)=IC(3-J)+IS
                  IC(3-J)=0
                ELSE
                  IC(J)=IS*(4-IAJ)
                  IC(3-J)=IS*(3-2*IAJ)
                ENDIF
              ELSEIF(IAJ.EQ.4)THEN
                IC(J)=IS*INT(2.5D0+PSRAN(B10))
                IC(3-J)=-IC(J)-2*IS
              ELSEIF(IAJ.EQ.5)THEN
                IC(J)=IS*INT(2.5D0+PSRAN(B10))
                IC(3-J)=-IC(J)+10*IS
              ENDIF
            ELSE
              IC(J)=IC(J)-4*IS
              IC0=IC(J)-4*IS
              IF(IAJ.EQ.3)THEN
                IC(3-J)=IC0-IS
              ELSEIF(IAJ.LT.3)THEN
                IC(3-J)=-IC(3-J)-IC0
              ELSEIF(IAJ.EQ.4)THEN
                IC(3-J)=IC0-3*IS
              ELSEIF(IAJ.EQ.5)THEN
                IC(3-J)=IC0+9*IS
              ENDIF
            ENDIF
          ELSE
            IF(IABS(IC(3-J)).EQ.3)THEN
              IF(IAB.LT.3)THEN
                AMI=AM0**2
                IF(PSRAN(B10).LT..3333D0)THEN
                  IC(3-J)=IC(J)+IS
                  IC(J)=0
                ELSE
                  IC(3-J)=IS*(4-IAB)
                  IC(J)=IS*(3-2*IAB)
                ENDIF
              ELSEIF(IAB.EQ.4)THEN
                AMI=AMK**2
                IC(3-J)=IS*INT(2.5D0+PSRAN(B10))
                IC(J)=-IC(3-J)-2*IS
              ELSEIF(IAB.EQ.5)THEN
                AMI=AMC**2
                IC(3-J)=IS*INT(2.5D0+PSRAN(B10))
                IC(J)=-IC(3-J)+10*IS
              ENDIF
            ELSE
              IC(3-J)=IC(3-J)-4*IS
              IC0=IC(3-J)-4*IS
              IF(IAB.LT.3)THEN
                AMI=AM0**2
                IC(J)=-IC0-IC(J)
              ELSEIF(IAB.EQ.4)THEN
                AMI=AMK**2
                IC(J)=IC0-3*IS
              ELSEIF(IAB.EQ.5)THEN
                AMI=AMC**2
                IC(J)=IC0+9*IS
              ENDIF
            ENDIF
          ENDIF

        ELSEIF(IAB.EQ.4.OR.IAJ.EQ.4)THEN

          IF(IAB.EQ.4)THEN
            AMI=AMK**2

            IF(IAJ.EQ.4)THEN
              IC(J)=-IS*INT(4.5D0+PSRAN(B10))
              IC(3-J)=-IC(J)
            ELSEIF(IAJ.EQ.5)THEN
              IC(J)=-IS*INT(4.5D0+PSRAN(B10))
              IC(3-J)=-IC(J)-12*IS
            ELSE
              IC0=IC(3-J)+INT(.6667D0+PSRAN(B10))*(-3*IS-2*IC(3-J))
              IC(J)=IC0-3*IS
              IC(3-J)=IC0-IC(3-J)
            ENDIF
          ELSE
            IF(IAB.LE.2)THEN
              AMI=AM0**2
              IC0=IC(J)+INT(.6667D0+PSRAN(B10))*(3*IS-2*IC(J))
              IC(J)=IC0-IC(J)
              IC(3-J)=IC0+3*IS
            ELSEIF(IAB.EQ.5)THEN
              AMI=AMC**2
              IC(3-J)=IS*INT(4.5D0+PSRAN(B10))
              IC(J)=-IC(3-J)+12*IS
            ENDIF
          ENDIF

