1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
#include "CSCGeometryBuilder.h"
#include <Geometry/CSCGeometry/interface/CSCGeometry.h>
#include <DataFormats/DetId/interface/DetId.h>
#include <DataFormats/MuonDetId/interface/CSCDetId.h>
#include <Geometry/CSCGeometry/interface/CSCWireGroupPackage.h>
#include <FWCore/MessageLogger/interface/MessageLogger.h>
#include <vector>
CSCGeometryBuilder::CSCGeometryBuilder() : myName("CSCGeometryBuilder") {}
CSCGeometryBuilder::~CSCGeometryBuilder() {}
void CSCGeometryBuilder::build(CSCGeometry& theGeometry,
const RecoIdealGeometry& rig,
const CSCRecoDigiParameters& cscpars) {
std::vector<float> fpar;
std::vector<float> gtran;
std::vector<float> grmat;
std::vector<float> fupar;
std::vector<double>::const_iterator it, endIt;
const std::vector<DetId>& detids(rig.detIds());
for (size_t idt = 0; idt < detids.size(); ++idt) {
CSCDetId detid = CSCDetId(detids[idt]);
int jstation = detid.station();
int jring = detid.ring();
endIt = rig.shapeEnd(idt);
fpar.clear();
for (it = rig.shapeStart(idt); it != endIt; ++it) {
fpar.emplace_back((float)(*it));
}
gtran.clear();
endIt = rig.tranEnd(idt);
for (it = rig.tranStart(idt); it != endIt; ++it) {
gtran.emplace_back((float)(*it));
}
grmat.clear();
endIt = rig.rotEnd(idt);
for (it = rig.rotStart(idt); it != endIt; ++it) {
grmat.emplace_back((float)(*it));
}
// get the chamber type from existing info
int chamberType = CSCChamberSpecs::whatChamberType(jstation, jring);
size_t cs = 0;
assert(!cscpars.pChamberType.empty());
while (cs < cscpars.pChamberType.size() && chamberType != cscpars.pChamberType[cs]) {
++cs;
}
assert(cs != cscpars.pChamberType.size());
// check the existence of the specs for this type WHY? Remove it...
size_t fu, numfuPars;
CSCWireGroupPackage wg;
fu = cscpars.pUserParOffset[cs];
numfuPars = fu + 1 + size_t(cscpars.pfupars[fu]);
// upars from db are now uparvals + wg info so we need to unwrap only part here first...
LogTrace(myName) << myName << ": I think I have " << cscpars.pUserParSize[cs] << " values in pfupars (uparvals)."
<< std::endl;
LogTrace(myName) << myName << ": For fupar I will start at " << cscpars.pUserParOffset[cs] + 1
<< " in pfupars and go to " << numfuPars << "." << std::endl;
for (++fu; fu < numfuPars; ++fu) {
LogTrace(myName) << myName << ": pfupars[" << fu << "]=" << cscpars.pfupars[fu] << std::endl;
fupar.emplace_back(cscpars.pfupars[fu]);
}
// now, we need to start from "here" at fu to go on and build wg...
wg.wireSpacing = cscpars.pfupars[fu++];
wg.alignmentPinToFirstWire = cscpars.pfupars[fu++];
wg.numberOfGroups = int(cscpars.pfupars[fu++]);
wg.narrowWidthOfWirePlane = cscpars.pfupars[fu++];
wg.wideWidthOfWirePlane = cscpars.pfupars[fu++];
wg.lengthOfWirePlane = cscpars.pfupars[fu++];
size_t numgrp = static_cast<size_t>(cscpars.pfupars[fu]);
size_t maxFu = fu + 1 + numgrp;
fu++;
for (; fu < maxFu; ++fu) {
wg.wiresInEachGroup.emplace_back(int(cscpars.pfupars[fu]));
}
maxFu = fu + numgrp;
for (; fu < maxFu; ++fu) {
wg.consecutiveGroups.emplace_back(int(cscpars.pfupars[fu]));
}
if (wg.numberOfGroups != 0) {
LogTrace(myName) << myName << ": TotNumWireGroups = " << wg.numberOfGroups;
LogTrace(myName) << myName << ": WireSpacing = " << wg.wireSpacing;
LogTrace(myName) << myName << ": AlignmentPinToFirstWire = " << wg.alignmentPinToFirstWire;
LogTrace(myName) << myName << ": Narrow width of wire plane = " << wg.narrowWidthOfWirePlane;
LogTrace(myName) << myName << ": Wide width of wire plane = " << wg.wideWidthOfWirePlane;
LogTrace(myName) << myName << ": Length in y of wire plane = " << wg.lengthOfWirePlane;
LogTrace(myName) << myName << ": wg.consecutiveGroups.size() = " << wg.consecutiveGroups.size();
LogTrace(myName) << myName << ": wg.wiresInEachGroup.size() = " << wg.wiresInEachGroup.size();
LogTrace(myName) << myName << ": \tNumGroups\tWiresInGroup";
for (size_t i = 0; i < wg.consecutiveGroups.size(); i++) {
LogTrace(myName) << myName << " \t" << wg.consecutiveGroups[i] << "\t\t" << wg.wiresInEachGroup[i];
}
} else {
LogTrace(myName) << myName << ": DDD is MISSING SpecPars for wire groups";
}
LogTrace(myName) << myName << ": end of wire group info. ";
// Are we going to apply centre-to-intersection offsets, even if values exist in the specs file?
