1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
// Modified version of CSCGeometryAsChambers.cc which just adds value of magnetic field
// at centre of each CSC (Nikolai Terentiev needed the values for CSC gain studies.)
// Tim Cox 11.03.2011 - drop ME1/A
#include "FWCore/Framework/interface/one/EDAnalyzer.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/Framework/interface/ESHandle.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "Geometry/Records/interface/MuonGeometryRecord.h"
#include "MagneticField/Records/interface/IdealMagneticFieldRecord.h"
#include "Geometry/CSCGeometry/interface/CSCGeometry.h"
#include "Geometry/CSCGeometry/interface/CSCLayer.h"
#include "DataFormats/GeometryVector/interface/GlobalPoint.h"
#include "MagneticField/Engine/interface/MagneticField.h"
#include <string>
#include <iomanip> // for setw() etc.
#include <vector>
class CSCGACwithB : public edm::one::EDAnalyzer<> {
public:
explicit CSCGACwithB(const edm::ParameterSet&);
~CSCGACwithB() override = default;
void beginJob() override {}
void analyze(edm::Event const&, edm::EventSetup const&) override;
void endJob() override {}
const std::string& myName() { return myName_; }
private:
const int dashedLineWidth_;
const std::string dashedLine_;
const std::string myName_;
const edm::ESGetToken<CSCGeometry, MuonGeometryRecord> tokGeom_;
const edm::ESGetToken<MagneticField, IdealMagneticFieldRecord> tokField_;
};
CSCGACwithB::CSCGACwithB(const edm::ParameterSet& iConfig)
: dashedLineWidth_(175),
dashedLine_(std::string(dashedLineWidth_, '-')),
myName_("CSCGACwithB"),
tokGeom_(esConsumes()),
tokField_(esConsumes()) {}
void CSCGACwithB::analyze(const edm::Event& iEvent, const edm::EventSetup& iSetup) {
std::cout << myName() << ": Analyzer..." << std::endl;
std::cout << "start " << dashedLine_ << std::endl;
// Access CSC geometry
const edm::ESHandle<CSCGeometry>& pDD = iSetup.getHandle(tokGeom_);
std::cout << " Geometry node for CSCGeom is " << &(*pDD) << std::endl;
std::cout << " " << pDD->dets().size() << " detectors" << std::endl;
std::cout << " I have " << pDD->detTypes().size() << " types"
<< "\n"
<< std::endl;
std::cout << " I have " << pDD->detUnits().size() << " detUnits" << std::endl;
std::cout << " I have " << pDD->dets().size() << " dets" << std::endl;
std::cout << " I have " << pDD->layers().size() << " layers" << std::endl;
std::cout << " I have " << pDD->chambers().size() << " chambers" << std::endl;
// Access magnetic field
const edm::ESHandle<MagneticField>& magneticField = iSetup.getHandle(tokField_);
std::cout << myName() << ": Begin iteration over geometry..." << std::endl;
int icount = 0; // non-ME1/A chambers
int jcount = 0; // all chambers
const CSCGeometry::ChamberContainer& vc = pDD->chambers();
std::cout << "No. of chambers stored = " << vc.size() << std::endl;
std::cout << "\n # id(dec) id(oct) labels length width thickness "
" g(x=0) g(y=0) g(z=0) g(z=-1) g(z=+1) bx(centre) by(centre) bz(centre)"
" phi(0)"
<< std::endl;
std::cout << dashedLine_ << std::endl;
for (auto chamber : vc) {
if (chamber) {
++jcount;
CSCDetId detId = chamber->id();
int id = detId(); // or detId.rawId()
// *** Nikolai doesn't want ME1/A polluting the values ***
if (detId.ring() == 4)
continue;
++icount;
// There's going to be a lot of messing with field width (and precision) so
// save input values...
int iw = std::cout.width(); // save current width
int ip = std::cout.precision(); // save current precision
std::cout << std::setw(4) << icount << std::setw(12) << id << std::oct << std::setw(12) << id << std::dec
<< std::setw(iw) << " E" << detId.endcap() << " S" << detId.station() << " R" << detId.ring() << " C"
<< std::setw(2) << detId.chamber() << std::setw(iw);
// What's its surface?