        ELSEIF(IAB.EQ.5.OR.IAJ.EQ.5)THEN

          IF(IAB.EQ.5)THEN
            AMI=AMC**2

            IF(IAJ.EQ.5)THEN
              IC(J)=IS*INT(7.5D0+PSRAN(B10))
              IC(3-J)=-IC(J)
            ELSE
              IC0=IC(3-J)+INT(.6667D0+PSRAN(B10))*(-3*IS-2*IC(3-J))
              IC(J)=IC0+9*IS
              IC(3-J)=IC0-IC(3-J)
            ENDIF
          ELSE
            AMI=AM0**2
            IC0=IC(J)+INT(.6667D0+PSRAN(B10))*(3*IS-2*IC(J))
            IC(J)=IC0-IC(J)
            IC(3-J)=IC0-9*IS
          ENDIF
        ENDIF

        PTMAX=QGSPSLAM(WW,AMI2,AMI)
        IF(PTMAX.LT.0.)PTMAX=0.
        IF(PTMAX.LT.BET**2)THEN
6         PTI=PTMAX*PSRAN(B10)
          IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BET))GOTO 6
        ELSE
7         PTI=(BET*DLOG(PSRAN(B10)*PSRAN(B10)))**2
          IF(PTI.GT.PTMAX)GOTO 7
        ENDIF

        AMT1=AMI+PTI
        AMT2=AMI2+PTI

        Z=XXTWDEC(WW,AMT1,AMT2)
        WP(J)=Z*SWW
        WP(3-J)=AMT1/WP(J)
        EP(1)=.5D0*(WP(1)+WP(2))
        EP(2)=.5D0*(WP(1)-WP(2))
        PTI=DSQRT(PTI)
        CALL QGSPSCS(C,S)
        EP(3)=PTI*C
        EP(4)=PTI*S

        EPT(1)=SWW-EP(1)
        DO 8 I=2,4
8       EPT(I)=-EP(I)

        CALL QGSPSTRANS(EP,EY)
        CALL QGSPSTRANS(EPT,EY)

        IF(S0X.NE.0.D0.OR.S0.NE.0.D0)THEN
          CALL QGSPSROTAT(EP,S0X,C0X,S0,C0)
          CALL QGSPSROTAT(EPT,S0X,C0X,S0,C0)
        ENDIF
        IF(EY0(1)*EY0(2)*EY0(3).NE.1.D0)THEN
          CALL QGSPSTRANS(EP,EY0)
          CALL QGSPSTRANS(EPT,EY0)
        ENDIF

        CALL XXREG(EP,IC(J))
        CALL XXREG(EPT,IC(3-J))
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXGENER - END')
        RETURN
      ENDIF
      GOTO 1
      END
C=======================================================================

        SUBROUTINE XXJETSIM
c Procedure for jet hadronization - each gluon is
c considered to be splitted into quark-antiquark pair and usual soft
c strings are assumed to be formed between quark and antiquark
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP(4),EP1(4),ey(3)
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        COMMON /Q_AREA46/ EPJET(4,2,15000),IPJET(2,15000)
        COMMON /Q_AREA47/ NJTOT
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)NJTOT
201     FORMAT(2X,'XXJETSIM: TOTAL NUMBER OF JETS NJTOT=',I4)
        IF(NJTOT.EQ.0)RETURN
        DO 2 NJ=1,NJTOT
        DO 1 I=1,4
        EP1(I)=EPJET(I,1,NJ)
1       EP(I)=EP1(I)+EPJET(I,2,NJ)
        PT3=DSQRT(EP1(3)**2+EP1(4)**2)
        PT4=DSQRT(EPJET(3,2,NJ)**2+EPJET(4,2,NJ)**2)

c Invariant mass square for the jet
        WW=QGSPSNORM(EP)
        SWW=DSQRT(WW)

        CALL QGSPSDEFTR(WW,EP,EY)
        CALL QGSPSTRANS1(EP1,EY)
        CALL QGSPSDEFROT(EP1,S0X,C0X,S0,C0)