if (!theGeometry.centreTIOffsets())
fupar[30] = 0.; // reset to zero if flagged 'off'
buildChamber(theGeometry, detid, fpar, fupar, gtran, grmat, wg); //, cscpars.pWGPs[cs] );
fupar.clear();
}
}
void CSCGeometryBuilder::buildChamber(CSCGeometry& theGeometry, // the geometry container
CSCDetId chamberId, // the DetId for this chamber
const std::vector<float>& fpar, // volume parameters hB, hT. hD, hH
const std::vector<float>& fupar, // user parameters
const std::vector<float>& gtran, // translation vector
const std::vector<float>& grmat, // rotation matrix
const CSCWireGroupPackage& wg // wire group info
) {
LogTrace(myName) << myName << ": entering buildChamber";
int jend = chamberId.endcap();
int jstat = chamberId.station();
int jring = chamberId.ring();
int jch = chamberId.chamber();
int jlay = chamberId.layer();
if (jlay != 0)
edm::LogWarning(myName) << "Error! CSCGeometryBuilderFromDDD was fed layer id = " << jlay << "\n";
const size_t kNpar = 4;
if (fpar.size() != kNpar)
edm::LogError(myName) << "Error, expected npar=" << kNpar << ", found npar=" << fpar.size() << std::endl;
LogTrace(myName) << myName << ": E" << jend << " S" << jstat << " R" << jring << " C" << jch << " L" << jlay;
LogTrace(myName) << myName << ": npar=" << fpar.size() << " hB=" << fpar[0] << " hT=" << fpar[1] << " hD=" << fpar[2]
<< " hH=" << fpar[3];
LogTrace(myName) << myName << ": gtran[0,1,2]=" << gtran[0] << " " << gtran[1] << " " << gtran[2];
LogTrace(myName) << myName << ": grmat[0-8]=" << grmat[0] << " " << grmat[1] << " " << grmat[2] << " " << grmat[3]
<< " " << grmat[4] << " " << grmat[5] << " " << grmat[6] << " " << grmat[7] << " " << grmat[8];
LogTrace(myName) << myName << ": nupar=" << fupar.size() << " upar[0]=" << fupar[0] << " upar[" << fupar.size() - 1
<< "]=" << fupar[fupar.size() - 1];
const CSCChamber* chamber = theGeometry.chamber(chamberId);
if (chamber) {
} else { // this chamber not yet built/stored
LogTrace(myName) << myName << ": CSCChamberSpecs::build requested for ME" << jstat << jring;
int chamberType = CSCChamberSpecs::whatChamberType(jstat, jring);
const CSCChamberSpecs* aSpecs = theGeometry.findSpecs(chamberType);
if (!fupar.empty() && aSpecs == nullptr) {
// make new one:
aSpecs = theGeometry.buildSpecs(chamberType, fpar, fupar, wg);
} else if (fupar.empty() && aSpecs == nullptr) {
edm::LogError(myName)
<< "SHOULD BE THROW? Error, wg and/or fupar size are 0 BUT this Chamber Spec has not been built!";
}
// Build a Transformation out of GEANT gtran and grmat...
// These are used to transform a point in the local reference frame
// of a subdetector to the global frame of CMS by
// (grmat)^(-1)*local + (gtran)
// The corresponding transformation from global to local is
// (grmat)*(global - gtran)
Surface::RotationType aRot(
grmat[0], grmat[1], grmat[2], grmat[3], grmat[4], grmat[5], grmat[6], grmat[7], grmat[8]);
// This rotation from GEANT considers the detector face as the x-z plane.
// We want this to be the local x-y plane.
// Furthermore, the -z_global endcap has LH local coordinates, since it is built
// in GEANT as a *reflection* of the +z_global endcap.
// So we need to rotate, and in -z flip local x.
// aRot.rotateAxes will transform aRot in place so that it becomes
// applicable to the new local coordinates: detector face in x-y plane
// looking out along z, in either endcap.
// The interface for rotateAxes specifies 'new' X,Y,Z but the
// implementation deals with them as the 'old'.
Basic3DVector<float> oldX(1., 0., 0.);
Basic3DVector<float> oldY(0., 0., -1.);
Basic3DVector<float> oldZ(0., 1., 0.);
if (gtran[2] < 0.)
oldX *= -1;
aRot.rotateAxes(oldX, oldY, oldZ);
// Need to know z of layers w.r.t to z of centre of chamber.
float frameThickness = fupar[31] / 10.; // mm -> cm
float gapThickness = fupar[32] / 10.; // mm -> cm
float panelThickness = fupar[33] / 10.; // mm -> cm
float zAverageAGVtoAF = fupar[34] / 10.; // mm -> cm
float layerThickness = gapThickness; // consider the layer to be the gas gap
float layerSeparation = gapThickness + panelThickness; // centre-to-centre of neighbouring layers
float chamberThickness = 7. * panelThickness + 6. * gapThickness + 2. * frameThickness; // chamber frame thickness
float hChamberThickness = chamberThickness / 2.; // @@ should match value returned from DDD directly
// distAverageAGVtoAF is offset between centre of chamber (AF) and (L1+L6)/2 (average AGVs)
// where AF = AluminumFrame and AGV=ActiveGasVolume (volume names in DDD).
