Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
#include "CSCGeometryBuilder.h"

#include <Geometry/CSCGeometry/interface/CSCGeometry.h>

#include <DataFormats/DetId/interface/DetId.h>
#include <DataFormats/MuonDetId/interface/CSCDetId.h>
#include <Geometry/CSCGeometry/interface/CSCWireGroupPackage.h>

#include <FWCore/MessageLogger/interface/MessageLogger.h>

#include <vector>

CSCGeometryBuilder::CSCGeometryBuilder() : myName("CSCGeometryBuilder") {}

CSCGeometryBuilder::~CSCGeometryBuilder() {}

void CSCGeometryBuilder::build(CSCGeometry& theGeometry,
                               const RecoIdealGeometry& rig,
                               const CSCRecoDigiParameters& cscpars) {
  std::vector<float> fpar;
  std::vector<float> gtran;
  std::vector<float> grmat;
  std::vector<float> fupar;
  std::vector<double>::const_iterator it, endIt;
  const std::vector<DetId>& detids(rig.detIds());

  for (size_t idt = 0; idt < detids.size(); ++idt) {
    CSCDetId detid = CSCDetId(detids[idt]);
    int jstation = detid.station();
    int jring = detid.ring();

    endIt = rig.shapeEnd(idt);
    fpar.clear();
    for (it = rig.shapeStart(idt); it != endIt; ++it) {
      fpar.emplace_back((float)(*it));
    }

    gtran.clear();
    endIt = rig.tranEnd(idt);
    for (it = rig.tranStart(idt); it != endIt; ++it) {
      gtran.emplace_back((float)(*it));
    }
    grmat.clear();
    endIt = rig.rotEnd(idt);
    for (it = rig.rotStart(idt); it != endIt; ++it) {
      grmat.emplace_back((float)(*it));
    }

    // get the chamber type from existing info
    int chamberType = CSCChamberSpecs::whatChamberType(jstation, jring);
    size_t cs = 0;
    assert(!cscpars.pChamberType.empty());
    while (cs < cscpars.pChamberType.size() && chamberType != cscpars.pChamberType[cs]) {
      ++cs;
    }
    assert(cs != cscpars.pChamberType.size());

    // check the existence of the specs for this type WHY? Remove it...
    size_t fu, numfuPars;
    CSCWireGroupPackage wg;
    fu = cscpars.pUserParOffset[cs];
    numfuPars = fu + 1 + size_t(cscpars.pfupars[fu]);

    // upars from db are now uparvals + wg info so we need to unwrap only part here first...
    LogTrace(myName) << myName << ": I think I have " << cscpars.pUserParSize[cs] << " values in pfupars (uparvals)."
                     << std::endl;
    LogTrace(myName) << myName << ": For fupar I will start at " << cscpars.pUserParOffset[cs] + 1
                     << " in pfupars and go to " << numfuPars << "." << std::endl;
    for (++fu; fu < numfuPars; ++fu) {
      LogTrace(myName) << myName << ": pfupars[" << fu << "]=" << cscpars.pfupars[fu] << std::endl;
      fupar.emplace_back(cscpars.pfupars[fu]);
    }
    // now, we need to start from "here" at fu to go on and build wg...
    wg.wireSpacing = cscpars.pfupars[fu++];
    wg.alignmentPinToFirstWire = cscpars.pfupars[fu++];
    wg.numberOfGroups = int(cscpars.pfupars[fu++]);
    wg.narrowWidthOfWirePlane = cscpars.pfupars[fu++];
    wg.wideWidthOfWirePlane = cscpars.pfupars[fu++];
    wg.lengthOfWirePlane = cscpars.pfupars[fu++];
    size_t numgrp = static_cast<size_t>(cscpars.pfupars[fu]);
    size_t maxFu = fu + 1 + numgrp;
    fu++;
    for (; fu < maxFu; ++fu) {
      wg.wiresInEachGroup.emplace_back(int(cscpars.pfupars[fu]));
    }
    maxFu = fu + numgrp;
    for (; fu < maxFu; ++fu) {
      wg.consecutiveGroups.emplace_back(int(cscpars.pfupars[fu]));
    }