2       CALL XXGENER(SWW,SWW,EY,S0X,C0X,S0,C0,IPJET(1,NJ),IPJET(2,NJ))
        IF(DEBUG.GE.3)WRITE (MONIOU,202)
202     FORMAT(2X,'XXJETSIM - END')
        RETURN
        END
C=======================================================================

        SUBROUTINE XXREG(EP0,IC)
c Registration of the produced hadron;
c EP - 4-momentum,
c IC - hadron type
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EP(4),EP0(4)
        COMMON /Q_AREA4/  EY0(3)
        COMMON /Q_AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA12/ NSH
        COMMON /Q_AREA14/ ESP(4,95000),ICH(95000)
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)IC,EP0
201     FORMAT(2X,'XXREG: IC=',I2,2X,'C.M. 4-MOMENTUM:',2X,4(E10.3,1X))
         pt=dsqrt(ep0(3)**2+ep0(4)**2)
c         if(pt.gt.11.d0)write (MONIOU,*)'pt,ic,ep',pt,ic,ep0
c         if(pt.gt.11.d0)write (*,*)'pt,ic,ep',pt,ic,ep0

        NSH=NSH+1
        IF (NSH .GT. 95000) THEN
          WRITE(MONIOU,*)'XXREG: TOO MANY SECONDARY PARTICLES'
          WRITE(MONIOU,*)'XXREG: NSH = ',NSH
          STOP
        ENDIF
        DO 4 I=1,4
4       EP(I)=EP0(I)
ctp        CALL QGSPSTRANS(EP,EY0)
        IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
202     FORMAT(2X,'XXREG: LAB. 4-MOMENTUM:',2X,4(E10.3,1X))

        ICH(NSH)=IC
        DO 3 I=1,4
3       ESP(I,NSH)=EP(I)

        IF(DEBUG.GE.3)WRITE (MONIOU,203)
203     FORMAT(2X,'XXREG - END')
        RETURN
        END
C=======================================================================

        FUNCTION XXROT(S,B)
c Convolution of nuclear profile functions (axial angle integration)
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AR18/  X2(4),A2
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)B
201     FORMAT(2X,'XXROT - AXIAL ANGLE INTEGRATION OF THE ',
     *  'NUCLEAR PROFILE FUNCTION'/4X,
     *  'IMPACT PARAMETER B=',E10.3,2X,'NUCLEON COORDINATE S=',E10.3)

        XXROT=0.
        DO 1 I=1,4
        SB1=B**2+S**2-2.*B*S*(2.*X2(I)-1.)
        SB2=B**2+S**2-2.*B*S*(1.-2.*X2(I))
1       XXROT=XXROT+(XXT(SB1)+XXT(SB2))
        XXROT=XXROT*A2
        IF(DEBUG.GE.3)WRITE (MONIOU,202)XXROT
202     FORMAT(2X,'XXROT=',E10.3)
        RETURN
        END
C=======================================================================

        SUBROUTINE XXSTR(WPI0,WMI0,WP0,WM0,IC10,IC120,IC210,IC20)
**************************************************
c Fragmentation process for the pomeron ( quarks and antiquarks types at the
c ends of the two strings are determined, energy-momentum is shared
c between them and strings fragmentation is simulated )
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        DIMENSION EY(3)
        COMMON /Q_AREA6/  PI,BM,AMMM
        COMMON /Q_AREA10/ STMASS,AM(7)
        COMMON /Q_AREA11/ B10
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE
        EXTERNAL PSRAN

        IF(DEBUG.GE.2)WRITE (MONIOU,201)WPI0,WMI0,WP0,WM0
201     FORMAT(2X,'XXSTR: WPI0=',E10.3,2X,'WMI0=',E10.3,2X,
     *  'WP0=',E10.3,2X,'WM0=',E10.3)
         DO 1 I=1,3
1        EY(I)=1.D0