// It is signed based on global z values: zc - (zl1+zl6)/2
// Local z values w.r.t. AF...
// z of wires in layer 1 = z_w1 = +/- zAverageAGVtoAF + 2.5*layerSeparation; // layer 1 is at most +ve local z
// The sign in '+/-' depends on relative directions of local and global z.
// It is '-' if they are the same direction, and '+' if opposite directions.
// z of wires in layer N = z_wN = z_w1 - (N-1)*layerSeparation;
// z of strips in layer N = z_sN = z_wN + gapThickness/2.; @@ BEWARE: need to check if it should be '-gapThickness/2' !
// Set dimensions of trapezoidal chamber volume
// N.B. apothem is 4th in fpar but 3rd in ctor
// hChamberThickness and fpar[2] should be the same - but using the above value at least shows
// how chamber structure works
TrapezoidalPlaneBounds* bounds = new TrapezoidalPlaneBounds(fpar[0], fpar[1], fpar[3], hChamberThickness);
// Centre of chamber in z is specified in DDD
Surface::PositionType aVec(gtran[0], gtran[1], gtran[2]);
Plane::PlanePointer plane = Plane::build(aVec, aRot, bounds);
CSCChamber* chamber = new CSCChamber(plane, chamberId, aSpecs);
theGeometry.addChamber(chamber);
LogTrace(myName) << myName << ": Create chamber E" << jend << " S" << jstat << " R" << jring << " C" << jch
<< " z=" << gtran[2] << " t/2=" << fpar[2] << " (DDD) or " << hChamberThickness
<< " (specs) adr=" << chamber;
// Create the component layers of this chamber
// We're taking the z as the z of the wire plane within the layer (middle of gas gap)
// Specify global z of layer by offsetting from centre of chamber: since layer 1
// is nearest to IP in stations 1/2 but layer 6 is nearest in stations 3/4,
// we need to adjust sign of offset appropriately...
int localZwrtGlobalZ = +1;
if ((jend == 1 && jstat < 3) || (jend == 2 && jstat > 2))
localZwrtGlobalZ = -1;
int globalZ = +1;
if (jend == 2)
globalZ = -1;
LogTrace(myName) << myName << ": layerSeparation=" << layerSeparation << ", zAF-zAverageAGV=" << zAverageAGVtoAF
<< ", localZwrtGlobalZ=" << localZwrtGlobalZ << ", gtran[2]=" << gtran[2];
for (short j = 1; j <= 6; ++j) {
CSCDetId layerId = CSCDetId(jend, jstat, jring, jch, j);
// extra-careful check that we haven't already built this layer
const CSCLayer* cLayer = dynamic_cast<const CSCLayer*>(theGeometry.idToDet(layerId));
if (cLayer == nullptr) {
// build the layer - need the chamber's specs and an appropriate layer-geometry
const CSCChamberSpecs* aSpecs = chamber->specs();
const CSCLayerGeometry* geom = (j % 2 != 0) ? aSpecs->oddLayerGeometry(jend) : aSpecs->evenLayerGeometry(jend);
// Build appropriate BoundPlane, based on parent chamber, with gas gap as thickness
// centre of chamber is at global z = gtran[2]
float zlayer = gtran[2] - globalZ * zAverageAGVtoAF + localZwrtGlobalZ * (3.5 - j) * layerSeparation;
Surface::RotationType chamberRotation = chamber->surface().rotation();
Surface::PositionType layerPosition(gtran[0], gtran[1], zlayer);
std::array<const float, 4> const& dims = geom->parameters(); // returns hb, ht, d, a
// dims[2] = layerThickness/2.; // half-thickness required and note it is 3rd value in vector
TrapezoidalPlaneBounds* bounds = new TrapezoidalPlaneBounds(dims[0], dims[1], dims[3], layerThickness / 2.);
Plane::PlanePointer plane = Plane::build(layerPosition, chamberRotation, bounds);
CSCLayer* layer = new CSCLayer(plane, layerId, chamber, geom);
LogTrace(myName) << myName << ": Create layer E" << jend << " S" << jstat << " R" << jring << " C" << jch
<< " L" << j << " z=" << zlayer << " t=" << layerThickness << " or "
<< layer->surface().bounds().thickness() << " adr=" << layer << " layerGeom adr=" << geom;
chamber->addComponent(j, layer);
theGeometry.addLayer(layer);
} else {
edm::LogError(myName) << ": ERROR, layer " << j << " for chamber = " << (chamber->id())
<< " already exists: layer address=" << cLayer << " chamber address=" << chamber << "\n";
}
} // layer construction within chamber
} // chamber construction
}
|