Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
#include "Geometry/CaloGeometry/interface/CaloGenericDetId.h"
#include "Geometry/CaloGeometry/interface/TruncatedPyramid.h"
#include "Geometry/EcalAlgo/interface/EcalBarrelGeometry.h"
#include "Geometry/CaloGeometry/interface/CaloCellGeometry.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "DataFormats/EcalDetId/interface/EBDetId.h"

#include <CLHEP/Geometry/Point3D.h>
#include <CLHEP/Geometry/Plane3D.h>
#include <CLHEP/Geometry/Vector3D.h>

#include <iomanip>
#include <iostream>

typedef CaloCellGeometry::CCGFloat CCGFloat;
typedef CaloCellGeometry::Pt3D Pt3D;
typedef CaloCellGeometry::Pt3DVec Pt3DVec;
typedef HepGeom::Plane3D<CCGFloat> Pl3D;

EcalBarrelGeometry::EcalBarrelGeometry()
    : _nnxtalEta(85),
      _nnxtalPhi(360),
      _PhiBaskets(18),
      m_borderMgr(nullptr),
      m_borderPtrVec(nullptr),
      m_radius(-1.),
      m_check(false),
      m_cellVec(k_NumberOfCellsForCorners) {
  const int neba[] = {25, 45, 65, 85};
  _EtaBaskets = std::vector<int>(neba, neba + 4);
}

EcalBarrelGeometry::~EcalBarrelGeometry() {
  if (m_borderPtrVec) {
    auto ptr = m_borderPtrVec.load(std::memory_order_acquire);
    for (auto& v : (*ptr)) {
      delete v;
      v = nullptr;
    }
    delete m_borderPtrVec.load();
  }
  delete m_borderMgr.load();
}

unsigned int EcalBarrelGeometry::alignmentTransformIndexLocal(const DetId& id) {
  const CaloGenericDetId gid(id);

  assert(gid.isEB());

  unsigned int index(EBDetId(id).ism() - 1);

  return index;
}

DetId EcalBarrelGeometry::detIdFromLocalAlignmentIndex(unsigned int iLoc) {
  return EBDetId(iLoc + 1, 1, EBDetId::SMCRYSTALMODE);
}

unsigned int EcalBarrelGeometry::alignmentTransformIndexGlobal(const DetId& /*id*/) {
  return (unsigned int)DetId::Ecal - 1;
}
// Get closest cell, etc...
DetId EcalBarrelGeometry::getClosestCell(const GlobalPoint& r) const {
  // z is the easy one
  int leverx = 1;
  int levery = 1;
  CCGFloat pointz = r.z();
  int zbin = 1;
  if (pointz < 0)
    zbin = -1;

  // Now find the closest eta
  CCGFloat pointeta = r.eta();
  //  double eta;
  CCGFloat deta = 999.;
  int etabin = 1;

  int guessed_eta = (int)(fabs(pointeta) / 0.0174) + 1;
  int guessed_eta_begin = guessed_eta - 1;
  int guessed_eta_end = guessed_eta + 1;
  if (guessed_eta_begin < 1)
    guessed_eta_begin = 1;
  if (guessed_eta_end > 85)
    guessed_eta_end = 85;

  for (int bin = guessed_eta_begin; bin <= guessed_eta_end; bin++) {
    try {
      if (!present(EBDetId(zbin * bin, 1, EBDetId::ETAPHIMODE)))
        continue;

      CCGFloat eta = getGeometry(EBDetId(zbin * bin, 1, EBDetId::ETAPHIMODE))->etaPos();

      if (fabs(pointeta - eta) < deta) {
        deta = fabs(pointeta - eta);
        etabin = bin;
      } else
        break;
    } catch (cms::Exception& e) {
    }
  }

  // Now the closest phi. always same number of phi bins(!?)
  constexpr CCGFloat twopi = M_PI + M_PI;
  // 10 degree tilt
  constexpr CCGFloat tilt = twopi / 36.;

  CCGFloat pointphi = r.phi() + tilt;

  // put phi in correct range (0->2pi)
  if (pointphi > twopi)
    pointphi -= twopi;
  if (pointphi < 0)
    pointphi += twopi;

  //calculate phi bin, distinguish + and - eta
  int phibin = static_cast<int>(pointphi / (twopi / _nnxtalPhi)) + 1;
  //   if(point.z()<0.0)
  //     {
  //       phibin = nxtalPhi/2 - 1 - phibin;
  //       if(phibin<0)
  //         phibin += nxtalPhi;
  //     }
  try {
    EBDetId myCell(zbin * etabin, phibin, EBDetId::ETAPHIMODE);

    if (!present(myCell))
      return DetId(0);