         WPI=WPI0
         WMI=WMI0
c Quark-antiquark types (1 - u, 2 - d, -1 - u~, -2 - d~); s- and d- quarks are
c taken into consideration at the fragmentation step
**************************************************
        IF(IC10.EQ.0)THEN
          IC1=INT(1.5+PSRAN(B10))
          IC12=-IC1
        ELSEIF(IC10.GT.0)THEN
          IC1=IC10
          IC12=IC120
        ELSE
          IC1=IC120
          IC12=IC10
        ENDIF
        IF(IC20.EQ.0)THEN
          IC2=INT(1.5+PSRAN(B10))
          IC21=-IC2
        ELSEIF(IC20.gt.0)THEN
          IC2=IC20
          IC21=IC210
        ELSE
          IC2=IC210
          IC21=IC20
        ENDIF
**************************************************

c Longitudinal momenta for the strings
        WP1=WPI*COS(PI*PSRAN(B10))**2
        WM1=WMI*COS(PI*PSRAN(B10))**2
        WPI=WPI-WP1
        WMI=WMI-WM1
c String masses
        SM1=WP1*WM1
        SM2=WPI*WMI
c Too short strings are neglected (energy is given to partner string or to the hadron
c (nucleon) to which the pomeron is connected)
        IF(SM1.GT.STMASS.AND.SM2.GT.STMASS)THEN
c Strings fragmentation is simulated - GENER
          CALL XXGENER(WP1,WM1,EY,0.D0,1.D0,0.D0,1.D0,IC1,IC21)
          CALL XXGENER(WPI,WMI,EY,0.D0,1.D0,0.D0,1.D0,IC12,IC2)
        ELSEIF(SM1.GT.STMASS)THEN
          CALL XXGENER(WP1+WPI,WM1+WMI,EY,0.D0,1.D0,0.D0,1.D0,IC1,IC21)
        ELSEIF(SM2.GT.STMASS)THEN
          CALL XXGENER(WPI+WP1,WMI+WM1,EY,0.D0,1.D0,0.D0,1.D0,IC12,IC2)
        ELSE
          WP0=WP0+WP1+WPI
          WM0=WM0+WM1+WMI
        ENDIF
        IF(DEBUG.GE.3)WRITE (MONIOU,202)WP0,WM0
202     FORMAT(2X,'XXSTR - RETURNED LIGHT CONE MOMENTA:',
     *  2X,'WP0=',E10.3,2X,'WM0=',E10.3)
        RETURN
        END
C=======================================================================

      FUNCTION XXT(B)
c Nuclear profile function value at impact parameter squared B
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INTEGER DEBUG
      COMMON /Q_AREA6/ PI,BM,AM
      COMMON /Q_AR2/   R,RM
      COMMON /Q_AR15/   X5(2),A5(2)
      COMMON /Q_AR19/   X9(3),A9(3)
      COMMON /Q_AREA43/ MONIOU
      COMMON /Q_DEBUG/  DEBUG
      SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)B
201     FORMAT(2X,'XXT - NUCLEAR PROFILE FUNCTION VALUE AT IMPACT',
     *  ' PARAMETER SQUARED B=',E10.3)
      XXT=0.
      ZM=RM**2-B
      IF(ZM.GT.4.*B)THEN
        ZM=DSQRT(ZM)
      ELSE
        ZM=2.*DSQRT(B)
      ENDIF

      DO 1 I=1,3
      Z1=ZM*(1.+X9(I))*0.5
      Z2=ZM*(1.-X9(I))*0.5
      QUQ=DSQRT(B+Z1**2)-R
      IF (QUQ.LT.85.)XXT=XXT+A9(I)/(1.+EXP(QUQ))
      QUQ=DSQRT(B+Z2**2)-R
      IF (QUQ.LT.85.)XXT=XXT+A9(I)/(1.+EXP(QUQ))
1     CONTINUE
      XXT=XXT*ZM*0.5
      DT=0.
      DO 2 I=1,2
      Z1=X5(I)+ZM
      QUQ=DSQRT(B+Z1**2)-R-X5(I)
      IF (QUQ.LT.85.)DT=DT+A5(I)/(EXP(-X5(I))+EXP(QUQ))
2     CONTINUE
      XXT=XXT+DT
      IF(DEBUG.GE.3)WRITE (MONIOU,202)XXT
202   FORMAT(2X,'XXT=',E10.3)
      RETURN
      END
C=======================================================================