    if (wg.numberOfGroups != 0) {
      LogTrace(myName) << myName << ": TotNumWireGroups     = " << wg.numberOfGroups;
      LogTrace(myName) << myName << ": WireSpacing          = " << wg.wireSpacing;
      LogTrace(myName) << myName << ": AlignmentPinToFirstWire = " << wg.alignmentPinToFirstWire;
      LogTrace(myName) << myName << ": Narrow width of wire plane = " << wg.narrowWidthOfWirePlane;
      LogTrace(myName) << myName << ": Wide width of wire plane = " << wg.wideWidthOfWirePlane;
      LogTrace(myName) << myName << ": Length in y of wire plane = " << wg.lengthOfWirePlane;
      LogTrace(myName) << myName << ": wg.consecutiveGroups.size() = " << wg.consecutiveGroups.size();
      LogTrace(myName) << myName << ": wg.wiresInEachGroup.size() = " << wg.wiresInEachGroup.size();
      LogTrace(myName) << myName << ": \tNumGroups\tWiresInGroup";
      for (size_t i = 0; i < wg.consecutiveGroups.size(); i++) {
        LogTrace(myName) << myName << " \t" << wg.consecutiveGroups[i] << "\t\t" << wg.wiresInEachGroup[i];
      }
    } else {
      LogTrace(myName) << myName << ": DDD is MISSING SpecPars for wire groups";
    }
    LogTrace(myName) << myName << ": end of wire group info. ";

    // Are we going to apply centre-to-intersection offsets, even if values exist in the specs file?
    if (!theGeometry.centreTIOffsets())
      fupar[30] = 0.;  // reset to zero if flagged 'off'

    buildChamber(theGeometry, detid, fpar, fupar, gtran, grmat, wg);  //, cscpars.pWGPs[cs] );
    fupar.clear();
  }
}

void CSCGeometryBuilder::buildChamber(CSCGeometry& theGeometry,         // the geometry container
                                      CSCDetId chamberId,               // the DetId for this chamber
                                      const std::vector<float>& fpar,   // volume parameters hB, hT. hD, hH
                                      const std::vector<float>& fupar,  // user parameters
                                      const std::vector<float>& gtran,  // translation vector
                                      const std::vector<float>& grmat,  // rotation matrix
                                      const CSCWireGroupPackage& wg     // wire group info
) {
  LogTrace(myName) << myName << ": entering buildChamber";

  int jend = chamberId.endcap();
  int jstat = chamberId.station();
  int jring = chamberId.ring();
  int jch = chamberId.chamber();
  int jlay = chamberId.layer();

  if (jlay != 0)
    edm::LogWarning(myName) << "Error! CSCGeometryBuilderFromDDD was fed layer id = " << jlay << "\n";

  const size_t kNpar = 4;
  if (fpar.size() != kNpar)
    edm::LogError(myName) << "Error, expected npar=" << kNpar << ", found npar=" << fpar.size() << std::endl;

  LogTrace(myName) << myName << ":  E" << jend << " S" << jstat << " R" << jring << " C" << jch << " L" << jlay;
  LogTrace(myName) << myName << ": npar=" << fpar.size() << " hB=" << fpar[0] << " hT=" << fpar[1] << " hD=" << fpar[2]
                   << " hH=" << fpar[3];
  LogTrace(myName) << myName << ": gtran[0,1,2]=" << gtran[0] << " " << gtran[1] << " " << gtran[2];
  LogTrace(myName) << myName << ": grmat[0-8]=" << grmat[0] << " " << grmat[1] << " " << grmat[2] << " " << grmat[3]
                   << " " << grmat[4] << " " << grmat[5] << " " << grmat[6] << " " << grmat[7] << " " << grmat[8];
  LogTrace(myName) << myName << ": nupar=" << fupar.size() << " upar[0]=" << fupar[0] << " upar[" << fupar.size() - 1
                   << "]=" << fupar[fupar.size() - 1];

  const CSCChamber* chamber = theGeometry.chamber(chamberId);
  if (chamber) {
  } else {  // this chamber not yet built/stored

