TkRadialStripTopology

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
#ifndef _TkRADIAL_STRIP_TOPOLOGY_H_
#define _TkRADIAL_STRIP_TOPOLOGY_H_

#include "Geometry/CommonTopologies/interface/RadialStripTopology.h"

/**
 * \class TkRadialStripTopology
 * A StripTopology in which the component strips subtend a constant
 * angular width, and, if projected, intersect at a point.
 *
 * \author Tim Cox
 *
 * WARNING! Wherever 'float strip' is used the units of 'strip' are angular
 * widths of each strip. The range is from 0.0 at the extreme edge of the
 * 'first' strip at one edge of the detector, to nstrip*angular width
 * at the other edge. <BR>
 * The centre of the first strip is at strip = 0.5 <BR>
 * The centre of the last strip is at strip = 0.5 + (nstrip-1) <BR>
 * This is for consistency with CommonDet usage of 'float strip' (but
 * where units are strip pitch rather than strip angular width.)<BR>
 *
 * WARNING! If the mid-point along local y of the plane of strips does not correspond
 * to the local coordinate origin, set the final ctor argument appropriately. <BR>
 *
 * this version is optimized for tracker and is FINAL
 */

class TkRadialStripTopology final : public RadialStripTopology {
public:
  /** 
   * Constructor from:
   *    \param ns number of strips
   *    \param aw angular width of a strip
   *    \param dh detector height (usually 2 x apothem of TrapezoidalPlaneBounds)
   *    \param r radial distance from symmetry centre of detector to the point at which 
   *    the outer edges of the two extreme strips (projected) intersect.
   *    \param yAx orientation of local y axis: 1 means pointing from the smaller side of
   *    the module to the larger side (along apothem), and -1 means in the 
   *    opposite direction, i.e. from the larger side along the apothem to the 
   *    smaller side. Default value is 1. 
   *    \param yMid local y offset if mid-point of detector (strip plane) does not coincide with local origin.
   *    This decouples the extent of strip plane from the boundary of the detector in which the RST is embedded.
   */
  TkRadialStripTopology(int ns, float aw, float dh, float r, int yAx = 1, float yMid = 0.);

  /** 
   * Destructor
   */
  ~TkRadialStripTopology() override {}

  // =========================================================
  // StripTopology interface - implement pure methods
  // =========================================================

  /** 
   * LocalPoint on x axis for given 'strip'
   * 'strip' is a float in units of the strip (angular) width
   */
  LocalPoint localPosition(float strip) const override;

  /** 
   * LocalPoint for a given MeasurementPoint <BR>
   * What's a MeasurementPoint?  <BR>
   * In analogy with that used with TrapezoidalStripTopology objects,
   * a MeasurementPoint is a 2-dim object.<BR>
   * The first dimension measures the
   * angular position wrt central line of symmetry of detector,
   * in units of strip (angular) widths (range 0 to total angle subtended
   * by a detector).<BR>
   * The second dimension measures
   * the fractional position along the strip (range -0.5 to +0.5).<BR>
   * BEWARE! The components are not Cartesian.<BR>
   */
  LocalPoint localPosition(const MeasurementPoint&) const override;

  /** 
   * LocalError for a pure strip measurement, where 'strip'
   * is the (float) position (a 'phi' angle wrt y axis) and
   * stripErr2 is the sigma-squared. Both quantities are expressed in
   * units of theAngularWidth of a strip.
   */
  LocalError localError(float strip, float stripErr2) const override;

  /** 
   * LocalError for a given MeasurementPoint with known MeasurementError.
   * This may be used in Kalman filtering and hence must allow possible
   * correlations between the components.
   */
  LocalError localError(const MeasurementPoint&, const MeasurementError&) const override;

  /** 
   * Strip in which a given LocalPoint lies. This is a float which
   * represents the fractional strip position within the detector.<BR>
   * Returns zero if the LocalPoint falls at the extreme low edge of the
   * detector or BELOW, and float(nstrips) if it falls at the extreme high
   * edge or ABOVE.
   */
  float strip(const LocalPoint&) const override;

  // the number of strip span by the segment between the two points..
  float coveredStrips(const LocalPoint& lp1, const LocalPoint& lp2) const override;

  /** 
   * Pitch (strip width) at a given LocalPoint. <BR>
   * BEWARE: are you sure you really want to call this for a RadialStripTopology?
   */
  float localPitch(const LocalPoint&) const override;