        FUNCTION XXTWDEC(S,A,B)
c Kinematical function for two particle decay -
C light cone momentum share for
c the particle of mass squared A,
C B - partner's mass squared,
C S - two particle invariant mass
c-----------------------------------------------------------------------
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        INTEGER DEBUG
        COMMON /Q_AREA43/ MONIOU
        COMMON /Q_DEBUG/  DEBUG
        SAVE

        IF(DEBUG.GE.2)WRITE (MONIOU,201)S,A,B
201     FORMAT(2X,'XXTWDEC: S=',E10.3,2X,'A=',E10.3,2X,'B=',E10.3)

        X=.5D0*(1.D0+(A-B)/S)
        DX=(X*X-A/S)
        IF(DX.GT.0.D0)THEN
          X=X+DSQRT(DX)
        ELSE
          X=DSQRT(A/S)
        ENDIF
        XXTWDEC=X
        IF(DEBUG.GE.3)WRITE (MONIOU,202)XXTWDEC
202     FORMAT(2X,'XXTWDEC=',E10.3)
        RETURN
        END
C=======================================================================

      DOUBLE PRECISION FUNCTION GAMFUN(Y)
C Gamma function : See Abramowitz, page 257, form. 6.4.40
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DOUBLE PRECISION
     +     Y,R,S,T,AFSPL,X,
     +     COEF(10),PI,ZEROD,HALFD,ONED,TWOD,TEND
      SAVE
C
      DATA COEF/8.3333333333333334D-02,-2.7777777777777778D-03,
     .          7.9365079365079365D-04,-5.9523809523809524D-04,
     .          8.4175084175084175D-04,-1.9175269175269175D-03,
     .          6.4102564102564103D-03,-2.9550653594771242D-02,
     .          0.1796443723688306    ,-0.6962161084529506    /
      DATA PI/  3.141592653589793D0/
      DATA ZEROD/0.D0/,HALFD/0.5D0/,ONED/1.D0/,TWOD/2.D0/,TEND/10.D0/
C
      X=Y
      AFSPL=ONED
      N=INT(TEND-Y)
      DO 10 I=0,N
        AFSPL=AFSPL*X
        X=X+ONED
10    CONTINUE
      R=(X-HALFD)* LOG(X)-X+HALFD* LOG(TWOD*PI)
      S=X
      T=ZEROD
      DO 20 I=1,10
        T=T+COEF(I)/S
        S=S*X**2
20    CONTINUE
      GAMFUN = EXP(R+T)/AFSPL
      END
C=======================================================================

       BLOCK DATA PSDATA
c Constants for numerical integration (Gaussian weights)
c-----------------------------------------------------------------------
       IMPLICIT DOUBLE PRECISION (A-H,O-Z)
       COMMON /Q_AR13/ X1(7),A1(7)
       COMMON /Q_AR15/ X5(2),A5(2)
       COMMON /Q_AR18/ X2(4),A2
       COMMON /Q_AR19/ X9(3),A9(3)

       DATA X1/.9862838D0,.9284349D0,.8272013D0,.6872929D0,.5152486D0,
     * .3191124D0,.1080549D0/
       DATA A1/.03511946D0,.08015809D0,.1215186D0,.1572032D0,
     * .1855384D0,.2051985D0,.2152639D0/
       DATA X2/.00960736D0,.0842652D0,.222215D0,.402455D0/
       DATA A2/.392699D0/
       DATA X5/.585786D0,3.41421D0/
       DATA A5/.853553D0,.146447D0/
       DATA X9/.93247D0,.661209D0,.238619D0/
       DATA A9/.171324D0,.360762D0,.467914D0/
       END

c following subroutine/function added 8/10/98 dh
C=======================================================================