    LogTrace(myName) << myName << ": CSCChamberSpecs::build requested for ME" << jstat << jring;
    int chamberType = CSCChamberSpecs::whatChamberType(jstat, jring);
    const CSCChamberSpecs* aSpecs = theGeometry.findSpecs(chamberType);
    if (!fupar.empty() && aSpecs == nullptr) {
      // make new one:
      aSpecs = theGeometry.buildSpecs(chamberType, fpar, fupar, wg);
    } else if (fupar.empty() && aSpecs == nullptr) {
      edm::LogError(myName)
          << "SHOULD BE THROW? Error, wg and/or fupar size are 0 BUT this Chamber Spec has not been built!";
    }

    // Build a Transformation out of GEANT gtran and grmat...
    // These are used to transform a point in the local reference frame
    // of a subdetector to the global frame of CMS by
    //         (grmat)^(-1)*local + (gtran)
    // The corresponding transformation from global to local is
    //         (grmat)*(global - gtran)

    Surface::RotationType aRot(
        grmat[0], grmat[1], grmat[2], grmat[3], grmat[4], grmat[5], grmat[6], grmat[7], grmat[8]);

    // This rotation from GEANT considers the detector face as the x-z plane.
    // We want this to be the local x-y plane.
    // Furthermore, the -z_global endcap has LH local coordinates, since it is built
    // in GEANT as a *reflection* of the +z_global endcap.
    // So we need to rotate, and in -z flip local x.

    // aRot.rotateAxes will transform aRot in place so that it becomes
    // applicable to the new local coordinates: detector face in x-y plane
    // looking out along z, in either endcap.

    // The interface for rotateAxes specifies 'new' X,Y,Z but the
    // implementation deals with them as the 'old'.

    Basic3DVector<float> oldX(1., 0., 0.);
    Basic3DVector<float> oldY(0., 0., -1.);
    Basic3DVector<float> oldZ(0., 1., 0.);

    if (gtran[2] < 0.)
      oldX *= -1;

    aRot.rotateAxes(oldX, oldY, oldZ);

    // Need to know z of layers w.r.t to z of centre of chamber.

    float frameThickness = fupar[31] / 10.;   // mm -> cm
    float gapThickness = fupar[32] / 10.;     // mm -> cm
    float panelThickness = fupar[33] / 10.;   // mm -> cm
    float zAverageAGVtoAF = fupar[34] / 10.;  // mm -> cm

    float layerThickness = gapThickness;                    // consider the layer to be the gas gap
    float layerSeparation = gapThickness + panelThickness;  // centre-to-centre of neighbouring layers

    float chamberThickness = 7. * panelThickness + 6. * gapThickness + 2. * frameThickness;  // chamber frame thickness
    float hChamberThickness = chamberThickness / 2.;  // @@ should match value returned from DDD directly

    // distAverageAGVtoAF is offset between centre of chamber (AF) and (L1+L6)/2 (average AGVs)
    // where AF = AluminumFrame and AGV=ActiveGasVolume (volume names in DDD).
    // It is signed based on global z values: zc - (zl1+zl6)/2

    // Local z values w.r.t. AF...
    //     z of wires in layer 1 = z_w1 = +/- zAverageAGVtoAF + 2.5*layerSeparation; // layer 1 is at most +ve local z
    // The sign in '+/-' depends on relative directions of local and global z.
    // It is '-' if they are the same direction, and '+' if opposite directions.
    //     z of wires in layer N   = z_wN = z_w1 - (N-1)*layerSeparation;
    //     z of strips in layer N  = z_sN = z_wN + gapThickness/2.; @@ BEWARE: need to check if it should be '-gapThickness/2' !