// The surface knows how to transform local <-> global
const Surface& bSurface = chamber->surface();
// std::cout << " length=" << bSurface.bounds().length() <<
// ", width=" << bSurface.bounds().width() <<
// ", thickness=" << bSurface.bounds().thickness() << std::endl;
std::cout << std::setw(12) << std::setprecision(8) << bSurface.bounds().length() << std::setw(12)
<< std::setprecision(8) << bSurface.bounds().width() << std::setw(12) << std::setprecision(6)
<< bSurface.bounds().thickness();
// Check global coordinates of centre of CSCChamber, and how
// local z direction relates to global z direction
LocalPoint lCentre(0., 0., 0.);
GlobalPoint gCentre = bSurface.toGlobal(lCentre);
LocalPoint lCentre1(0., 0., -1.);
GlobalPoint gCentre1 = bSurface.toGlobal(lCentre1);
LocalPoint lCentre2(0., 0., 1.);
GlobalPoint gCentre2 = bSurface.toGlobal(lCentre2);
double gx = gCentre.x();
double gy = gCentre.y();
double gz = gCentre.z();
double gz1 = gCentre1.z();
double gz2 = gCentre2.z();
if (fabs(gx) < 1.e-06)
gx = 0.;
if (fabs(gy) < 1.e-06)
gy = 0.;
if (fabs(gz) < 1.e-06)
gz = 0.;
if (fabs(gz1) < 1.e-06)
gz1 = 0.;
if (fabs(gz2) < 1.e-06)
gz2 = 0.;
int now = 9;
int nop = 5;
std::cout << std::setw(now) << std::setprecision(nop) << gx << std::setw(now) << std::setprecision(nop) << gy
<< std::setw(now) << std::setprecision(nop) << gz << std::setw(now) << std::setprecision(nop) << gz1
<< std::setw(now) << std::setprecision(nop) << gz2;
// Magnetic field at centre of CSC (global position = gCentre)
float bx = magneticField->inTesla(gCentre).x();
float by = magneticField->inTesla(gCentre).y();
float bz = magneticField->inTesla(gCentre).z();
now = 12;
std::cout << std::setw(now) << std::setprecision(nop) << bx << std::setw(now) << std::setprecision(nop) << by
<< std::setw(now) << std::setprecision(nop) << bz;
// Global Phi of centre of CSC
//@@ CARE The following attempted conversion to degrees can be easily
// subverted by GeometryVector/Phi.h enforcing its range convention!
// Either a) use a separate local double before scaling...
// double cphi = gCentre.phi();
// double cphiDeg = cphi * radToDeg;
// or b) use Phi's degree conversion...
double cphiDeg = gCentre.phi().degrees();
// I want to display in range 0 to 360
// Handle some occasional ugly precision problems around zero
if (fabs(cphiDeg) < 1.e-06) {
cphiDeg = 0.;
} else if (cphiDeg < 0.) {
cphiDeg += 360.;
} else if (cphiDeg >= 360.) {
std::cout << "WARNING: resetting phi= " << cphiDeg << " to zero." << std::endl;
cphiDeg = 0.;
}
// int iphiDeg = static_cast<int>( cphiDeg );
// std::cout << "phi(0,0,0) = " << iphiDeg << " degrees" << std::endl;
now = 9;
nop = 4;
std::cout << std::setw(now) << std::setprecision(nop) << cphiDeg << std::endl;
// Reset the values we changed
std::cout << std::setprecision(ip) << std::setw(iw);
} else {
std::cout << "*** DANGER WILL ROBINSON! *** Stored a null CSCChamber*? " << std::endl;
}
}
std::cout << dashedLine_ << " end" << std::endl;
std::cout << "processed " << jcount << " chambers, and dumped values for " << icount << " chambers." << std::endl;
}
//define this as a plug-in
DEFINE_FWK_MODULE(CSCGACwithB);
|