      SUBROUTINE CROSSC(NITER,GTOT,GPROD,GABS,GDD,GQEL,GCOH)
c Nucleus-nucleus (nucleus-hydrogen) interaction cross sections
c GTOT  - total cross section
c GPROD - production cross section (projectile diffraction included)
c GABS  - cut Pomerons cross section
c GDD   - projectile diffraction cross section
c GQEL  - quasielastic (projectile nucleon knock-out) cross section
c GCOH  - coherent (elastic with respect to the projectile) cross section
c (target diffraction is not treated explicitely and contributes to
c GDD, GQEL, GCOH).
c-------------------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
cdh   DIMENSION WABS(8),WDD(8),WQEL(8),WCOH(8),WTOT(8),
cdh  *WPROD(8),B0(8),XA(64,3),XB(64,3),AI(8)
      DIMENSION WABS(20),WDD(20),WQEL(20),WCOH(20),WTOT(20),
     *WPROD(20),B0(20),AI(20),XA(210,3),XB(210,3)
      COMMON /Q_AREA1/  IA(2),ICZ,ICP
      COMMON /Q_AREA6/  PI,BM,AM
      COMMON /Q_AREA16/ CC(5)
      COMMON /Q_AR13/    X1(7),A1(7)
      COMMON /Q_AR15/    X5(2),A5(2)
      COMMON /Q_AR19/    X9(3),A9(3)
      SAVE
      EXTERNAL PSRAN

      E1=EXP(-1.D0)

cdh   DO I=1,3
cdh     B0(7-I)=BM*SQRT((1.+X9(I))/2.)
cdh     B0(I)=BM*SQRT((1.-X9(I))/2.)
cdh     AI(I)=A9(I)*(BM*AM)**2*5.*PI
cdh     AI(7-I)=AI(I)
      DO I=1,7
        B0(15-I)=BM*SQRT((1.+X1(I))/2.)
        B0(I)=BM*SQRT((1.-X1(I))/2.)
        AI(I)=A1(I)*(BM*AM)**2*5.*PI
        AI(15-I)=AI(I)
      ENDDO

cdh   DO I=1,2
cdh     B0(6+I)=BM+X5(I)
cdh     AI(6+I)=A5(I)*B0(I)*EXP(X5(I))*20.*AM**2*PI
      DO I=1,3
        TP=(1.+X9(I))/2.
        TM=(1.-X9(I))/2.
        B0(14+I)=BM-LOG(TP)
        B0(21-I)=BM-LOG(TM)
        AI(14+I)=A9(I)*B0(14+I)/TP*10.*AM**2*PI
        AI(21-I)=A9(I)*B0(21-I)/TM*10.*AM**2*PI
      ENDDO

cdh   DO I=1,8
      DO I=1,20
        WABS(I)=0.
        WDD(I)=0.
        WQEL(I)=0.
        WCOH(I)=0.
      ENDDO

      DO 1 NC=1,NITER
        NT=0
        DO I=1,IA(2)
          NT=NT+INT(PSRAN(B10)+CC(2))
        ENDDO
        IF(NT.EQ.0)GOTO 1
        IF(IA(1).EQ.1)THEN
          XA(1,1)=0.D0
          XA(1,2)=0.D0
          XA(1,3)=0.D0
        ELSE
          CALL PSGEA(IA(1),XA,1)
        ENDIF
        IF(IA(2).EQ.1)THEN
          XB(1,1)=0.D0
          XB(1,2)=0.D0
          XB(1,3)=0.D0
        ELSE
          CALL PSGEA(IA(2),XB,2)
        ENDIF

cdh     DO I=1,8
        DO I=1,20
          CALL GAUCR(B0(I),GABS,GDD,GQEL,GCOH,XA,XB,IA(1),NT)
          WABS(I)=WABS(I)+GABS
          WDD(I)=WDD(I)+GDD
          WQEL(I)=WQEL(I)+GQEL
          WCOH(I)=WCOH(I)+GCOH
        ENDDO
1     CONTINUE