    // Set dimensions of trapezoidal chamber volume
    // N.B. apothem is 4th in fpar but 3rd in ctor

    // hChamberThickness and fpar[2] should be the same - but using the above value at least shows
    // how chamber structure works

    TrapezoidalPlaneBounds* bounds = new TrapezoidalPlaneBounds(fpar[0], fpar[1], fpar[3], hChamberThickness);

    // Centre of chamber in z is specified in DDD
    Surface::PositionType aVec(gtran[0], gtran[1], gtran[2]);

    Plane::PlanePointer plane = Plane::build(aVec, aRot, bounds);

    CSCChamber* chamber = new CSCChamber(plane, chamberId, aSpecs);
    theGeometry.addChamber(chamber);

    LogTrace(myName) << myName << ": Create chamber E" << jend << " S" << jstat << " R" << jring << " C" << jch
                     << " z=" << gtran[2] << " t/2=" << fpar[2] << " (DDD) or " << hChamberThickness
                     << " (specs) adr=" << chamber;

    // Create the component layers of this chamber
    // We're taking the z as the z of the wire plane within the layer (middle of gas gap)

    // Specify global z of layer by offsetting from centre of chamber: since layer 1
    // is nearest to IP in stations 1/2 but layer 6 is nearest in stations 3/4,
    // we need to adjust sign of offset appropriately...
    int localZwrtGlobalZ = +1;
    if ((jend == 1 && jstat < 3) || (jend == 2 && jstat > 2))
      localZwrtGlobalZ = -1;
    int globalZ = +1;
    if (jend == 2)
      globalZ = -1;

    LogTrace(myName) << myName << ": layerSeparation=" << layerSeparation << ", zAF-zAverageAGV=" << zAverageAGVtoAF
                     << ", localZwrtGlobalZ=" << localZwrtGlobalZ << ", gtran[2]=" << gtran[2];

    for (short j = 1; j <= 6; ++j) {
      CSCDetId layerId = CSCDetId(jend, jstat, jring, jch, j);

      // extra-careful check that we haven't already built this layer
      const CSCLayer* cLayer = dynamic_cast<const CSCLayer*>(theGeometry.idToDet(layerId));

      if (cLayer == nullptr) {
        // build the layer - need the chamber's specs and an appropriate layer-geometry
        const CSCChamberSpecs* aSpecs = chamber->specs();
        const CSCLayerGeometry* geom = (j % 2 != 0) ? aSpecs->oddLayerGeometry(jend) : aSpecs->evenLayerGeometry(jend);

        // Build appropriate BoundPlane, based on parent chamber, with gas gap as thickness

        // centre of chamber is at global z = gtran[2]
        float zlayer = gtran[2] - globalZ * zAverageAGVtoAF + localZwrtGlobalZ * (3.5 - j) * layerSeparation;

        Surface::RotationType chamberRotation = chamber->surface().rotation();
        Surface::PositionType layerPosition(gtran[0], gtran[1], zlayer);
        std::array<const float, 4> const& dims = geom->parameters();  // returns hb, ht, d, a
        // dims[2] = layerThickness/2.; // half-thickness required and note it is 3rd value in vector
        TrapezoidalPlaneBounds* bounds = new TrapezoidalPlaneBounds(dims[0], dims[1], dims[3], layerThickness / 2.);
        Plane::PlanePointer plane = Plane::build(layerPosition, chamberRotation, bounds);

        CSCLayer* layer = new CSCLayer(plane, layerId, chamber, geom);

        LogTrace(myName) << myName << ": Create layer E" << jend << " S" << jstat << " R" << jring << " C" << jch
                         << " L" << j << " z=" << zlayer << " t=" << layerThickness << " or "
                         << layer->surface().bounds().thickness() << " adr=" << layer << " layerGeom adr=" << geom;

        chamber->addComponent(j, layer);
        theGeometry.addLayer(layer);
      } else {
        edm::LogError(myName) << ": ERROR, layer " << j << " for chamber = " << (chamber->id())
                              << " already exists: layer address=" << cLayer << " chamber address=" << chamber << "\n";
      }

    }  // layer construction within chamber
  }  // chamber construction
}