    Pt3D A;
    Pt3D B;
    Pt3D C;
    Pt3D point(r.x(), r.y(), r.z());

    // D.K. : equation of plane : AA*x+BB*y+CC*z+DD=0;
    // finding equation for each edge

    // Since the point can lie between crystals, it is necessary to keep track of the movements
    // to avoid infinite loops
    CCGFloat history[4]{0.f};

    //
    // stop movement in eta direction when closest cell was found (point between crystals)
    int start = 1;
    int counter = 0;
    // Moving until find closest crystal in eta and phi directions (leverx and levery)
    while (leverx == 1 || levery == 1) {
      leverx = 0;
      levery = 0;
      const CaloCellGeometry::CornersVec& corners(getGeometry(myCell)->getCorners());
      CCGFloat SS[4];

      // compute the distance of the point with respect of the 4 crystal lateral planes
      for (short i = 0; i < 4; ++i) {
        A = Pt3D(corners[i % 4].x(), corners[i % 4].y(), corners[i % 4].z());
        B = Pt3D(corners[(i + 1) % 4].x(), corners[(i + 1) % 4].y(), corners[(i + 1) % 4].z());
        C = Pt3D(corners[4 + (i + 1) % 4].x(), corners[4 + (i + 1) % 4].y(), corners[4 + (i + 1) % 4].z());
        Pl3D plane(A, B, C);
        plane.normalize();
        CCGFloat distance = plane.distance(point);
        if (plane.d() > 0.)
          distance = -distance;
        if (corners[0].z() < 0.)
          distance = -distance;
        SS[i] = distance;
      }

      // SS's - normals
      // check position of the point with respect to opposite side of crystal
      // if SS's have opposite sign, the  point lies inside that crystal

      if ((SS[0] > 0. && SS[2] > 0.) || (SS[0] < 0. && SS[2] < 0.)) {
        levery = 1;
        if (history[0] > 0. && history[2] > 0. && SS[0] < 0 && SS[2] < 0 &&
            (fabs(SS[0]) + fabs(SS[2])) > (fabs(history[0]) + fabs(history[2])))
          levery = 0;
        if (history[0] < 0. && history[2] < 0. && SS[0] > 0 && SS[2] > 0 &&
            (fabs(SS[0]) + fabs(SS[2])) > (fabs(history[0]) + fabs(history[2])))
          levery = 0;

        if (SS[0] > 0.) {
          EBDetId nextPoint;
          if (myCell.iphi() == EBDetId::MIN_IPHI)
            nextPoint = EBDetId(myCell.ieta(), EBDetId::MAX_IPHI);
          else
            nextPoint = EBDetId(myCell.ieta(), myCell.iphi() - 1);
          if (present(nextPoint))
            myCell = nextPoint;
          else
            levery = 0;
        } else {
          EBDetId nextPoint;
          if (myCell.iphi() == EBDetId::MAX_IPHI)
            nextPoint = EBDetId(myCell.ieta(), EBDetId::MIN_IPHI);
          else
            nextPoint = EBDetId(myCell.ieta(), myCell.iphi() + 1);
          if (present(nextPoint))
            myCell = nextPoint;
          else
            levery = 0;
        }
      }

      if (((SS[1] > 0. && SS[3] > 0.) || (SS[1] < 0. && SS[3] < 0.)) && start == 1) {
        leverx = 1;

        if (history[1] > 0. && history[3] > 0. && SS[1] < 0 && SS[3] < 0 &&
            (fabs(SS[1]) + fabs(SS[3])) > (fabs(history[1]) + fabs(history[3]))) {
          leverx = 0;
          start = 0;
        }

        if (history[1] < 0. && history[3] < 0. && SS[1] > 0 && SS[3] > 0 &&
            (fabs(SS[1]) + fabs(SS[3])) > (fabs(history[1]) + fabs(history[3]))) {
          leverx = 0;
          start = 0;
        }

        if (SS[1] > 0.) {
          EBDetId nextPoint;
          if (myCell.ieta() == -1)
            nextPoint = EBDetId(1, myCell.iphi());
          else {
            int nieta = myCell.ieta() + 1;
            if (nieta == 86)
              nieta = 85;
            nextPoint = EBDetId(nieta, myCell.iphi());
          }
          if (present(nextPoint))
            myCell = nextPoint;
          else
            leverx = 0;
        } else {
          EBDetId nextPoint;
          if (myCell.ieta() == 1)
            nextPoint = EBDetId(-1, myCell.iphi());
          else {
            int nieta = myCell.ieta() - 1;
            if (nieta == -86)
              nieta = -85;
            nextPoint = EBDetId(nieta, myCell.iphi());
          }
          if (present(nextPoint))
            myCell = nextPoint;
          else
            leverx = 0;
        }
      }