  /** 
   * Angle between strip and symmetry axis (=local y axis)
   * for given strip. <BR>
   * This is like a phi angle but measured clockwise from y axis 
   * rather than counter clockwise from x axis.
   * Note that 'strip' is a float with a continuous range from 0 to 
   * float(nstrips) to cover the whole detector, and the centres of
   * strips correspond to half-integer values 0.5, 1.5, ..., nstrips-0.5
   * whereas values 1, 2, ... nstrips correspond to the upper phi edges of
   * the strips.
   */
  float stripAngle(float strip) const override {
    return yAxisOrientation() * (phiOfOneEdge() + strip * angularWidth());
  }

  /** 
   * Total number of strips 
   */
  int nstrips() const override { return theNumberOfStrips; }

  /** 
   * Height of detector (= length of long symmetry axis of the plane of strips).
   */
  float stripLength() const override { return theDetHeight; }

  /** 
   * Length of a strip passing through a given LocalPpoint
   */
  float localStripLength(const LocalPoint&) const override;

  // =========================================================
  // Topology interface (not already implemented for
  // StripTopology interface)
  // =========================================================

  MeasurementPoint measurementPosition(const LocalPoint&) const override;

  MeasurementError measurementError(const LocalPoint&, const LocalError&) const override;

  /** 
   * Channel number corresponding to a given LocalPoint.<BR>
   * This is effectively an integer version of strip(), with range 0 to
   * nstrips-1.  <BR>
   * LocalPoints outside the detector strip plane will be considered
   * as contributing to the edge channels 0 or nstrips-1.
   */
  int channel(const LocalPoint&) const override;

  // =========================================================
  // RadialStripTopology interface itself
  // =========================================================

  /** 
   * Angular width of a each strip
   */
  float angularWidth() const override { return theAngularWidth; }

  /** 
   * Phi pitch of each strip (= angular width!)
   */
  float phiPitch(void) const override { return angularWidth(); }

  /** 
   * Length of long symmetry axis of plane of strips
   */
  float detHeight() const override { return theDetHeight; }

  /** 
   * y extent of strip plane
   */
  float yExtentOfStripPlane() const override { return theDetHeight; }  // same as detHeight()

  /** 
   * Distance from the intersection of the projections of
   * the extreme edges of the two extreme strips to the symmetry
   * centre of the plane of strips. 
   */
  float centreToIntersection() const override { return theCentreToIntersection; }

  /** 
   * (y) distance from intersection of the projections of the strips
   * to the local coordinate origin. Same as centreToIntersection()
   * if symmetry centre of strip plane coincides with local origin.
   */
  float originToIntersection() const override { return (theCentreToIntersection - yCentre); }

  /**
   * Convenience function to access azimuthal angle of extreme edge of first strip 
   * measured relative to long symmetry axis of the plane of strips. <BR>
   *
   * WARNING! This angle is measured clockwise from the local y axis 
   * which means it is in the conventional azimuthal phi plane, 
   * but azimuth is of course measured from local x axis not y. 
   * The range of this angle is
   *  -(full angle)/2 to +(full angle)/2. <BR>
   * where (full angle) = nstrips() * angularWidth(). <BR>
   *
   */
  float phiOfOneEdge() const override { return thePhiOfOneEdge; }

  /**
   * Local x where centre of strip intersects input local y <BR>
   * 'strip' should be in range 1 to nstrips() <BR>
   */
  float xOfStrip(int strip, float y) const override;

  /**
   * Nearest strip to given LocalPoint
   */
  int nearestStrip(const LocalPoint&) const override;

  /** 
   * y axis orientation, 1 means detector width increases with local y
   */
  float yAxisOrientation() const override { return theYAxisOrientation; }

  /**
   * Offset in local y between midpoint of detector (strip plane) extent and local origin
   */
  float yCentreOfStripPlane() const override { return yCentre; }

  /**
   * Distance in local y from a hit to the point of intersection of projected strips
   */
  float yDistanceToIntersection(float y) const override;

private:
  int theNumberOfStrips;          // total no. of strips in plane of strips
  float theAngularWidth;          // angle subtended by each strip = phi pitch
  float theAWidthInverse;         // inverse of above
  float theTanAW;                 // its tangent
  float theDetHeight;             // length of long symmetry axis = twice the apothem of the enclosing trapezoid
  float theCentreToIntersection;  // distance centre of detector face to intersection of edge strips (projected)
  float thePhiOfOneEdge;          // local 'phi' of one edge of plane of strips (I choose it negative!)
  float theTanOfOneEdge;          // the positive tangent of the above...
  float theYAxisOrientation;      // 1 means y axis going from smaller to larger side, -1 means opposite direction
  float yCentre;  // Non-zero if offset in local y between midpoint of detector (strip plane) extent and local origin.
  double theRadialSigma;  // radial sigma^2( uniform prob density along strip)
};

#endif