      GABS=0.
      GDD=0.
      GQEL=0.
      GCOH=0.
cdh   DO I=1,8
      DO I=1,20
        WABS(I)=WABS(I)/NITER
        WDD(I)=WDD(I)/NITER
        WQEL(I)=WQEL(I)/NITER
        WCOH(I)=WCOH(I)/NITER
        WPROD(I)=WABS(I)+WDD(I)
        WTOT(I)=WPROD(I)+WQEL(I)+WCOH(I)
        GABS=GABS+AI(I)*WABS(I)
        GDD=GDD+AI(I)*WDD(I)
        GQEL=GQEL+AI(I)*WQEL(I)
        GCOH=GCOH+AI(I)*WCOH(I)
      ENDDO
      GPROD=GABS+GDD
      GTOT=GPROD+GQEL+GCOH
      RETURN
      END

c following subroutine/function added 8/10/98 dh
C=======================================================================

      SUBROUTINE GAUCR(B,GABS,GDD,GQEL,GCOH,XA,XB,IA,NT)
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION XA(210,3),XB(210,3)
      COMMON /Q_AREA15/ FP(5),RQ(5),CD(5)
      COMMON /Q_AREA16/ CC(5)
      SAVE

      GABS=1.
      GDD=1.
      GQEL=1.
      GCOH=1.
      DO N=1,IA
        VV=1.D0-DSQRT(PSV(XA(N,1)+B,XA(N,2),XB,NT))
        GABS=GABS*(1.-CC(2)*(1.-VV*VV))
        GDD=GDD*(1.-CC(2)*(1.-VV))**2
        GQEL=GQEL*(1.-2.D0*CC(2)*(1.-VV))
        GCOH=GCOH*(1.-CC(2)*(1.-VV))
      ENDDO
      GCOH=1.-2.*GCOH+GQEL
      GQEL=GDD-GQEL
      GDD=GABS-GDD
      GABS=1.-GABS
      RETURN
      END

c following subroutine/function added 8/10/98 dh
C=======================================================================

      DOUBLE PRECISION FUNCTION SECTNU(E0N,IAP,IAT)
c Nucleus-nucleus (nucleus-hydrogen) particle production cross section
c E0N - lab. energy per projectile nucleon,
c IAP - projectile mass number (2<IAP<210)
c IAT - target mass number     (1<IAT<210)
c-----------------------------------------------------------------------
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION WK(3),WA(3),WB(3)
      COMMON /Q_AREA48/ QGSASECT(10,6,4)
      SAVE

      SECTNU=0.D0
      YE=DLOG10(E0N)
      IF(YE.LT.1.D0)YE=1.D0
      JE=INT(YE)
      IF(JE.GT.8)JE=8

      WK(2)=YE-JE
      WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
      WK(1)=1.D0-WK(2)+WK(3)
      WK(2)=WK(2)-2.D0*WK(3)

      YA=IAP
      YA=DLOG(YA/2.D0)/.69315D0+1.D0
      JA=MIN(INT(YA),4)
      WA(2)=YA-JA
      WA(3)=WA(2)*(WA(2)-1.D0)*.5D0
      WA(1)=1.D0-WA(2)+WA(3)
      WA(2)=WA(2)-2.D0*WA(3)

      YB=IAT
      YB=DLOG(YB)/1.38629D0+1.D0
      JB=MIN(INT(YB),2)
      WB(2)=YB-JB
      WB(3)=WB(2)*(WB(2)-1.D0)*.5D0
      WB(1)=1.D0-WB(2)+WB(3)
      WB(2)=WB(2)-2.D0*WB(3)

      DO I=1,3
      DO M=1,3
      DO L=1,3
        SECTNU=SECTNU+QGSASECT(JE+I-1,JA+M-1,JB+L-1)*WK(I)*WA(M)*WB(L)
      ENDDO
      ENDDO
      ENDDO
      SECTNU=EXP(SECTNU)
      RETURN
      END