      // Update the history. If the point lies between crystals, the closest one
      // is returned
      std::copy(SS, SS + 4, history);

      counter++;
      if (counter == 10) {
        leverx = 0;
        levery = 0;
      }
    }
    // D.K. if point lies netween cells, take a closest cell.
    return DetId(myCell);
  } catch (cms::Exception& e) {
    return DetId(0);
  }
}

CaloSubdetectorGeometry::DetIdSet EcalBarrelGeometry::getCells(const GlobalPoint& r, double dR) const {
  constexpr int maxphi(EBDetId::MAX_IPHI);
  constexpr int maxeta(EBDetId::MAX_IETA);
  constexpr float scale(maxphi / (2 * M_PI));  // angle to index

  CaloSubdetectorGeometry::DetIdSet dis;  // this is the return object

  if (0.000001 < dR) {
    if (dR > M_PI / 2.)  // this version needs "small" dR
    {
      dis = CaloSubdetectorGeometry::getCells(r, dR);  // base class version
    } else {
      const float dR2(dR * dR);
      const float reta(r.eta());
      const float rz(r.z());
      const float rphi(r.phi());
      const float lowEta(reta - dR);
      const float highEta(reta + dR);

      if (highEta > -1.5 && lowEta < 1.5)  // in barrel
      {
        const int ieta_center(int(reta * scale + ((rz < 0) ? (-1) : (1))));
        const float phi(rphi < 0 ? rphi + float(2 * M_PI) : rphi);
        const int iphi_center(int(phi * scale + 11.f));  // phi=-9.4deg is iphi=1

        const float fr(dR * scale);         // # crystal widths in dR
        const float frp(1.08f * fr + 1.f);  // conservatively above fr
        const float frm(0.92f * fr - 1.f);  // conservatively below fr
        const int idr((int)frp);            // integerize
        const int idr2p((int)(frp * frp));
        const int idr2m(frm > 0 ? int(frm * frm) : 0);

        for (int de(-idr); de <= idr; ++de)  // over eta limits
        {
          int ieta(de + ieta_center);

          if (std::abs(ieta) <= maxeta && ieta != 0)  // eta is in EB
          {
            const int de2(de * de);
            for (int dp(-idr); dp <= idr; ++dp)  // over phi limits
            {
              const int irange2(dp * dp + de2);

              if (irange2 <= idr2p)  // cut off corners that must be too far away
              {
                const int iphi((iphi_center + dp + maxphi - 1) % maxphi + 1);

                if (iphi != 0) {
                  const EBDetId id(ieta, iphi);

                  bool ok(irange2 < idr2m);  // no more calculation necessary if inside this radius

                  if (!ok)  // if not ok, then we have to test this cell for being inside cone
                  {
                    const CaloCellGeometry* cell(&m_cellVec[id.denseIndex()]);
                    const float eta(cell->etaPos());
                    const float phi(cell->phiPos());
                    ok = (reco::deltaR2(eta, phi, reta, rphi) < dR2);
                  }
                  if (ok)
                    dis.insert(id);
                }
              }
            }
          }
        }
      }
    }
  }
  return dis;
}

const EcalBarrelGeometry::OrderedListOfEEDetId* EcalBarrelGeometry::getClosestEndcapCells(EBDetId id) const {
  OrderedListOfEEDetId* ptr(nullptr);
  auto ptrVec = m_borderPtrVec.load(std::memory_order_acquire);
  if (!ptrVec) {
    if (0 != id.rawId()) {
      const int iPhi(id.iphi());
      const int iz(id.ieta() > 0 ? 1 : -1);
      const EEDetId eeid(EEDetId::idOuterRing(iPhi, iz));
      const int iq(eeid.iquadrant());
      const int xout(1 == iq || 4 == iq ? 1 : -1);
      const int yout(1 == iq || 2 == iq ? 1 : -1);
      if (!m_borderMgr.load(std::memory_order_acquire)) {
        EZMgrFL<EEDetId>* expect = nullptr;
        auto ptrMgr = new EZMgrFL<EEDetId>(720 * 9, 9);
        bool exchanged = m_borderMgr.compare_exchange_strong(expect, ptrMgr, std::memory_order_acq_rel);
        if (!exchanged)
          delete ptrMgr;
      }
      VecOrdListEEDetIdPtr* expect = nullptr;
      auto ptrVec = new VecOrdListEEDetIdPtr();
      ptrVec->reserve(720);
      for (unsigned int i(0); i != 720; ++i) {
        const int kz(360 > i ? -1 : 1);
        const EEDetId eeid(EEDetId::idOuterRing(i % 360 + 1, kz));

        const int jx(eeid.ix());
        const int jy(eeid.iy());

        OrderedListOfEEDetId& olist(*new OrderedListOfEEDetId(m_borderMgr.load(std::memory_order_acquire)));
        int il(0);

        for (unsigned int k(1); k <= 25; ++k) {
          const int kx(1 == k || 2 == k || 3 == k || 12 == k || 13 == k
                           ? 0
                           : (4 == k || 6 == k || 8 == k || 15 == k || 20 == k
                                  ? 1
                                  : (5 == k || 7 == k || 9 == k || 16 == k || 19 == k
                                         ? -1
                                         : (10 == k || 14 == k || 21 == k || 22 == k || 25 == k ? 2 : -2))));
          const int ky(1 == k || 4 == k || 5 == k || 10 == k || 11 == k
                           ? 0
                           : (2 == k || 6 == k || 7 == k || 14 == k || 17 == k
                                  ? 1
                                  : (3 == k || 8 == k || 9 == k || 18 == k || 21 == k
                                         ? -1
                                         : (12 == k || 15 == k || 16 == k || 22 == k || 23 == k ? 2 : -2))));

          if (8 >= il && EEDetId::validDetId(jx + kx * xout, jy + ky * yout, kz)) {
            olist[il++] = EEDetId(jx + kx * xout, jy + ky * yout, kz);
          }
        }
        ptrVec->emplace_back(&olist);
      }
      bool exchanged = m_borderPtrVec.compare_exchange_strong(expect, ptrVec, std::memory_order_acq_rel);
      if (!exchanged)
        delete ptrVec;
      ptrVec = m_borderPtrVec.load(std::memory_order_acquire);
      ptr = (*ptrVec)[iPhi - 1 + (0 > iz ? 0 : 360)];
    }
  }
  return ptr;
}

void EcalBarrelGeometry::localCorners(Pt3DVec& lc, const CCGFloat* pv, unsigned int i, Pt3D& ref) {
  const bool negz(EBDetId::kSizeForDenseIndexing / 2 > i);
  const bool odd(1 == i % 2);

  if (((negz && !odd) || (!negz && odd))) {
    TruncatedPyramid::localCornersReflection(lc, pv, ref);
  } else {
    TruncatedPyramid::localCornersSwap(lc, pv, ref);
  }
}

void EcalBarrelGeometry::newCell(
    const GlobalPoint& f1, const GlobalPoint& f2, const GlobalPoint& f3, const CCGFloat* parm, const DetId& detId) {
  const unsigned int cellIndex(EBDetId(detId).denseIndex());
  m_cellVec[cellIndex] = TruncatedPyramid(cornersMgr(), f1, f2, f3, parm);
  addValidID(detId);
}

CCGFloat EcalBarrelGeometry::avgRadiusXYFrontFaceCenter() const {
  if (!m_check.load(std::memory_order_acquire)) {
    CCGFloat sum(0);
    for (uint32_t i(0); i != m_cellVec.size(); ++i) {
      auto cell(cellGeomPtr(i));
      if (nullptr != cell) {
        const GlobalPoint& pos(cell->getPosition());
        sum += pos.perp();
      }
    }
    m_radius = sum / m_cellVec.size();
    m_check.store(true, std::memory_order_release);
  }
  return m_radius;
}

CaloCellGeometryPtr EcalBarrelGeometry::getGeometryRawPtr(uint32_t index) const {
  // Modify the RawPtr class
  return CaloCellGeometryPtr(m_cellVec.size() <= index || nullptr == m_cellVec[index].param() ? nullptr
                                                                                              : &m_cellVec[index]);
}

bool EcalBarrelGeometry::present(const DetId& id) const {
  if (id.det() == DetId::Ecal && id.subdetId() == EcalBarrel) {
    EBDetId ebId(id);
    if (EBDetId::validDetId(ebId.ieta(), ebId.iphi()))
      return true;
  }
  return false;
}